-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBME280.cpp
292 lines (247 loc) · 8.69 KB
/
BME280.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
#include "BME280.h"
BME280::BME280() {
this->addr = BME280_ADDR_SDO_LOW;
this->useHighAccuracy = false;
}
BME280::BME280(uint8_t addr) {
this->addr = addr;
this->useHighAccuracy = false;
}
bool BME280::init() {
if (!checkConnection())
return false;
if (!setPressOversampling(BME280_OVERSAMPLING_1))
return false;
if (!setTempOversampling(BME280_OVERSAMPLING_1))
return false;
if (!setHumOversampling(BME280_OVERSAMPLING_1))
return false;
if (!setMode(BME280_MODE_NORMAL))
return false;
return loadCalibrationData();
}
bool BME280::getHighAccuracy() {
return useHighAccuracy;
}
void BME280::setHighAccuracy(bool enabled) {
useHighAccuracy = enabled;
}
uint8_t BME280::getDeviceID() {
I2Cdev::readByte(addr, BME280_RA_ID, buffer);
return buffer[0];
}
bool BME280::checkConnection() {
return getDeviceID() == 0x60;
}
bool BME280::reset() {
return I2Cdev::writeByte(addr, BME280_RA_RESET, 0xB6);
}
uint16_t BME280::readInt16(int offset) {
return (((uint16_t)buffer[offset + 1]) << 8) | buffer[offset];
}
uint32_t BME280::readInt32(int offset) {
uint32_t a = buffer[offset];
uint32_t b = buffer[offset + 1];
uint32_t c = buffer[offset + 2];
uint32_t d = buffer[offset + 3];
return d << 24 | c << 16 | b << 8 | a;
}
uint8_t BME280::getTempOversampling() {
I2Cdev::readBits(addr, BME280_RA_CTRL_MEAS, 7, 3, buffer);
return buffer[0];
}
bool BME280::setTempOversampling(uint8_t mode) {
return I2Cdev::writeBits(addr, BME280_RA_CTRL_MEAS, 7, 3, mode);
}
uint8_t BME280::getPressOversampling() {
I2Cdev::readBits(addr, BME280_RA_CTRL_MEAS, 4, 3, buffer);
return buffer[0];
}
bool BME280::setPressOversampling(uint8_t mode) {
return I2Cdev::writeBits(addr, BME280_RA_CTRL_MEAS, 4, 3, mode);
}
uint8_t BME280::getHumOversampling() {
I2Cdev::readBits(addr, BME280_RA_CTRL_HUM, 2, 3, buffer);
return buffer[0];
}
bool BME280::setHumOversampling(uint8_t mode) {
if (!I2Cdev::writeBits(addr, BME280_RA_CTRL_HUM, 2, 3, mode))
return false;
// Changes to this register only become effective after a write operation to “ctrl_meas”.
if (!I2Cdev::readByte(addr, BME280_RA_CTRL_MEAS, buffer))
return false;
return I2Cdev::writeByte(addr, BME280_RA_CTRL_MEAS, buffer[0]);
}
uint8_t BME280::getMode() {
I2Cdev::readBits(addr, BME280_RA_CTRL_MEAS, 1, 2, buffer);
return buffer[0];
}
bool BME280::setMode(uint8_t mode) {
return I2Cdev::writeBits(addr, BME280_RA_CTRL_MEAS, 1, 2, mode);
}
bool BME280::isMeasuring() {
I2Cdev::readBits(addr, BME280_RA_STATUS, 3, 1, buffer);
return buffer[0] != 0;
}
uint8_t BME280::getStandbyTime() {
I2Cdev::readBits(addr, BME280_RA_CONFIG, 7, 3, buffer);
return buffer[0];
}
bool BME280::setStandbyTime(uint8_t time) {
return I2Cdev::writeBits(addr, BME280_RA_CONFIG, 7, 3, time);
}
uint8_t BME280::getFilterCoefficient() {
I2Cdev::readBits(addr, BME280_RA_CONFIG, 4, 3, buffer);
return buffer[0];
}
bool BME280::setFilterCoefficient(uint8_t coefficient) {
return I2Cdev::writeBits(addr, BME280_RA_CONFIG, 4, 3, coefficient);
}
