forked from neurolabusc/surf-ice
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeshify_simplify.pas
executable file
·930 lines (879 loc) · 31.3 KB
/
meshify_simplify.pas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
unit meshify_simplify;
{$Include opts.inc}
{$mode objfpc}{$H+}
// OLD_SIMPLIFY ported from Stan Melax's progmesh.cpp
// https://github.com/melax/sandbox/blob/master/bunnylod/progmesh.cpp
// http://dev.gameres.com/program/visual/3d/PolygonReduction.pdf
//Roughly equivalent to Matlab's "reducepatch(F, V, R)"
interface
uses
Classes, SysUtils, matmath, dialogs, define_types;
function ReducePatch( var faces: TFaces; var vertices: TVertices; R: single):boolean;
procedure UnifyVertices(var faces: TFaces; var vertices: TVertices); //merge identical vertices, i.e. ClusterVertex with Radius = 0
procedure ClusterVertex( var faces: TFaces; var vertices: TVertices; Radius: single); //merge nearby vertices
implementation
{$IFNDEF OLD_SIMPLIFY}
uses meshify_simplify_quadric;
{$ENDIF}
(*procedure SmoothVertices (var lMesh: TMesh);
//adjust each vertex to have the average position of all connected vertices
var
vNorm : array of TPoint3f;
vNum : array of integer;
fNorm : TPoint3f;
i : integer;
begin
if (length(lMesh.vertices) < 4) or (length(lMesh.faces) < 2) then exit;
setlength(vNorm, length(lMesh.vertices));
setlength(vNum, length(lMesh.vertices));
fNorm := ptf(0,0,0);
for i := 0 to (length(lMesh.vertices)-1) do begin
vNorm[i] := fNorm;
vNum[i] := 0;
end;
for i := 0 to (length(lMesh.faces)-1) do begin
vectorAdd(vNorm[lMesh.faces[i].X] , lMesh.vertices[lMesh.faces[i].X]);
vectorAdd(vNorm[lMesh.faces[i].X] , lMesh.vertices[lMesh.faces[i].Y]);
vectorAdd(vNorm[lMesh.faces[i].X] , lMesh.vertices[lMesh.faces[i].Z]);
inc(vNum[lMesh.faces[i].X],3);
vectorAdd(vNorm[lMesh.faces[i].Y] , lMesh.vertices[lMesh.faces[i].X]);
vectorAdd(vNorm[lMesh.faces[i].Y] , lMesh.vertices[lMesh.faces[i].Y]);
vectorAdd(vNorm[lMesh.faces[i].Y] , lMesh.vertices[lMesh.faces[i].Z]);
inc(vNum[lMesh.faces[i].Y],3);
vectorAdd(vNorm[lMesh.faces[i].Z] , lMesh.vertices[lMesh.faces[i].X]);
vectorAdd(vNorm[lMesh.faces[i].Z] , lMesh.vertices[lMesh.faces[i].Y]);
vectorAdd(vNorm[lMesh.faces[i].Z] , lMesh.vertices[lMesh.faces[i].Z]);
inc(vNum[lMesh.faces[i].Z],3);
end;
for i := 0 to (length(lMesh.vertices)-1) do begin
if (vNum[i] > 0) then begin
lMesh.vertices[i].X := vNorm[i].X / vNum[i];
lMesh.vertices[i].Y := vNorm[i].Y / vNum[i];
lMesh.vertices[i].Z := vNorm[i].Z / vNum[i];
end;
end;
end; *)
type
TSortType = single; //can be integer, single, double, etc
TSort = record
index: integer;
value: TSortType;
end;
TSortArray = array of TSort;
{$DEFINE QSORT} //QuickSort is fast and simple, but very recursive
{$IFDEF QSORT}
//http://stackoverflow.com/questions/24335585/quicksort-drama
procedure QuickSort(left, right: integer; var s: TSortArray);
// left: Index des 1. Elements, right: Index des letzten Elements
var
l, r, lswap: integer;
pivot: TSortType;
begin
if (right > left) then begin
l := left;
r := right;
pivot := s[s[(right + left) div 2].index].value;
while (l < r) do begin
while s[s[l].index].value < pivot do
l := l + 1;
while s[s[r].index].value > pivot do
r := r - 1;
if (l <= r) then begin
lswap := s[r].index;
s[r].index := s[l].index;
s[l].index := lswap;
l := l + 1;
r := r - 1;
end;
end;
if (left < r) then
QuickSort(left, r, s);
