forked from fudan-generative-vision/hallo
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnodes.py
188 lines (157 loc) · 7.51 KB
/
nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
import cv2
import yaml
import torch
import random
import torchaudio
import folder_paths
import numpy as np
from PIL import Image
class AnyType(str):
def __ne__(self, __value: object) -> bool:
return False
# Our any instance wants to be a wildcard string
any = AnyType("*")
def get_ext_dir(subpath=None, mkdir=False):
dir = os.path.dirname(__file__)
if subpath is not None:
dir = os.path.join(dir, subpath)
dir = os.path.abspath(dir)
if mkdir and not os.path.exists(dir):
os.makedirs(dir)
return dir
def cv_frame_generator(video):
try:
video_cap = cv2.VideoCapture(video)
if not video_cap.isOpened():
raise ValueError(f"{video} could not be loaded with cv.")
# set video_cap to look at start_index frame
total_frame_count = 0
total_frames_evaluated = -1
frames_added = 0
base_frame_time = 1/video_cap.get(cv2.CAP_PROP_FPS)
width = video_cap.get(cv2.CAP_PROP_FRAME_WIDTH)
height = video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
prev_frame = None
target_frame_time = base_frame_time
yield (width, height, target_frame_time)
time_offset=target_frame_time - base_frame_time
while video_cap.isOpened():
if time_offset < target_frame_time:
is_returned = video_cap.grab()
# if didn't return frame, video has ended
if not is_returned:
break
time_offset += base_frame_time
if time_offset < target_frame_time:
continue
time_offset -= target_frame_time
# if not at start_index, skip doing anything with frame
total_frame_count += 1
total_frames_evaluated += 1
# opencv loads images in BGR format (yuck), so need to convert to RGB for ComfyUI use
# follow up: can videos ever have an alpha channel?
# To my testing: No. opencv has no support for alpha
unused, frame = video_cap.retrieve()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# convert frame to comfyui's expected format
# TODO: frame contains no exif information. Check if opencv2 has already applied
frame = np.array(frame, dtype=np.float32) / 255.0
if prev_frame is not None:
inp = yield prev_frame
if inp is not None:
#ensure the finally block is called
return
prev_frame = frame
frames_added += 1
if prev_frame is not None:
yield prev_frame
finally:
video_cap.release()
class HalloNode:
@classmethod
def INPUT_TYPES(s):
audio_extensions = ["wav", "mp3", "flac"]
input_dir = folder_paths.get_input_directory()
files = []
for f in os.listdir(input_dir):
if os.path.isfile(os.path.join(input_dir, f)):
file_parts = f.split('.')
if len(file_parts) > 1 and (file_parts[-1] in audio_extensions):
files.append(f)
return {"required": {
"source_image": ("IMAGE", ),
"driving_audio": ("AUDIO", ),
"pose_weight" :("FLOAT",{"default": 1.0}),
"face_weight":("FLOAT",{"default": 1.0}),
"lip_weight":("FLOAT",{"default": 1.0}),
"face_expand_ratio":("FLOAT",{"default": 1.2}),
},}
CATEGORY = "HalloNode"
RETURN_TYPES = ("IMAGE", "INT", "FLOAT", )
RETURN_NAMES = ("images", "count", "frame_rate", )
FUNCTION = "inference"
def inference(self, source_image, driving_audio, pose_weight, face_weight, lip_weight, face_expand_ratio):
ckpt_dir = os.path.join(folder_paths.models_dir, "hallo")
cur_dir = get_ext_dir()
output_dir = folder_paths.get_temp_directory()
os.makedirs(output_dir, exist_ok=True)
if not os.path.exists(ckpt_dir):
from huggingface_hub import snapshot_download
snapshot_download(repo_id="fudan-generative-ai/hallo", local_dir=ckpt_dir, local_dir_use_symlinks=False)
infer_py = os.path.join(cur_dir, "scripts/inference.py")
default_yaml_path = os.path.join(cur_dir, "configs/inference/default.yaml")
with open(default_yaml_path, 'r', encoding="utf-8") as f:
yaml_data = yaml.load(f.read(),Loader=yaml.SafeLoader)
yaml_data['save_path'] = output_dir
yaml_data['audio_ckpt_dir'] = os.path.join(ckpt_dir, "hallo")
yaml_data['base_model_path'] = os.path.join(ckpt_dir, "stable-diffusion-v1-5")
yaml_data['motion_module_path'] = os.path.join(ckpt_dir, "motion_module/mm_sd_v15_v2.ckpt")
yaml_data['face_analysis']['model_path'] = os.path.join(ckpt_dir, "face_analysis")
yaml_data['wav2vec']['model_path'] = os.path.join(ckpt_dir, "wav2vec/wav2vec2-base-960h")
yaml_data['audio_separator']['model_path'] = os.path.join(ckpt_dir, "audio_separator/Kim_Vocal_2.onnx")
yaml_data['vae']['model_path'] = os.path.join(ckpt_dir, "sd-vae-ft-mse")
yaml_data["face_landmarker"]['model_path'] = os.path.join(ckpt_dir, "face_analysis/models/face_landmarker_v2_with_blendshapes.task")
tmp_yaml_path = os.path.join(cur_dir, 'tmp.yaml')
with open(tmp_yaml_path, 'w', encoding="utf-8") as f:
yaml.dump(data=yaml_data, stream=f, Dumper=yaml.Dumper)
output_name = ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for _ in range(5))
output_video_path = os.path.join(output_dir, f"hallo_{output_name}.mp4")
# get src image
for (_, img) in enumerate(source_image):
img = 255. * img.cpu().numpy()
img = Image.fromarray(np.clip(img, 0, 255).astype(np.uint8))
src_img_path = os.path.join(output_dir, f"hallo_{output_name}_src_img.png")
img.save(src_img_path)
print(f'saved src image to {src_img_path}')
break
# # get src audio
# src_audio_path = os.path.join(folder_paths.get_input_directory(), driving_audio)
# if not os.path.exists(src_audio_path):
# src_audio_path = driving_audio # absolute path
# save audio to path
waveform = driving_audio["waveform"]
sample_rate = driving_audio["sample_rate"]
if waveform.dim() == 3:
waveform = waveform.squeeze(0)
src_audio_path = os.path.join(output_dir, f"hallo_{output_name}_src_audio.wav")
torchaudio.save(src_audio_path, waveform, sample_rate)
env = ':'.join([os.environ.get('PYTHONPATH', ''), cur_dir])
cmd = f"""PYTHONPATH={env} python {infer_py} --config "{tmp_yaml_path}" --source_image "{src_img_path}" --driving_audio "{src_audio_path}" --output {output_video_path} --pose_weight {pose_weight} --face_weight {face_weight} --lip_weight {lip_weight} --face_expand_ratio {face_expand_ratio}"""
print(cmd)
os.system(cmd)
os.remove(tmp_yaml_path)
gen = cv_frame_generator(output_video_path)
(width, height, target_frame_time) = next(gen)
width = int(width)
height = int(height)
images = torch.from_numpy(np.fromiter(gen, np.dtype((np.float32, (height, width, 3)))))
if len(images) == 0:
raise RuntimeError("No frames generated")
return (images, len(images), 25)
NODE_CLASS_MAPPINGS = {
"D_HalloNode": HalloNode,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"D_HalloNode": "Hallo Node",
}