From 6382676fae89bd5a190626612712fcedf17bca6d Mon Sep 17 00:00:00 2001 From: Andrew Clark Date: Tue, 8 Jun 2021 11:40:58 -0400 Subject: [PATCH] Update README.md spelling and grammar fixes --- README.md | 83 +++++++++++++++++++++++++++---------------------------- 1 file changed, 41 insertions(+), 42 deletions(-) diff --git a/README.md b/README.md index 576caa6..8911d03 100644 --- a/README.md +++ b/README.md @@ -2,13 +2,13 @@ This repo contains tutorials and demos for learning how to use cadCAD. ## cadCAD System in "Plain English" -In the cadCAD simulation [methodology](https://community.cadcad.org/t/differential-specification-syntax-key/31), we operate on four layers: **Policies, Mechanisms, States**, and **Metrics**. Information flows do not have explicit feedback loop unless noted. **Policies** determine the inputs into the system dynamics, and can come from user input, observations from the exogenous environment, or algorithms. **Mechanisms** are functions that take the policy decisions and update the States to reflect the policy level changes. **States** are variables that represent the system quantities at the given point in time, and **Metrics** are computed from state variables to assess the health of the system. Metrics can often be thought of as KPIs, or Key Performance Indicators. +In the cadCAD simulation [methodology](https://community.cadcad.org/t/differential-specification-syntax-key/31), we operate on four layers: **Policies, Mechanisms, States**, and **Metrics**. Information flows do not have an explicit feedback loop unless noted. **Policies** determine the inputs into the system dynamic, and can come from user input, observations from the exogenous environment, or algorithms. **Mechanisms** are functions that take the policy decisions and update the States to reflect the policy level changes. **States** are variables that represent the system quantities at the given point in time, and **Metrics** are computed from state variables to assess the health of the system. Metrics can often be thought of as KPIs, or Key Performance Indicators. -At a more granular level, to setup a model, there are system conventions and configurations that must be [followed.](https://community.cadcad.org/t/introduction-to-simulation-configurations/34) +At a more granular level, to set up a model, there are system conventions and configurations that must be [followed.](https://community.cadcad.org/t/introduction-to-simulation-configurations/34) -The way to think of cadCAD modeling is analogous to machine learning pipelines which normally consist of multiple steps when training and running a deployed model. There is preprocessing, which includes segregating features between continuous and categorical, transforming or imputing data, and then instantiating, training, and running a machine learning model with specified hyperparameters. cadCAD modeling can be thought of in the same way as states, roughly translating into features, are fed into pipelines that have built-in logic to direct traffic between different mechanisms, such as scaling and imputation. Accuracy scores, ROC, etc are analogous to the metrics that can be configured on a cadCAD model, specifying how well a given model is doing in meeting its objectives. The parameter sweeping capability of cadCAD can be thought of as a grid search, or way to find the optimal hyperparameters for a system by running through alternative scenarios. A/B style testing that cadCAD enables is used in the same way machine learning models are A/B tested, except out of the box, in providing a side by side comparison of muliple different models to compare and contract performance. Utilizing the field of Systems Identification, dynamical systems models can be used to "online learn" by providing a feedback loop to generative system mechanisms. +The way to think of cadCAD modeling is analogous to machine learning pipelines which normally consist of multiple steps when training and running a deployed model. There is preprocessing, which includes segregating features between continuous and categorical, transforming or imputing data, and then instantiating, training, and running a machine learning model with specified hyperparameters. cadCAD modeling can be thought of in the same way as states, roughly translating into features, are fed into pipelines that have built-in logic to direct traffic between different mechanisms, such as scaling and imputation. Accuracy scores, ROC, etc are analogous to the metrics that can be configured on a cadCAD model, specifying how well a given model is doing in meeting its objectives. The parameter sweeping capability of cadCAD can be thought of as a grid search, or a way to find the optimal hyperparameters for a system by running through alternative scenarios. A/B style testing that cadCAD enables is used in the same way machine learning models are A/B tested, except out of the box, in providing a side-by-side comparison of multiple different models to compare and contract performance. Utilizing the field of Systems Identification, dynamical systems models can be used to "online learn" by providing a feedback loop to generative