if (right > l) then
QuickSort(l, right, s);
end;
end;
{$ELSE}
//http://delphi.wikia.com/wiki/Heapsort
procedure HeapSort(var s: TSortArray);
procedure Sink(indx, Arraylength: integer);
var
item, leftChild, sinkindx, rightChild, parent: integer;
done: boolean;
begin
sinkindx := indx;
item := s[indx].index; // s[s[indx].index].value
done := False;
while not done do begin // search sink-path and move up all items
leftChild := ((sinkindx) * 2) + 1;
rightChild := ((sinkindx + 1) * 2);
if rightChild <= Arraylength then begin
if s[s[leftChild].index].value < s[s[rightChild].index].value then begin
s[sinkindx].index := s[rightChild].index; // s[s[leftChild].index].value
sinkindx := rightChild;
end else begin
s[sinkindx].index := s[leftChild].index;
sinkindx := leftChild;
end;
end else begin
done := True;
if leftChild <= Arraylength then begin
s[sinkindx].index := s[leftChild].index;
//Data[sinkindx] := Data[leftChild];
sinkindx := leftChild;
end;
end;
end;
// move up current Item
s[sinkindx].index := item;
done := False;
while not done do begin
parent := Trunc((sinkindx - 1) / 2);
if (s[s[parent].index].value < s[s[sinkindx].index].value) and (parent >= indx) then begin
item := s[parent].index;
s[parent].index := s[sinkindx].index;
s[sinkindx].index := item;
sinkindx := parent;
end
else
done := True;
end;
end;
var
x, b: integer;
begin
// first make it a Heap
for x := Trunc((High(s) - 1) / 2) downto Low(s) do
sink(x, High(s));
// do the ButtomUpHeap sort
for x := High(s) downto Low(s) + 1 do begin
b := s[x].index;
s[x].index := s[Low(s)].index;
s[Low(s)].index := b;
sink(Low(s), x - 1);
end;
end;
{$ENDIF}
procedure SortArrayIndices(var s: TSortArray); //sorts indices, not values!
var
i : integer;
begin
if length(s) < 1 then exit;
for i := 0 to (length(s)-1) do //set indices
s[i].index := i;
{$IFDEF QSORT}
quicksort(low(s), high(s), s);
{$ELSE}
HeapSort(s);
{$ENDIF}
end;
function RemoveDegenerateTriangles(var faces: TFaces): integer;
var
nOK, n,i: integer;
f: TFaces;
begin
result := 0; //EXIT_SUCCESS - no change
n := length(faces);
if n < 1 then exit;
nOK := 0;
for i := 0 to (n-1) do
if (faces[i].x <> faces[i].y) and (faces[i].x <> faces[i].z) and (faces[i].y <> faces[i].z) then
nOK := nOK + 1;
//printf(format(' %d degenerate triangles', [n - nOK]));
if (nOK = n) then exit;
if (nOK = 0) then exit; //nothing survives!
result := n - nOK; //report number of faces removed
setlength(f,n);
f := Copy(faces, Low(faces), Length(faces));
setlength(faces,nOK);
nOK := 0;
for i := 0 to (n-1) do
if (faces[i].x <> faces[i].y) and (faces[i].x <> faces[i].z) and (faces[i].y <> faces[i].z) then begin
faces[nOK] := f[i];
nOK := nOK + 1;
end;
end; //end RemoveDegenerateTriangles()
procedure ClusterVertex( var faces: TFaces; var vertices: TVertices; Radius: single);
var
s: TSortArray;
j,i, nv,nc,nvPost: integer;
z, dz, dx: TSortType;
pt,sum: TPoint3f;
face: TPoint3i;
newVert: TVertices;
oldFaces: TFaces;
radiusSqr: single;
cluster, remap: TInts;
begin
nv := length(vertices);
if (nv < 3) or (Radius < 0) then exit;
setlength(s,nv);
setlength(remap,nv);
setlength(cluster,nv);
for i := 0 to (nv -1) do begin
s[i].value := vertices[i].Z;
cluster[i] := i;
remap[i] := -1;
end;
SortArrayIndices(s);
nvPost := 0;
setLength(newVert, nv);
if Radius <= 0 then begin
for i := 0 to (nv - 1) do begin
if cluster[i] = i then begin //not part of previous cluster