bool BME280::loadCalibrationData() {
if (!I2Cdev::readBytes(addr, BME280_RA_CALIB00, 26, buffer))
return false;
dig_T1 = readInt16(0);
dig_T2 = readInt16(2);
dig_T3 = readInt16(4);
dig_P1 = readInt16(6);
dig_P2 = readInt16(8);
dig_P3 = readInt16(10);
dig_P4 = readInt16(12);
dig_P5 = readInt16(14);
dig_P6 = readInt16(16);
dig_P7 = readInt16(18);
dig_P8 = readInt16(20);
dig_P9 = readInt16(22);
dig_H1 = buffer[25];
if (!I2Cdev::readBytes(addr, BME280_RA_CALIB26, 7, buffer))
return false;
dig_H2 = readInt16(0);
dig_H3 = buffer[2];
dig_H4 = ((uint16_t)buffer[3] << 4) | (buffer[4] & 0b00001111);
dig_H5 = ((uint16_t)buffer[5] << 4) | (buffer[4] >> 4);
dig_H6 = buffer[6];
return true;
}
bool BME280::getValues(float* temp, float* press, float* hum) {
if (!I2Cdev::readBytes(addr, BME280_RA_PRESS_MSB, 8, buffer))
return false;
int32_t adcPress = 0;
int32_t adcTemp = 0;
int32_t adcHum = 0;
adcPress |= (uint32_t)buffer[0] << 12;
adcPress |= (uint32_t)buffer[1] << 4;
adcPress |= (uint32_t)buffer[2] >> 4;
adcTemp |= (uint32_t)buffer[3] << 12;
adcTemp |= (uint32_t)buffer[4] << 4;
adcTemp |= (uint32_t)buffer[5] >> 4;
adcHum |= (uint32_t)buffer[6] << 8;
adcHum |= buffer[7];
if (useHighAccuracy) {
*temp = (float)compensate_T_double(adcTemp);
*press = (float)compensate_P_double(adcPress) / 100.0F;
*hum = (float)compensate_H_double(adcHum);
}
else {
*temp = compensate_T_int32(adcTemp) * 0.01f;
*press = compensate_P_int64(adcPress) / (256.0f * 100);
*hum = compensate_H_int32(adcHum) / 1024.0f;
}
return true;
}
// BME Data sheet code
// Returns temperature in DegC, resolution is 0.01 DegC. Output value of “5123” equals 51.23 DegC.
// t_fine carries fine temperature as global value
BME280_S32_t BME280::compensate_T_int32(BME280_S32_t adc_T)
{
BME280_S32_t var1, var2, T;
var1 = ((((adc_T >> 3) -((BME280_S32_t)dig_T1 << 1))) * ((BME280_S32_t)dig_T2)) >> 11;
var2 = (((((adc_T >> 4) -((BME280_S32_t)dig_T1)) * ((adc_T >> 4) - ((BME280_S32_t)dig_T1))) >> 12) *
((BME280_S32_t)dig_T3)) >> 14;
t_fine = var1 + var2;
T = (t_fine * 5 + 128) >> 8;
return T;
}
// Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24 integer bits and 8 fractional bits).
// Output value of “24674867” represents 24674867/256 = 96386.2 Pa = 963.862 hPa
BME280_U32_t BME280::compensate_P_int64(BME280_S32_t adc_P)
{
BME280_S64_t var1, var2, p;
var1 = ((BME280_S64_t)t_fine) - 128000;
var2 = var1 * var1 * (BME280_S64_t)dig_P6;
var2 = var2 + ((var1*(BME280_S64_t)dig_P5) << 17);
var2 = var2 + (((BME280_S64_t)dig_P4) << 35);
var1 = ((var1 * var1 * (BME280_S64_t)dig_P3) >> 8) + ((var1 * (BME280_S64_t)dig_P2) << 12);
var1 = (((((BME280_S64_t)1) << 47) + var1))*((BME280_S64_t)dig_P1) >> 33;
if (var1 == 0)
{
return 0; // avoid exception caused by division by zero
}
p = 1048576 - adc_P;
p = (((p << 31) - var2) * 3125) / var1;
var1 = (((BME280_S64_t)dig_P9) * (p >> 13) * (p >> 13)) >> 25;
var2 = (((BME280_S64_t)dig_P8) * p) >> 19;
p = ((p + var1 + var2) >> 8) + (((BME280_S64_t)dig_P7) << 4);
return (BME280_U32_t)p;
}
// Returns humidity in %RH as unsigned 32 bit integer in Q22.10 format (22 integer and 10 fractional bits).