system mechanisms. -The flexibility of cadCAD also enables the embedding of machine learning models into behavior policies or mechanisms for complex systems with an machine learning prediction component. +The flexibility of cadCAD also enables the embedding of machine learning models into behavior policies or mechanisms for complex systems with a machine learning prediction component. In this repository are a series of demos and tutorials for how to use cadCAD. Tutorials example how to use cadCAD while demos show examples of cadCAD in use. @@ -16,9 +16,9 @@ In this repository are a series of demos and tutorials for how to use cadCAD. Tu **Robot and Marbles Tutorial Series** -In this series, we introduce basic concepts of cadCAD and system modelling in general using a simple toy model. +In this series, we introduce basic concepts of cadCAD and system modeling, in general, using a simple toy model. [Part 1](tutorials/robots_and_marbles/robot-marbles-part-1/robot-marbles-part-1.ipynb) - States and State Update Functions -[Part 2](tutorials/robots_and_marbles/robot-marbles-part-2/robot-marbles-part-2.ipynb) - Actions and State Dependent Policies +[Part 2](tutorials/robots_and_marbles/robot-marbles-part-2/robot-marbles-part-2.ipynb) - Actions and State-Dependent Policies [Part 3](tutorials/robots_and_marbles/robot-marbles-part-3/robot-marbles-part-3.ipynb) - From Synchronous to Asynchronous Time [Part 4](tutorials/robots_and_marbles/robot-marbles-part-4/robot-marbles-part-4.ipynb) - Uncertainty and Stochastic Processes [Part 5](tutorials/robots_and_marbles/robot-marbles-part-5/robot-marbles-part-5.ipynb) - Using class objects as state variables @@ -34,7 +34,7 @@ In this series, we introduce mathematical concepts and how to use cadCAD for num * [Numerical Integration 1: Trapezoid Rule](tutorials/numerical_computation/numerical_integration_1.ipynb) * Numerical Integration 2: [Simpson's Rule](https://en.wikipedia.org/wiki/Simpson's_rule) -* Numerical Differention 1: [Point Differences](https://en.wikipedia.org/wiki/Numerical_differentiation) +* Numerical Differential 1: [Point Differences](https://en.wikipedia.org/wiki/Numerical_differentiation) * Numerical Differential 2: [Gradients](https://en.wikipedia.org/wiki/Numerical_differentiation) * Optimization 1: [Gradient Descent](https://en.wikipedia.org/wiki/Gradient_descent) * Optimization 2: [Stochastic Gradient Descent](https://en.wikipedia.org/wiki/Stochastic_gradient_descent) @@ -50,10 +50,10 @@ In this series, we introduce mathematical concepts and how to use cadCAD for num ## Demos -We will look at demos that use different types of modeling, to give the reader and understanding of the various tools available to modelers. +We will look at demos that use different types of modeling, to give the reader an understanding of the various tools available to modelers. 1. System Dynamics Modelling -2. Agent Based Modelling +2. Agent-Based Modelling 3. Networked Modelling 4. Multiscale Modelling @@ -61,8 +61,8 @@ We will look at demos that use different types of modeling, to give the reader a System Dynamics is a modeling paradigm used to model the nonlinear behavior of complex systems using flows, stocks, and feedback loops. Systems Dynamics modeling is very useful in modeling population flows, financial statements, etc but has a limited ability to represent complex agent and system interactions. -#### Predator Prey model formulation -An example model for understanding dynamical system is the commonly used Lotka–Volterra Prey-Predator model, which is a pair of first order non-linear differential equations that is used to describe the dynamics of two species interacting, one which is a predator the other which is the prey. We can model the population changes over time. +#### Predator-Prey model formulation +An example model for understanding a dynamical system is the commonly used Lotka–Volterra Prey-Predator model, which is a pair of first-order non-linear differential equations that are used to describe the dynamics of two species interacting, one which is a predator the other which is the prey. We can model the population changes over time. It is based on the following[1,2] @@ -77,7 +77,7 @@ Where: * represents time * are positive real parameters describing the interaction of the two species. -The most prominent feature of it is the existence, depending on the choice of parameters, of a repeatable cycle around a fixed point which creates a dynamical equilibrium between the number of preys and predators on a system. +The most prominent feature of it is the existence, depending on the choice of parameters, of a repeatable cycle around a fixed point which creates a dynamical equilibrium between the number of prey and predators on a system. ``` partial_state_update_block = [ @@ -102,7 +102,7 @@ partial_state_update_block = [ *Demo:* See the [model here.](demos/System_Dynamics/prey_predator_sd/Predator_Prey_SD_model.ipynb) #### Compartment Models -In order to create a mathematical representation of an infectious disease, we will use compartmental models. +To create a mathematical representation of infectious diseases, we will use compartmental