pt := vertices[s[i].index];
j := i + 1;
while (j < nv) and (vertices[s[j].index].Z = pt.Z) do begin //i.Z==j.Z
if (vertices[s[j].index].X = pt.X) and (vertices[s[j].index].Y = pt.Y) then begin//i.X==j.X, i.Y==j.Y
cluster[j] := nvPost;
remap[s[j].index] := nvPost;
end;
j := j + 1;
end;
newVert[nvPost] := pt;
cluster[i] := nvPost;
remap[s[i].index] := nvPost;
nvPost := nvPost + 1; //no neighbors
end; //not yet clustered
end; //for each vertex
end else begin //Radius > 0
radiusSqr := sqr(Radius); //avoids calculating square-root for each comparison
for i := 0 to (nv - 1) do begin
if cluster[i] = i then begin //not part of previous cluster
z := s[s[i].index].value;
pt := vertices[s[i].index];
sum := pt;
dz := 0;
j := i + 1;
nc := 1;
while (dz <= Radius) and (j < nv) do begin
dz := abs(s[s[j].index].value - z);
//dx := vectorDistance(pt, vertices[s[j].index]);
dx := sqr(pt.X-vertices[s[j].index].X)+ sqr(pt.Y-vertices[s[j].index].Y) + sqr(pt.Z-vertices[s[j].index].Z);
if dx <= radiusSqr then begin
vectorAdd(sum, vertices[s[j].index]);
cluster[j] := nvPost;
remap[s[j].index] := nvPost;
nc := nc + 1;
end;
j := j + 1;
end;
newVert[nvPost] := vectorScale(sum, 1/nc);
cluster[i] := nvPost;
remap[s[i].index] := nvPost;
nvPost := nvPost + 1; //no neighbors
end; //not yet clustered
end; //for each vertex
end;
if nvPost = nv then exit; //no clusters - no change!
vertices := Copy(newVert, Low(newVert), nvPost);
//remap faces to new vertices
oldFaces := Copy(faces, Low(faces), Length(faces));
setlength(faces,0);
for i := 0 to (length(oldFaces) - 1) do begin
face.X := remap[oldFaces[i].X];
face.Y := remap[oldFaces[i].Y];
face.Z := remap[oldFaces[i].Z];
if (face.X <> face.Y) and (face.X <> face.Z) and (face.Y <> face.Z) then begin //exclude degenerate faces
setlength(Faces,length(Faces)+1);
Faces[High(Faces)].X := face.X;
Faces[High(Faces)].Y := face.Y;
Faces[High(Faces)].Z := face.Z;
end;
end;
RemoveDegenerateTriangles(faces);
end;
procedure UnifyVertices(var faces: TFaces; var vertices: TVertices);
//STL format saves raw vertices, this uses a lot of RAM and makes estimating vertex normals impossible...
// http://www.mathworks.com/matlabcentral/fileexchange/29986-patch-slim--patchslim-m-
begin
ClusterVertex(faces, vertices, 0);
end;
{$IFDEF OLD_SIMPLIFY}
type
TPMTriangle = record
VertexID: array [0..2] of integer;
normal: TPoint3f;
deleted: boolean;
end;
TPMVertex = record
position: TPoint3f;
id: integer; //place in original array
neighbor: TInts; //adjacent vertices
face: TInts; //adjacent triangles
objdist: single;
collapse: integer; // candidate vertex for collapse
deleted : boolean;
//locked: boolean;
end;
TPMtriangles = array of TPMTriangle;
TPMvertices = array of TPMVertex;
var
gTriangles : TPMtriangles;
gVertices : TPMvertices;
function minF(A,B: single): single;
begin
if A < B then
result := A
else
result := B;
end;
function maxF(A,B: single): single;
begin
if A > B then
result := A
else
result := B;
end;
function ComputeEdgeCollapseCost(var u, v: TPMVertex): single;
// if we collapse edge uv by moving u to v then how
// much different will the model change, i.e. how much "error".
// Texture, vertex normal, and border vertex code was removed
// to keep this demo as simple as possible.
// The method of determining cost was designed in order
// to exploit small and coplanar regions for
// effective polygon reduction.
