a simple code for visualize the heat map from backbone and fpn while test with mmdetection
def extract_feat(self, img):
x_backbone = self.backbone(img)
if self.with_neck:
x_fpn = self.neck(x_backbone)
return x_backbone,x_fpn
and:
def simple_test(self, img, img_metas, proposals=None, rescale=False):
"""Test without augmentation."""
assert self.with_bbox, 'Bbox head must be implemented.'
x_backbone,x_fpn = self.extract_feat(img)
if proposals is None:
proposal_list = self.simple_test_rpn(x_fpn, img_metas)
else:
proposal_list = proposals
return self.roi_head.simple_test(
x_fpn, proposal_list, img_metas, rescale=rescale),x_backbone,x_fpn
def inference_detector(model, img):
.......
# forward the model
with torch.no_grad():
result,x_backbone,x_fpn= model(return_loss=False, rescale=True, **data)
return result,x_backbone,x_fpn
if you use other detectors, it is easy to change it like this
1:change the config
,checkpoint
,img
2: run the code
I refer to some codes , this code is rough and not rigorous