models. The simplest compartmental model is SIR, which consists of three compartments: @@ -111,7 +111,7 @@ The simplest compartmental model is SIR, which consists of three compartments: * Recovered: The number of individuals who have been infected and have recovered from the disease. As SIR is a very simple model, it considers that the disease's death rate is negligible. -The SIR model can give us a decent analysis on the behavior of an infectious disease, but its simplicity limitates it. Many infections have a significant incubation period during which individuals have been infected but neither show symptoms nor are capable of infecting other individuals. Because of that, the SEIR model can represent them in a better way. +The SIR model can give us a decent analysis of the behavior of infectious diseases, but its simplicity limits it. Many infections have a significant incubation period during which individuals have been infected but neither show symptoms nor are capable of infecting other individuals. Because of that, the SEIR model can represent them in a better way. As we know, some diseases also have a significant death rate, such as measles, Ebola and SARS. Because of that, SIR and SEIR models can be considerably inaccurate when representing them. Therefore, the SEIRD model can better do it, as it includes individuals who died because of the disease in compartment D. @@ -124,20 +124,20 @@ As we know, some diseases also have a significant death rate, such as measles, E * Easy to insert a multitude of complex factors * The output is usually easy to visualize -### 2. Agent Based Modeling (ABM) -Agent based modeling is a modeling paradigm to simulate the interaction of autonoumous agents and their results on the underlying system. An example of Agent Based Modeling is modeling secondary market behavior of individual actors, such as traders, long-term investors, and liquidity providers. +### 2. Agent-Based Modeling (ABM) +Agent-based modeling is a modeling paradigm to simulate the interaction of autonomous agents and their results on the underlying system. An example of Agent-Based Modeling is modeling secondary market behavior of individual actors, such as traders, long-term investors, and liquidity providers. -*Demo:* Using the same Predator Prey model defined above in the Systems Dynamics Example, we'll adopt a [model](demos/Agent_Based_Modeling/prey_predator_abm/Predator_Prey_ABM_model.ipynb) based on a grid world, on which preys and predators take the following actions at each timestep of their lifes: +*Demo:* Using the same Predator-Prey model defined above in the Systems Dynamics Example, we'll adopt a [model](demos/Agent_Based_Modeling/prey_predator_abm/Predator_Prey_ABM_model.ipynb) based on a grid world, on which preys and predators take the following actions at each timestep of their lives: * Food is grown on every site. -* All agents digest some of the food on their stomach and get older. +* All agents digest some of the food on their stomachs and get older. * All agents move (if possible) to an available random neighboring location. * The agents reproduce themselves if there is an available partner nearby * The prey agents feed on the available food -* The predator agents hunts the nearby preys +* The predator agents hunt the nearby preys * All old enough agents die -There is an inherent stochastic nature on this model, and every time that you run it, we'll have a completely different result for the same parameters. But we can see that there is sort of a random equilibrium that converges to the dynamical equilibrium which we presented on the dynamical simulation. +There is an inherent stochastic nature to this model, and every time that you run it, we'll have a completely different result for the same parameters. But we can see that there is sort of a random equilibrium that converges to the dynamical equilibrium which we presented on the dynamical simulation. ``` partial_state_update_block = [ @@ -223,11 +223,11 @@ partial_state_update_block = [ * Easier to generate complex behavior with simple rules * Generates more granular and detailed information -##### Conclusion on Predator Prey demo +##### Conclusion on Predator-Prey demo -We explored here two different paradigms for modelling: the dynamic system one, which captures an macroscopical view of the system, and the agent-based one, which can give us an microscopic view of the system. Depending on the targets and considerations, both can be equivalent or completely distinct, but can also be complementary. cadCAD allows you to mix them at will, so you can have hybrid models where agent behaviour and environment are shaped by complex dynamical systems. There is an whole multiverse of mixed simulations that you can do (challenges on next block for you to try!). +We explored here two different paradigms for modeling: the dynamic system one, which captures a macroscopical view of the system, and the agent-based one, which can give us a microscopic view of the system. Depending on the targets and considerations, both can be equivalent or completely distinct, but can also be complementary. cadCAD allows you to mix