// Is is possible to add some checks here to see if "folds"
// would be generated. i.e. normal of a remaining face gets
// flipped. I never seemed to run into this problem and
// therefore never added code to detect this case.
var
edgelength, curvature, mincurv, dotprod: single;
sides: TInts;
j, i: integer;
begin
edgelength := vectorLength(v.position, u.position);
//
curvature :=0;
// find the "sides" triangles that are on the edge uv
setlength(sides, 0);
for i := 0 to (length(u.face) -1) do begin
if (gTriangles[u.face[i]].VertexID[0] = v.id) or (gTriangles[u.face[i]].VertexID[1] = v.id) or (gTriangles[u.face[i]].VertexID[2] = v.id) then begin
setlength(sides, length(sides)+1);
sides[High(sides)] := u.face[i];
end;
end;
// use the triangle facing most away from the sides
// to determine our curvature term
for i := 0 to (length(u.face)-1) do begin
mincurv :=1; // curve for face i and closer side to it
for j := 0 to (length(sides) -1) do begin
dotprod := vectorDot(gTriangles[u.face[i]].normal , gTriangles[sides[j]].normal); // use dot product of face normals.
mincurv := minF(mincurv,(1-dotprod)/2.0);
end;
curvature := maxF(curvature, mincurv);
end;
//curvature := maxF(curvature, 0.01); // <- not in original code
// the more coplanar the lower the curvature term
result := edgelength * curvature;
//showmessage(format('%d %d %g', [u.id, v.id, result]));
end;
procedure ComputeEdgeCostAtVertex(var v: TPMVertex);
// compute the edge collapse cost for all edges that start
// from vertex v. Since we are only interested in reducing
// the object by selecting the min cost edge at each step, we
// only cache the cost of the least cost edge at this vertex
// (in member variable collapse) as well as the value of the
// cost (in member variable objdist).
var
i: integer;
dist: single;
begin
if (length(v.neighbor) < 1) or (length(v.face) < 3 ) {or (v.locked)} then begin
v.collapse := -1;
v.objdist := 1000000;
exit;
end;
v.objdist := 1000000;
v.collapse := -1;
// search all neighboring edges for "least cost" edge
for i := 0 to (length(v.neighbor) - 1) do begin
//if not gVertices[v.neighbor[i]].locked then begin
dist := ComputeEdgeCollapseCost(v,gVertices[v.neighbor[i]]);
if(dist < v.objdist) then begin
v.collapse := v.neighbor[i]; // candidate for edge collapse
v.objdist := dist; // cost of the collapse
end;
//end;
end;
end;
procedure ComputeAllEdgeCollapseCosts();
// For all the edges, compute the difference it would make
// to the model if it was collapsed. The least of these
// per vertex is cached in each vertex object.
var
i: integer;
begin
for i := 0 to (length(gVertices)-1) do
ComputeEdgeCostAtVertex(gVertices[i]);
end;
procedure AddNeighbors (var a: TPMVertex; bid, cid, faceID: integer);
var
i, bpos, cpos: integer;
begin
bpos := -1;
cpos := -1;
if length(a.neighbor) > 0 then
for i := 0 to (length(a.neighbor)-1) do begin
if a.neighbor[i] = bid then bpos := i;
if a.neighbor[i] = cid then cpos := i;
end;
if (bpos < 0) then begin//new item
setlength(a.neighbor, length(a.neighbor)+1);
a.neighbor[High(a.neighbor)] := bid;
end;
if (cpos < 0) then begin//new item
setlength(a.neighbor, length(a.neighbor)+1);
a.neighbor[High(a.neighbor)] := cid;
end;
if faceID >= 0 then begin
setlength(a.face, length(a.face)+1);
a.face[High(a.face)] := faceID;
end;
end;
procedure CleanNeighbor (n, u, v: integer); //adjust vertices
var
i : integer;
begin
if length(gVertices[n].neighbor) < 1 then exit;
for i := 0 to (length(gVertices[n].neighbor)-1) do
if gVertices[n].neighbor[i]= u then
gVertices[n].neighbor[i] := v;
end;
procedure recaclVertex (var v: TPMVertex); //recompute vertex
var
i,j,k : integer;
