-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation.py
29 lines (20 loc) · 914 Bytes
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import numpy as np
from keras import backend
from keras.models import load_model
from keras.preprocessing.sequence import pad_sequences
import pickle
from configparser import ConfigParser
def main():
print(backend.tensorflow_backend._get_available_gpus())
config = ConfigParser()
config.read('config.ini')
model_folder = config.get('DATA FOLDER', 'model')
preprocessed_folder = config.get('DATA FOLDER', 'preprocessed')
model = load_model(f'{model_folder}/deepcnn.hdf5')
x_data = pickle.load(open(f"{preprocessed_folder}/x_test.p", "rb"))
y_data = np.array(pickle.load(open(f"{preprocessed_folder}/y_test.p", "rb")))
x_data_padded = pad_sequences(x_data, maxlen=512, dtype='float', padding='post')
accuracy = model.evaluate(x_data_padded, y_data, batch_size=32)[1]
print(f'accuracy on the test set is {100*accuracy}%')
if __name__ == "__main__":
main()