them at will, so you can have hybrid models where agent behavior and environment are shaped by complex dynamical systems. There is a whole multiverse of mixed simulations that you can do (challenges on the next block for you to try!). -Obviously, both paradigms have some characteristics, which in general manner we can express as being: +Both paradigms have some characteristics, which in a general manner we can express as being: ##### Dynamical system (macroscopic view) advantages @@ -241,7 +241,7 @@ Obviously, both paradigms have some characteristics, which in general manner we * Are conceptually closer to experience, making it easier to explain to someone with no previous background -* Easier to generate complex behaviour with simple rules +* Easier to generate complex behavior with simple rules * Generates more granular and detailed information * Inner workings have more depth @@ -250,15 +250,15 @@ Obviously, both paradigms have some characteristics, which in general manner we ##### Find the equivalent models -Use cadCAD's support for Monte Carlo simulations and parameter sweeping to find a set of parameters that, in expectation, results in nearly equivalent results for the populations of preys and predators over time in both models. You'll need to run multiple Monte Carlo runs of the ABM model and aggregate the results. +Use cadCAD's support for Monte Carlo simulations and parameter sweeping to find a set of parameters that, in expectation, results in nearly equivalent results for the populations of prey and predators over time in both models. You'll need to run multiple Monte Carlo runs of the ABM model and aggregate the results. ##### Sazonability of food growth -A quick way to mix the ABM and SD paradigms is the following: what if the food growth depends on an dynamical system? +A quick way to mix the ABM and SD paradigms is the following: what if the food growth depends on a dynamical system? -You can model that by modifying the food growth policy, such as by inserting a sazonability which depends on the timestep for example. Or you could go even further and try to express it as depending on an irradiance-based dynamical system which models the Sun position according to Earth's movements (rotation, translation, recession and nutation). How much do you think that those layers of additional complexity will add to the knowledge behind the physical system which we are modelling? +You can model that by modifying the food growth policy, such as by inserting a seasonability that depends on the timestep for example. Or you could go even further and try to express it as depending on an irradiance-based dynamical system that models the Sun position according to Earth's movements (rotation, translation, recession, and mutation). How much do you think that those layers of additional complexity will add to the knowledge behind the physical system which we are modeling? -##### Stochasticity of the agents decisions +##### Stochasticity of the agent's decisions In the current model, all randomness is derived from the agents' position on the grid relative to other agents. What if there was also some probability $p_i$ associated with each one of the actions (moving, eating, reproducing)? And what if the decision also depended on the state of the system near the agent, such as the presence of a predator and food availability? @@ -268,13 +268,12 @@ All agents die when the maximum lifespan arrives. Can you modify the ABM for hav ##### Prey evolution & adaptation -This is the master challenge. What if the preys had a varying attribute which gave them some competitive advantage over others? For example, a number of lifes, like in a videogame, or speed, reproduction rate, or different lifespans? What if those attributes were passed on their offspring with some mutation probability? Could we see an initial random population of preys evolve into a stronger set? -Additionally, below are two open source projects that Block Science was contracted for that provide some insight on how to apply cadCAD for real world problems, while introducing new paradigms for modeling. +This is the master challenge. What if the preys had a varying attribute that gave them some competitive advantage over others? For example, several lives, like in a videogame, or speed, reproduction rate, or different lifespans? What if those attributes were passed on to their offspring with some mutation probability? Could we see an initial random population of prey evolve into a stronger set? Additionally, below are two open-source projects that Block Science was contracted for that provide some insight on how to apply cadCAD for real-world problems while introducing new paradigms for modeling. ### 3. Networked Models -*Demo:* [Grassroots Economics](https://www.grassrootseconomics.org/) has created a Community Currency to help alleviate the liqudity crisis of rural Kenya. BlockScience created a [graph based dynamical system model in order to provide a scaffold for Grassroot's economy planning](https://github.com/BlockScience/Community_Inclusion_Currencies), a subset of which is discussed below as an illustration of networked model