old: TInts;
begin
if v.deleted then exit;
v.deleted := true;
if length(v.face) < 1 then exit;
old := Copy(v.face, low(v.face), length(v.face));
setlength(v.face,0);
for i := 0 to (length(old)-1) do begin
if not gTriangles[old[i]].deleted then begin
setlength(v.face,length(v.face)+1);
v.face[High(v.face)] := old[i];
end;
end;
setlength(v.neighbor,0);
if length(v.face) < 1 then exit;
for i := 0 to (length(v.face)-1) do begin
if gTriangles[v.face[i]].VertexID[0] = v.id then
j := gTriangles[v.face[i]].VertexID[1]
else
j := gTriangles[v.face[i]].VertexID[0];
if gTriangles[v.face[i]].VertexID[2] = v.id then
k := gTriangles[v.face[i]].VertexID[1]
else
k := gTriangles[v.face[i]].VertexID[2];
AddNeighbors(v, j, k, -1);
end;
if length(v.neighbor) < 1 then exit;
v.deleted := false;
ComputeEdgeCostAtVertex(v);
end;
(*procedure PruneNeighbor (var n: TPMVertex; u, v: integer); //adjust vertices
var
i : integer;
oldNeighbor: TInts; //adjacent vertices
begin
if length(n.neighbor) < 1 then exit;
oldNeighbor := Copy(n.neighbor, low(n.neighbor), length(n.neighbor));
setlength(n.neighbor, 0);
for i := 0 to (length(oldNeighbor)-1) do begin
if (oldNeighbor[i] <> u) and (oldNeighbor[i] <> v) then begin
setlength(n.neighbor,length(n.neighbor)+1);
n.neighbor[High(n.neighbor)] := oldNeighbor[i];
end;
end;
if length(n.neighbor) = 0 then
n.deleted := true;
ComputeEdgeCostAtVertex(n);
end; *)
procedure Collapse(var u, v: TPMVertex);
// Collapse the edge uv by moving vertex u onto v
// Actually remove tris on uv, then update tris that
// have u to have v, and then remove u.
var
tmp: TInts;
k,j,i,numU,numV: integer;
begin
u.deleted := true;
if (v.deleted) then begin // u is a vertex all by itself so just delete it
showmessage(format('error deleting %d, as %d already deleted!', [u.id, v.id]) );
exit;
end;
//now clean up faces
numU := length(u.face);
numV := length(v.face);
setlength(tmp,numU+numV);
for i := 0 to (numU-1) do
tmp[i] := u.face[i];
for i := 0 to (numV-1) do
tmp[i+numU] := v.face[i];
//clean up neighbors
setlength(u.neighbor,0);
setlength(v.neighbor,0);
setlength(u.face,0);
setlength(v.face,0);
for i := 0 to (numV+numU-1) do begin //adjust triangles
k := 0;
for j := 0 to 2 do begin
if gTriangles[tmp[i]].VertexID[j] = u.id then
gTriangles[tmp[i]].VertexID[j] := v.id;
if gTriangles[tmp[i]].VertexID[j] = v.id then k := k + 1;
end;
if (k > 1) or (gTriangles[tmp[i]].deleted) then //delete this triangle - faces collapsed
gTriangles[tmp[i]].deleted := true
else if k = 1 then begin
setlength(v.face,length(v.face)+1);
v.face[High(v.face)] := tmp[i];
end;
end;
if length(v.face) < 1 then begin
v.deleted:= true;
for i := 0 to (numV+numU-1) do begin //inform neighbors of removed triangle
for j := 0 to 2 do begin
k := gTriangles[tmp[i]].VertexID[j];
if (k <> u.id) and (k <> v.id) then
recaclVertex(gVertices[k]);//, u.id, v.id);
end;
end;
exit;
end;
for i := 0 to (length(v.face)-1) do begin
if gTriangles[v.face[i]].VertexID[0] = v.id then
j := gTriangles[v.face[i]].VertexID[1]
else
j := gTriangles[v.face[i]].VertexID[0];
if gTriangles[v.face[i]].VertexID[2] = v.id then
k := gTriangles[v.face[i]].VertexID[1]
else
k := gTriangles[v.face[i]].VertexID[2];
AddNeighbors(v, j, k, -1);
CleanNeighbor (j, u.id, v.id);
CleanNeighbor (k, u.id, v.id);
end;
ComputeEdgeCostAtVertex(v);
for i := 0 to (length(v.neighbor)-1) do begin
CleanNeighbor (gVertices[v.neighbor[i]].id, u.id, v.id);
ComputeEdgeCostAtVertex(gVertices[v.neighbor[i]]);
end;
// recompute the edge collapse costs for neighboring vertices
end;
function MinimumCostEdge(): integer;
// Find the edge that when collapsed will affect model the least.
