-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathstringparser.py
483 lines (393 loc) · 13.4 KB
/
stringparser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
"""
stringparser
~~~~~~~~~~~~
A simple way to match patterns and extract information within strings without
typing regular expressions. It can be considered as the inverse of `format`
as patterns are given using the familiar format string specification :pep:`3101`.
:copyright: (c) 2023 by Hernan E. Grecco.
:license: BSD, see LICENSE for more details.
"""
import copy
import re
import string
from functools import partial
from io import StringIO
from re import ( # noqa: F401
DOTALL,
IGNORECASE,
LOCALE,
MULTILINE,
UNICODE,
VERBOSE,
I,
L,
M,
S,
U,
X,
)
from typing import (
Any,
Callable,
Generator,
Iterable,
Literal,
Optional,
Union,
overload,
)
from typing_extensions import TypeAlias
class ObjectLike:
"""This class is used by string parser when
the string formatter contains attribute
access such as `{0.name}`.
"""
KEY_TYPES: TypeAlias = Union[str, int]
VALUE_TYPES: TypeAlias = Union[
str, int, float, list["VALUE_TYPES"], dict[KEY_TYPES, "VALUE_TYPES"], ObjectLike
]
_FORMATTER = string.Formatter()
# This is due to the fact that int, float, etc
# are not recognized as Callable[[str, ], Any]
_STRCALLABLE: TypeAlias = Union[
type,
Callable[
[
str,
],
VALUE_TYPES,
],
]
_REGEX2CONVERTER: TypeAlias = tuple[str, _STRCALLABLE]
# This dictionary maps each format type to a tuple containing
# 1. The regular expression to match the string
# 2. A callable that will used to convert the matched string into the
# appropriate Python object.
_REG: dict[Optional[str], _REGEX2CONVERTER] = {
None: (".*?", str),
"s": (".*?", str),
"d": ("[0-9]+?", int),
"b": ("[0-1]+?", partial(int, base=2)),
"o": ("[0-7]+?", partial(int, base=8)),
"x": ("[0-9a-f]+?", partial(int, base=16)),
"X": ("[0-9A-F]+?", partial(int, base=16)),
"e": ("[0-9]+\\.?[0-9]+(?:e[-+]?[0-9]+)?", float),
"E": ("[0-9]+\\.?[0-9]+(?:E[-+]?[0-9]+)?", float),
"f": ("[0-9]+\\.?[0-9]+", float),
"F": ("[0-9]+\\.?[0-9]+", float),
"g": ("[0-9]+\\.?[0-9]+(?:[eE][-+]?[0-9]+)?", float),
"G": ("[0-9]+\\.?[0-9]+(?:[eE][-+]?[0-9]+)?", float),
"%": ("[0-9]+\\.?[0-9]+%", lambda x: float(x[:-1]) / 100),
}
# This regex is used to match the parts within standard format specifier string
#
# [[fill]align][sign][#][0][width][,][.precision][type]
#
# fill ::= <a character other than '}'>
# align ::= "<" | ">" | "=" | "^"
# sign ::= "+" | "-" | " "
# width ::= integer
# precision ::= integer
# type ::= "b" | "c" | "d" | "e" | "E" | "f" | "F" | "g" | "G" | "n" | "o"
# | "s" | "x" | "X" | "%"
_FMT: re.Pattern[str] = re.compile(
"(?P<align>(?P<fill>[^{}])?[<>=\\^])?"
"(?P<sign>[\\+\\- ])?(?P<alternate>#)?"
"(?P<zero>0)?(?P<width>[0-9]+)?(?P<comma>[,])?"
"(?P<precision>\\.[0-9]+)?(?P<type>[bcdeEfFgGnosxX%]+)?"
)
def fmt_to_regex(fmt: str) -> _REGEX2CONVERTER:
"""For a given standard format specifier string it returns
with the regex to match and the callable to convert from string.
Parameters
----------
fmt
Format specifier string as defined in :pep:3101.
Returns
-------
A tuple with a regex and a string to value callable.
Raises
------
ValueError
If the formatting string cannot be parsed
or contains invalid parts.
Examples
--------
>>> fmt_to_regex("{:d})
("[0-9]+?", int)
Notes
-----
`fill`, `align, `width`, `precision` are not implemented.