// Output value of “47445” represents 47445/1024 = 46.333 %RH
BME280_U32_t BME280::compensate_H_int32(BME280_S32_t adc_H)
{
BME280_S32_t v_x1_u32r;
v_x1_u32r = (t_fine -((BME280_S32_t)76800));
v_x1_u32r = (((((adc_H << 14) -(((BME280_S32_t)dig_H4) << 20) - (((BME280_S32_t)dig_H5) * v_x1_u32r)) +
((BME280_S32_t)16384)) >> 15) * (((((((v_x1_u32r * ((BME280_S32_t)dig_H6)) >> 10) * (((v_x1_u32r *
((BME280_S32_t)dig_H3)) >> 11) + ((BME280_S32_t)32768))) >> 10) + ((BME280_S32_t)2097152)) *
((BME280_S32_t)dig_H2) + 8192) >> 14));
v_x1_u32r = (v_x1_u32r -(((((v_x1_u32r >> 15) * (v_x1_u32r >> 15)) >> 7) * ((BME280_S32_t)dig_H1)) >> 4));
v_x1_u32r = (v_x1_u32r < 0 ? 0 : v_x1_u32r);
v_x1_u32r = (v_x1_u32r > 419430400 ? 419430400 : v_x1_u32r);
return (BME280_U32_t)(v_x1_u32r >> 12);
}
// Returns temperature in DegC, double precision. Output value of “51.23” equals 51.23 DegC.
double BME280::compensate_T_double(BME280_S32_t adc_T)
{
double var1, var2, T;
var1 = (((double)adc_T)/16384.0 - ((double)dig_T1)/1024.0) * ((double)dig_T2);
var2 = ((((double)adc_T)/131072.0 - ((double)dig_T1)/8192.0) *
(((double)adc_T)/131072.0 - ((double) dig_T1)/8192.0)) * ((double)dig_T3);
t_fine = (BME280_S32_t)(var1 + var2);
T = (var1 + var2) / 5120.0;
return T;
}
// Returns pressure in Pa as double. Output value of “96386.2” equals 96386.2 Pa = 963.862 hPa
double BME280::compensate_P_double(BME280_S32_t adc_P)
{
double var1, var2, p;
var1 = ((double)t_fine/2.0) - 64000.0;
var2 = var1 * var1 * ((double)dig_P6) / 32768.0;
var2 = var2 + var1 * ((double)dig_P5) * 2.0;
var2 = (var2/4.0)+(((double)dig_P4) * 65536.0);
var1 = (((double)dig_P3) * var1 * var1 / 524288.0 + ((double)dig_P2) * var1) / 524288.0;
var1 = (1.0 + var1 / 32768.0)*((double)dig_P1);
if (var1 == 0.0)
{
return 0; // avoid exception caused by division by zero
}
p = 1048576.0 - (double)adc_P;
p = (p - (var2 / 4096.0)) * 6250.0 / var1;
var1 = ((double)dig_P9) * p * p / 2147483648.0;
var2 = p * ((double)dig_P8) / 32768.0;
p = p + (var1 + var2 + ((double)dig_P7)) / 16.0;
return p;
}
// Returns humidity in %rH as as double. Output value of “46.332” represents 46.332 %rH
double BME280::compensate_H_double(BME280_S32_t adc_H)
{
double var_H;
var_H = (((double)t_fine) - 76800.0);
var_H = (adc_H - (((double)dig_H4) * 64.0 + ((double)dig_H5) / 16384.0 * var_H)) *
(((double)dig_H2) / 65536.0 * (1.0 + ((double)dig_H6) / 67108864.0 * var_H *
(1.0 + ((double)dig_H3) / 67108864.0 * var_H)));
var_H = var_H * (1.0 - ((double)dig_H1) * var_H / 524288.0);
if (var_H > 100.0)
var_H = 100.0;
else if (var_H < 0.0)
var_H = 0.0;
return var_H;
}