// This funtion actually returns a VertexID, the second vertex
// of the edge (collapse candidate) is stored in the vertex data.
// Serious optimization opportunity here: this function currently
// does a sequential search through an unsorted Array :-(
// Our algorithm could be O(n*lg(n)) instead of O(n*n)
var
mn : single;
i: integer;
begin
result := 0;
mn := 1000000;
for i:= 0 to (length(gVertices)-1) do
if (not gVertices[i].deleted) and (gVertices[i].objdist < mn) and (gVertices[i].collapse >= 0) then begin
// TO DO : no vertices should link to a deleted vertex ....
//if (not gVertices[i].deleted) and (gVertices[i].objdist < mn) and (not gVertices[gVertices[i].collapse].deleted) and (gVertices[i].collapse >= 0) then begin
if gVertices[gVertices[i].collapse].deleted then
recaclVertex(gVertices[i]) //rare outcome where triangle removal orphaned a vertex
else begin
result := i;
mn := gVertices[i].objdist;
if mn = 0 then exit; //no need to search further
end;
end;
end;
(*NEXT SECTION FOR LOCKED EDGES
type
TSortType = UInt64; //can be integer, single, double, etc
TSortArray = array of TSortType;
procedure HeapSort(var Data: TSortArray);
procedure Sink(Index, Arraylength: integer);
var
item, leftChild, sinkIndex, rightChild, parent: integer;
done: boolean;
begin
sinkIndex := index;
item := Data[index];
done := False;
while not done do begin // search sink-path and move up all items
leftChild := ((sinkIndex) * 2) + 1;
rightChild := ((sinkIndex + 1) * 2);
if rightChild <= Arraylength then begin
if Data[leftChild] < Data[rightChild] then begin
Data[sinkIndex] := Data[rightChild];
sinkIndex := rightChild;
end
else begin
Data[sinkIndex] := Data[leftChild];
sinkIndex := leftChild;
end;
end
else begin
done := True;
if leftChild <= Arraylength then begin
Data[sinkIndex] := Data[leftChild];
sinkIndex := leftChild;
end;
end;
end;
// move up current Item
Data[sinkIndex] := item;
done := False;
while not done do begin
parent := Trunc((sinkIndex - 1) / 2);
if (Data[parent] < Data[sinkIndex]) and (parent >= Index) then begin
item := Data[parent];
Data[parent] := Data[sinkIndex];
Data[sinkIndex] := item;
sinkIndex := parent;
end
else
done := True;
end;
end; //sink()
var
x, b: integer;
begin
// first make it a Heap
for x := Trunc((High(Data) - 1) / 2) downto Low(Data) do
sink(x, High(Data));
// do the ButtomUpHeap sort
for x := High(Data) downto Low(Data) + 1 do begin
b := Data[x];
Data[x] := Data[Low(Data)];
Data[Low(Data)] := b;
sink(Low(Data), x - 1);
end;
end; //HeapSort()
function AsUint64(a,b: integer): TSortType;
begin
if a < b then
result := (TSortType(a) shl 32) + TSortType(b)
else
result := (TSortType(b) shl 32) + TSortType(a);
end;
procedure lockEdge(pos: TSortType);
var
a,b: TSortType;
begin
a := pos shr 32;
b := pos and $FFFFFFFF;
gVertices[a].locked:= true;
gVertices[b].locked:= true;
end;
procedure lockVertices;
var
i,j, num_edge: integer;
edges: TSortArray;
begin
num_edge := length(gTriangles) * 3;
setlength(edges, num_edge);
j := 0;
for i := 0 to (length(gTriangles) -1) do begin
edges[j] := asUint64(gTriangles[i].VertexID[0], gTriangles[i].VertexID[1]) ;
//if edges[j] = 1 then cx(gTriangles[i].VertexID[0], gTriangles[i].VertexID[1], edges[j]);
j := j + 1;
edges[j] := asUint64(gTriangles[i].VertexID[1], gTriangles[i].VertexID[2]) ;
//if edges[j] = 1 then cx(gTriangles[i].VertexID[0], gTriangles[i].VertexID[1], edges[j]);
j := j + 1;
edges[j] := asUint64(gTriangles[i].VertexID[2], gTriangles[i].VertexID[1]) ;
//if edges[j] = 1 then cx(gTriangles[i].VertexID[0], gTriangles[i].VertexID[1], edges[j]);
j := j + 1;
end;
heapsort(edges);
//now identify unique edges used by only a single triangle
if edges[0] <> edges[1] then
lockEdge(edges[0]);
for i := 1 to (num_edge -2) do begin
if (edges[i] <> edges[i-1]) and (edges[i] <> edges[i+1]) then
lockEdge(edges[i]);
end;
if edges[num_edge-1] <> edges[num_edge-2] then
lockEdge(edges[num_edge-1]);
{j := 0;
for i := 0 to (length(gVertices) -1) do
if gVertices[i].locked then inc(j);
showmessage(format('f=%d v=%d lockedV=%d',[ length(gTriangles), length(gVertices), j])); }
end; *)
(*function MinimumCostEdge2(var costSort : TSortArray; lItem: integer; lThresh: single ): integer;
// Find the edge that when collapsed will affect model the least.