"""
matched = _FMT.search(fmt)
if matched is None: # pragma: no cover
raise ValueError(f"Could not parse the formatting string {fmt}")
(
_align,
_fill,
sign,
alternate,
_zero,
_width,
_comma,
_precision,
ctype,
) = matched.groups(default=None)
try:
reg, fun = _REG[ctype] # typing: ignore
except KeyError: # pragma: no cover
raise ValueError("{} is not an valid type".format(ctype))
if alternate:
if ctype in ("o", "x", "X", "b"):
reg = "0" + ctype + reg
else: # pragma: no cover
raise ValueError("Alternate form (#) not allowed in {} type".format(ctype))
if sign == "-" or sign is None:
reg = "[-]?" + reg
elif sign == "+":
reg = "[-+]" + reg
elif sign == " ":
reg = "[- ]" + reg
else: # pragma: no cover
raise ValueError("{} is not a valid sign".format(sign))
return reg, fun
_ITEM_ATTR: TypeAlias = Union[
tuple[Literal["attribute"], str], tuple[Literal["item"], Any]
]
def _split_field_name(name: str) -> Generator[_ITEM_ATTR, None, None]:
"""Split a compound field name containing attribute or item
access into multiple simple field names.
For example, `x.y[0]` yields the following sequence
`[('item', 'x'), ('attribute', 'y'), ('item', 0)]`
Parameters
----------
name
Simple or compound field name.
Yields
------
Tuple indicating
- `attribute` or `index`
- corresponding attribute name or key
Raises
------
ValueError
If the empty field is empty or is invalid.
"""
first = True
for namepart in name.split("."):
# Split that part by open bracket chars
keyparts = namepart.split("[")
# The first part is just a bare name
key = keyparts[0]
# Empty strings are not allowed as field names
if key == "": # pragma: no cover
raise ValueError(f"empty field name in {name}")
# The first name in the sequence is used to index
# the args/kwargs arrays. Subsequent names are used
# on the result of the previous operation.
if first:
first = False
yield ("item", key)
else:
yield ("attribute", key)
# Now process any bracket expressions which followed
# the first part.
for key in keyparts[1:]:
endbracket = key.find("]")
if endbracket < 0 or endbracket != len(key) - 1: # pragma: no cover
raise ValueError(f"Invalid field syntax in {name}")
# Strip off the closing bracket and try to coerce to int
key = key[:-1]
try:
yield ("item", int(key))
except ValueError:
yield ("item", key)
def _build_datastructure(field_parts: Iterable[_ITEM_ATTR], top: Any) -> Any:
"""Build a hierarchical datastructure of dictionary and ObjectLike.
Parameters
----------
field_parts
Iterable of simple field names and type
top
Element to be placed on the top of the datastructure
Returns
-------
A hierarchical datastructure.
"""
tmp: Union[dict[Any, Any], ObjectLike]
for typ, name in reversed(list(field_parts)):
if typ == "attribute":
tmp = ObjectLike()
setattr(tmp, name, top)
top = tmp
elif typ == "item":
tmp = dict()
tmp[name] = top
top = tmp
return top
def _append_to_datastructure(
bottom: Any, field_parts: Iterable[_ITEM_ATTR], top: Any
) -> None:
"""Append datastructure to another datastructure.
Parameters
----------
bottom
Existing datastructure.
field_parts
Iterable of simple field names and type.
top
Element to be placed on the top of the datastructure.
Raises
------
ValueError
If an incompatible accesor is found for a given value.
"""
for typ_, name in field_parts:
if isinstance(bottom, dict):
if not typ_ == "item": # pragma: no cover
raise ValueError(f"Incompatible {typ_}, {name}")
try:
bottom = bottom[name]
except KeyError:
bottom[name] = _build_datastructure(field_parts, top)
elif isinstance(bottom, ObjectLike):
if not typ_ == "attribute": # pragma: no cover
raise ValueError(f"Incompatible {typ_}, {name}")
try:
bottom = getattr(bottom, name)
except AttributeError: # pragma: no cover
setattr(bottom, name, _build_datastructure(field_parts, top))
else: # pragma: no cover
raise ValueError(f"Incompatible {typ_}, {name}")
def _set_in_datastructure(
bottom: Any, field_parts: Iterable[_ITEM_ATTR], top: Any
) -> None:
"""Traverse a datastructure and set the top element.