types. +*Demo:* [Grassroots Economics](https://www.grassrootseconomics.org/) has created a Community Currency to help alleviate the liquidity crisis of rural Kenya. BlockScience created a [graph based dynamical system model in order to provide a scaffold for Grassroot's economy planning](https://github.com/BlockScience/Community_Inclusion_Currencies), a subset of which is discussed below as an illustration of networked model types. -For networked, graph models evolving over time, assuming we have a directed graph with subpopulations as vertices or nodes, and edges as . Demand, utility, and spend are edges connecting the subpopulations, with spend used to denote desired flow between agents, as . Techically, the graph is a weighted, directed multigraph with more than on edge, for any pair of vertices with . In this example, we have a state update block, as shown below, with two partial state update blocks, *choose_agents* and *spend_allocation*. +For networked, graph models evolving, assuming we have a directed graph with subpopulations as vertices or nodes and edges as . Demand, utility, and spend are edges connecting the subpopulations, with spend used to denote desired flow between agents, as . Technically, the graph is a weighted, directed multigraph with more than on edge, for any pair of vertices with . In this example, we have a state update block, as shown below, with two partial state update blocks, *choose_agents* and, *spend_allocation*. ``` partial_state_update_block = [ @@ -298,19 +297,19 @@ partial_state_update_block = [ } ] ``` -In this example, during the *spend_allocation*, we calculate, based off of the desired interacting agents's demand, utility, and liquidity constraints, we iterate through the desired demand and allocate based on a stack ranking of utility over demand until all demand for each agent is met or the agent runs out of funds. There are several assertions we may want to test, such as: +In this example, during the *spend_allocation*, we calculate, based on the desired interacting agentss' demand, utility, and liquidity constraints, we iterate through the desired demand and allocate based on a stack ranking of utility over demand until all demand for each agent is met or the agent runs out of funds. There are several assertions we may want to test, such as: * Agent does not go negative in their funds. -* All edges the that agent is connected to have been stacked ranked by utility and demand. +* All edges that an agent is connected to have been stacked ranked by utility and demand. ![](https://i.imgur.com/4OGhCVL.png) #### Networked Models Advantages -* Represent complex relationships containing interaction data between mutliple agents -* Networked models are an object type, ad a result, they can be used in conjuction with ABM and multiscale modeling approaches for modeling detailed interactions effeciently. +* Represent complex relationships containing interaction data between multiple agents +* Networked models are an object type, ad a result, they can be used in conjunction with ABM and multiscale modeling approaches for modeling detailed interactions efficiently. ### 4. Multiscale Modeling -Multiscale Modeling is a type of modeling over multiple scales of time or space to describe a system, or spatio-temporal scales. An example of a multiscale model is the [Conviction Voting]((https://medium.com/giveth/conviction-voting-a-novel-continuous-decision-making-alternative-to-governance-aa746cfb9475)), a novel decision making process where votes express their preference for which proposals they would like to see approved in a continuous rather than discrete way. The longer the community keeps a preference on an individual proposal, the “stronger” the proposal conviction becomes. In the conviction voting [model](https://github.com/BlockScience/Aragon_Conviction_Voting) a graph structure is used to record the the introduction and removal of participants, candidates, proposals, and their outcomes. The complexity and different scales represented that cadCAD is able to model. +Multiscale Modeling is a type of modeling over multiple scales of time or space to describe a system or spatiotemporal scales. An example of a multiscale model is Conviction Voting[Conviction Voting]((https://medium.com/giveth/conviction-voting-a-novel-continuous-decision-making-alternative-to-governance-aa746cfb9475)), aa novel decision-making process where voters express their preference for which proposals they would like to see approved in a continuous rather than discrete way. The longer the community keeps a preference on an individual proposal, the “stronger” the proposal conviction becomes. In the conviction voting [model](https://github.com/BlockScience/Aragon_Conviction_Voting), a graph structure is used to record the introduction and removal of participants, candidates, proposals, and their outcomes. The complexity and different scales represented that cadCAD can model. #### Aragon Conviction Voting @@ -318,12 +317,12 @@ Multiscale Modeling is a type of modeling over multiple scales of time or space * https://github.com/BlockScience/Aragon_Conviction_Voting #### Uniswap -*Demo:* Uniswap is an automated market maker for exchanging ERC20 tokens. Anyone can become a liquidity provider, and invest in the liquidity pool of an ERC20 token. This allows other users to trade that token for other tokens at an exchange rate based on their relative availibility. When a token trade is executed, a small fee is paid to the liquidity providers that enabled the transaction. https://uniswap.io/ +*Demo:* Uniswap is an automated market maker for exchanging ERC20 tokens. Anyone can become a liquidity provider, and invest in the liquidity pool of an ERC20 token. This allows other users to trade that token for other tokens at an exchange rate based on their relative availability. When a token trade is executed, a small fee is paid to the liquidity providers that enabled the transaction. https://uniswap.io/ -In our [cadCAD model](demos/Multiscale/uniswap/Uniswap_Model.ipynb), we have illustrated how to create a cadCAD model that takes in real data and replicates the mechanics of a real world smart contract extremely acurately by translating the smart contract code into python code. We enforce best practices for cadCAD modeling, and analyze our simulation data against the real data. +In our [cadCAD model](demos/Multiscale/uniswap/Uniswap_Model.ipynb), we have illustrated how to create a cadCAD model that takes in real data and replicates the mechanics of a real-world smart contract extremely accurately by translating the smart contract code into python code. We enforce best practices for cadCAD modeling and analyze our simulation data against the real data. #### Adoption Funnel -*Demo*. This [cadCAD model](demos/Multiscale/adoption_funnel/adoption_funnel_model.ipynb). is a a [Markov](https://en.wikipedia.org/wiki/Markov_chain) mixing process to exhibit the dynamics of an adoption process as a [finite state machine](https://en.wikipedia.org/wiki/Finite-state_machine). The purpose of this notebook explores the adoption funnel using a Finite State Machine model. Targeted members are treated as sub-population pools as they move through states of adoption, using a developed Adoption_pool class object. +*Demo*. This [cadCAD model](demos/Multiscale/adoption_funnel/adoption_funnel_model.ipynb). is a [Markov](https://en.wikipedia.org/wiki/Markov_chain) mixing process to exhibit the dynamics of an adoption process as a [finite state machine](https://en.wikipedia.org/wiki/Finite-state_machine). The purpose of this notebook explores the adoption funnel using a Finite State Machine model. Targeted members are treated as sub-population pools as they move through states of adoption, using a developed Adoption_pool class object. #### Bonding Curve *Demo*. In this [notebook](demos/Multiscale/bonding_curve/Bonding_Curve.ipynb), we have shared the experimental code used by Dr. Zargham's [Economic Games as Estimators](https://epub.wu.ac.at/7433/) paper. We have illustrated how to use different driving processes for running numerical simulations. @@ -332,10 +331,10 @@ In our [cadCAD model](demos/Multiscale/uniswap/Uniswap_Model.ipynb), we have ill *Demo*. In this [notebook](demos/Multiscale/bonding_curve/Bonding_Curve.ipynb), we have shared the experimental code used by Dr. Zargham's [Economic Games as Estimators](https://epub.wu.ac.at/7433/) paper. We have illustrated how to use different driving processes for running numerical simulations. #### Three Sided Model -*Demo*. In this [notebook](demos/Multiscale/ThreeSided/ThreeSidedMarket.ipynb), we propose the ‘Three-Sided Market’ archetype for platform business where the product being produced enables transactions between a service provider and service consumer. The reference example for this case is a ride sharing app such as Uber. In this case drivers would be providers and riders would be consumers. The corporation Uber is the producer, and in our three-sided-market that role will be spread to a decentralized community collectively providing all of the functions required for users (providers and consumers) to have an equivalent user experience. +*Demo*. In this [notebook](demos/Multiscale/ThreeSided/ThreeSidedMarket.ipynb), we propose the ‘Three-Sided Market’ archetype for platform business where the product being produced enables transactions between a service provider and service consumer. The reference example for this case is a ride-sharing app such as Uber. In this case, drivers would-be providers, and riders would-be consumers. The corporation Uber is the producer, and in our three-sided market, that role will be spread to a decentralized community collectively providing all of the functions required for users (providers and consumers) to have an equivalent user experience. #### Basic Three Sided Model -*Demo*. This [notebook](demos/Multiscale/ThreeSidedBasic/BasicThreeSidedMarketModel.ipynb) is a scaled down, basic version of the Three Sided Market Model illustrated previously. +*Demo*. This [notebook](demos/Multiscale/ThreeSidedBasic/BasicThreeSidedMarketModel.ipynb) is a scaled-down, basic version of the Three Sided Market Model illustrated previously. #### Multiscale Modeling Advantages * Ability on multiple spatio-temporal scales.