var
mn : single;
i, ix: integer;
begin
result := 0;
mn := 1000000;
for i:= lItem to (length(gVertices)-1) do
ix := costSort[i].index;
if (not gVertices[ix].deleted) and (gVertices[ix].objdist < mn) and (gVertices[ix].collapse >= 0) then begin
// TO DO : no vertices should link to a deleted vertex ....
//if (not gVertices[i].deleted) and (gVertices[i].objdist < mn) and (not gVertices[gVertices[i].collapse].deleted) and (gVertices[i].collapse >= 0) then begin
if gVertices[gVertices[ix].collapse].deleted then
recaclVertex(gVertices[ix]) //rare outcome where triangle removal orphaned a vertex
else begin
result := i;
mn := gVertices[ix].objdist;
if (mn < lThresh) then exit; //no need to search further
end;
end;
end; *)
function ReducePatch( var faces: TFaces; var vertices: TVertices; R: single): boolean;
//note while Matlabs' ReducePatch R refers to number of faces, here we compress number of vertices
// if R is 0.2, 20% of the vertices will be kept.
var
i,j, mn, nVertIn, nVertRemove: integer;
//lThresh: single;
//costSort : TSortArray;
begin
result := false;
nVertIn := length(vertices);
nVertRemove := round(nVertIn * (1.0-R));
//nVertRemove := 350;
if (nVertRemove < 1) or ((nVertIn - nVertRemove) < 3) or (length(faces) < 1) then exit;
//setup
setlength(gTriangles, length(faces));
for i := 0 to (length(faces)-1) do begin
gTriangles[i].VertexID[0] := faces[i].X;
gTriangles[i].VertexID[1] := faces[i].Y;
gTriangles[i].VertexID[2] := faces[i].Z;
gTriangles[i].deleted:= false;
gTriangles[i].normal := getSurfaceNormal(vertices[faces[i].X], vertices[faces[i].Y], vertices[faces[i].Z]);
vectorNormalize(gTriangles[i].normal);
end;
setlength(gVertices, length(vertices));
for i := 0 to (length(vertices)-1) do begin
gVertices[i].position := vertices[i];
gVertices[i].id := i;
gVertices[i].deleted := false;
//gVertices[i].locked := false;
end;
for i := 0 to (length(faces)-1) do begin
AddNeighbors(gVertices[faces[i].X], gVertices[faces[i].Y].id, gVertices[faces[i].Z].id, i);
AddNeighbors(gVertices[faces[i].Y], gVertices[faces[i].X].id, gVertices[faces[i].Z].id, i);
AddNeighbors(gVertices[faces[i].Z], gVertices[faces[i].X].id, gVertices[faces[i].Y].id, i);
end;
//lockVertices;
//showmessage(format('Faces %d Vin %d Remove %d Unlocked %d',[length(Faces), nVertIn, nVertRemove, J]));
ComputeAllEdgeCollapseCosts(); //set collapse and objdist
(*setlength(costSort,nVertIn);
for i := 0 to (nVertIn -1) do begin
costSort[i].value := gVertices[i].objdist;
end;
SortArrayIndices(costSort);
lThresh := costSort[nVertRemove].value;*) //values better than this are acceptable for deletion
//now remove vertices...