Parameters
----------
bottom
Existing datastructure.
field_parts
Iterable of simple field names and type
top
Element to be placed on the top of the datastructure
"""
for _typ, name in field_parts:
if isinstance(bottom, dict):
if bottom[name] is None:
bottom[name] = top
else:
_set_in_datastructure(bottom[name], field_parts, top)
elif isinstance(bottom, ObjectLike):
if getattr(bottom, name) is None:
setattr(bottom, name, top)
else:
_set_in_datastructure(getattr(bottom, name), field_parts, top)
elif isinstance(bottom, list):
if bottom[int(name)] is None:
bottom[int(name)] = top
else:
_set_in_datastructure(bottom[int(name)], field_parts, top)
@overload
def _convert(obj: None) -> None:
...
@overload
def _convert(
obj: dict[KEY_TYPES, VALUE_TYPES]
) -> Union[dict[KEY_TYPES, VALUE_TYPES], list[VALUE_TYPES]]:
...
@overload
def _convert(obj: ObjectLike) -> ObjectLike:
...
def _convert(obj):
"""Recursively traverse template data structure converting dictionaries
to lists if all keys are numbers which fill the range from [0, len(keys))
Parameters
----------
obj
Nested template data structure.
Returns
-------
Updated datastructure.
"""
if obj is None:
return None
elif isinstance(obj, dict):
try:
keys = sorted([int(key) for key in obj.keys()])
if min(keys) == 0 and max(keys) == len(keys) - 1:
return [_convert(obj[str(key)]) for key in keys]
except Exception:
pass
for key, value in obj.items():
obj[key] = _convert(value)
return obj
elif isinstance(obj, ObjectLike):
for key, value in obj.__dict__.items():
setattr(obj, key, _convert(value))
return obj
class Parser(object):
"""Callable object to parse a text line using a format string (PEP 3101)
as a template.
"""
# List of tuples (name of the field, converter function)
_fields: list[tuple[str, _STRCALLABLE]]
# If any of the fields has a non-numeric name, this variable is toggled
# and the return is a dictionary
_output_as_dict: bool
_template: Union[dict[KEY_TYPES, VALUE_TYPES], list[VALUE_TYPES], ObjectLike]
# Compiled regex pattern
_regex: re.Pattern[str]
def __init__(self, format_string: str, flags: Union[re.RegexFlag, int] = 0):
"""_summary_
Parameters
----------
format_string
PEP 3101 format string to be used as a template.
flags, optional
modifies the regex expression behaviour. Passed to re.compile, by default 0
"""
self._fields = []
self._output_as_dict = False
pattern = StringIO()
number = 0
# Assembly regex, list of fields, converter function,
# and output template data structure by inspecting
# each replacement field.
template: dict[Any, Any] = dict()
for literal, field, fmt, _conv in _FORMATTER.parse(format_string):
pattern.write(re.escape(literal))
if field is None:
continue
if fmt is None or fmt == "":
reg, fun = _REG["s"]
else:
reg, fun = fmt_to_regex(fmt)
# Ignored fields are added as non-capturing groups
# Named and unnamed fields are added as capturing groups
if field == "_":
pattern.write("(?:" + reg + ")")
continue
if not field or field[0] in (".", "["):
field = str(number) + field
number += 1
pattern.write("(" + reg + ")")
self._fields.append((field, fun))
_append_to_datastructure(template, _split_field_name(field), None)
self._template = _convert(template)
self._regex = re.compile("^" + pattern.getvalue() + "$", flags)
def __call__(self, text: str) -> VALUE_TYPES:
"""Parse a given string."""
# Try to match the text with the stored regex
mobj = self._regex.search(text)
if mobj is None:
raise ValueError(f"Could not parse '{text}' with '{self._regex.pattern}'")
# Put each matched string in the corresponding output slot in the template
parsed = copy.deepcopy(self._template)
for group, (field, fun) in zip(mobj.groups(), self._fields):
_set_in_datastructure(parsed, _split_field_name(field), fun(group))
# If the result is a list with a single object, return it without Container
if isinstance(parsed, list) and len(parsed) == 1:
return parsed[0]
return parsed
__all__ = ["Parser"]