for i := 1 to nVertRemove do begin
mn := MinimumCostEdge();
//mn := MinimumCostEdge2(costSort, i-1, lThresh);
//showmessage(format('%d = %d', [mn, gVertices[mn].collapse]));
Collapse(gVertices[mn],gVertices[gVertices[mn].collapse]);
end;
j := 0;
for i:= 0 to (length(gVertices)-1) do
if not gVertices[i].deleted then
j := j + 1;
setlength(vertices, j);
j := 0;
for i:= 0 to (length(gVertices)-1) do begin
gVertices[i].id := -1;
if not gVertices[i].deleted then begin
vertices[j] := gVertices[i].position;
gVertices[i].id := j;
j := j + 1;
end;
end;
j := 0;
for i := 0 to (length(gTriangles)-1) do
if (gVertices[gTriangles[i].VertexID[0]].id >= 0) and (gVertices[gTriangles[i].VertexID[1]].id >= 0) and (gVertices[gTriangles[i].VertexID[2]].id >= 0) and (not gTriangles[i].deleted) then
j := j + 1;
setlength(faces, j);
j := 0;
for i := 0 to (length(gTriangles)-1) do begin
if (gVertices[gTriangles[i].VertexID[0]].id >= 0) and (gVertices[gTriangles[i].VertexID[1]].id >= 0) and (gVertices[gTriangles[i].VertexID[2]].id >= 0) and (not gTriangles[i].deleted) then begin
faces[j].X := gVertices[gTriangles[i].VertexID[0]].id;
faces[j].Y := gVertices[gTriangles[i].VertexID[1]].id;
faces[j].Z := gVertices[gTriangles[i].VertexID[2]].id;
if (faces[j].X < 0) or (faces[j].Y < 0) or (faces[j].Z < 0) then begin
showmessage(format ('mesh reduction failed %d: %d %d %d', [gTriangles[i].VertexID[0], faces[j].X,faces[j].Y,faces[j].Z]));
end;
if (faces[j].X >= length(vertices)) or (faces[j].Y >= length(vertices)) or (faces[j].Z >= length(vertices)) then begin
showmessage('mesh reduction overage');
exit;
end;
j := j + 1;
end;
end;
result := true;
//cleanup memory
for i := 0 to (length(gVertices)-1) do begin
setlength(gVertices[i].face, 0);
setlength(gVertices[i].neighbor, 0);
end;
setlength(gVertices,0);
setlength(gTriangles, 0);
end;
{$ELSE}
function ReducePatch( var faces: TFaces; var vertices: TVertices; R: single): boolean;
var
facesTarget : integer;
begin
result := false;
facesTarget := round(length(faces) * R);
if (facesTarget < 4) then begin
Showmessage('Error: no mesh will survive such an extreme reduction.');
exit;
end;
UnifyVertices(faces, vertices); //remove duplicate vertices - see example "duplicated_vertices.obj"
simplify_mesh(faces, vertices, facesTarget, 3, true);
simplify_mesh_lossless(faces, vertices);
result := true;
(*var
msh: TSimplify;
i, facesTarget: integer;
begin
result := false;
if (length(faces) < 1) or (length(vertices) < 3) then begin
Showmessage('You need to load a mesh (File/Open) before you can simplify a mesh');
exit;
end;
facesTarget := round(length(faces) * R);
if (facesTarget < 4) then begin
Showmessage('Error: no mesh will survive such an extreme reduction.');
exit;
end;
msh := TSimplify.Create;
setlength(msh.vertices, length(vertices));
for i := 0 to (length(vertices)-1) do begin
msh.vertices[i].p.X := vertices[i].X;
msh.vertices[i].p.Y := vertices[i].Y;
msh.vertices[i].p.Z := vertices[i].Z;
end;
setlength(msh.triangles, length(faces));
for i := 0 to (length(faces)-1) do begin
msh.triangles[i].v[0] := faces[i].X;
msh.triangles[i].v[1] := faces[i].Y;
msh.triangles[i].v[2] := faces[i].Z;
end;
msh.simplify_mesh(facesTarget, 7);
setlength(vertices, length(msh.vertices));
for i := 0 to (length(msh.vertices)-1) do begin
vertices[i].X := msh.vertices[i].p.X;
vertices[i].Y := msh.vertices[i].p.Y;
vertices[i].Z := msh.vertices[i].p.Z;
end;
setlength(Faces, length(msh.triangles));
for i := 0 to (length(msh.triangles)-1) do begin
faces[i].X := msh.triangles[i].v[0];
faces[i].Y := msh.triangles[i].v[1];
faces[i].Z := msh.triangles[i].v[2];
end;
msh.Free;
result := true;*)
end;
{$ENDIF}
end.