We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
parser = argparse.ArgumentParser() parser.add_argument('--root_path', type=str, default='/data/LarryXu/Synapse/preprocessed_data/train_npz', help='root dir for data') parser.add_argument('--output', type=str, default='/output/sam/results') parser.add_argument('--dataset', type=str, default='Synapse', help='experiment_name') parser.add_argument('--list_dir', type=str, default='./lists/lists_Synapse', help='list dir') parser.add_argument('--num_classes', type=int, default=8, help='output channel of network') parser.add_argument('--max_iterations', type=int, default=30000, help='maximum epoch number to train') parser.add_argument('--max_epochs', type=int, default=200, help='maximum epoch number to train') parser.add_argument('--stop_epoch', type=int, default=160, help='maximum epoch number to train') parser.add_argument('--batch_size', type=int, default=8, help='batch_size per gpu') parser.add_argument('--n_gpu', type=int, default=1, help='total gpu') parser.add_argument('--deterministic', type=int, default=1, help='whether use deterministic training') parser.add_argument('--base_lr', type=float, default=0.005, help='segmentation network learning rate') parser.add_argument('--img_size', type=int, default=512, help='input patch size of network input') parser.add_argument('--seed', type=int, default=1234, help='random seed') parser.add_argument('--vit_name', type=str, default='vit_b', help='select one vit model') parser.add_argument('--ckpt', type=str, default='checkpoints/sam_vit_b_01ec64.pth',# sam_vit_b_01ec64 medsam_vit_b help='Pretrained checkpoint') parser.add_argument('--lora_ckpt', type=str, default=None, help='Finetuned lora checkpoint') parser.add_argument('--rank', type=int, default=4, help='Rank for LoRA adaptation') parser.add_argument('--warmup', action='store_true', help='If activated, warp up the learning from a lower lr to the base_lr') parser.add_argument('--warmup_period', type=int, default=250, help='Warp up iterations, only valid whrn warmup is activated') parser.add_argument('--AdamW', action='store_true', help='If activated, use AdamW to finetune SAM model') parser.add_argument('--module', type=str, default='sam_lora_image_encoder') parser.add_argument('--dice_param', type=float, default=0.8) args = parser.parse_args()
——
Namespace(config=None, volume_path='testset/test_vol_h5/', dataset='Synapse', num_classes=8, list_dir='./lists/lists_Synapse/', output_dir='/mnt/d/Linux/SAMed-main/output', img_size=512, input_size=224, seed=1234, is_savenii=True, deterministic=1, ckpt='checkpoints/sam_vit_b_01ec64.pth', lora_ckpt='checkpoints/epoch_159.pth', vit_name='vit_b', rank=4, module='sam_lora_image_encoder') 12 test iterations per epoch 0it [00:00, ?it/s]idx 0 case case0008 mean_dice 0.441581 mean_hd95 34.595021 1it [02:15, 135.34s/it]idx 1 case case0022 mean_dice 0.684595 mean_hd95 3.275303 2it [03:32, 101.11s/it]idx 2 case case0038 mean_dice 0.669412 mean_hd95 27.522629 3it [05:01, 95.56s/it] idx 3 case case0036 mean_dice 0.681733 mean_hd95 19.580403 4it [07:59, 128.04s/it]idx 4 case case0032 mean_dice 0.621131 mean_hd95 6.248785 5it [10:06, 127.68s/it]idx 5 case case0002 mean_dice 0.690973 mean_hd95 2.605073 6it [12:07, 125.58s/it]idx 6 case case0029 mean_dice 0.671065 mean_hd95 18.496830 7it [13:33, 112.38s/it]idx 7 case case0003 mean_dice 0.428255 mean_hd95 71.256974 8it [16:39, 135.90s/it]idx 8 case case0001 mean_dice 0.653609 mean_hd95 26.554855 9it [18:54, 135.68s/it]idx 9 case case0004 mean_dice 0.666332 mean_hd95 14.264169 10it [20:58, 132.16s/it]idx 10 case case0025 mean_dice 0.639110 mean_hd95 7.775622 11it [22:11, 113.85s/it]idx 11 case case0035 mean_dice 0.662067 mean_hd95 7.006532 12it [23:28, 117.42s/it] Mean class 1 name spleen mean_dice 0.863648 mean_hd95 9.370867 Mean class 2 name right kidney mean_dice 0.805086 mean_hd95 38.663117 Mean class 3 name left kidney mean_dice 0.804298 mean_hd95 42.883881 Mean class 4 name gallbladder mean_dice 0.000000 mean_hd95 0.000000 Mean class 5 name liver mean_dice 0.922219 mean_hd95 36.088610 Mean class 6 name stomach mean_dice 0.763024 mean_hd95 23.126339 Mean class 7 name aorta mean_dice 0.848302 mean_hd95 9.321985 Mean class 8 name pancreas mean_dice 0.000000 mean_hd95 0.000000 Testing performance in best val model: mean_dice : 0.625822 mean_hd95 : 19.931850 Testing Finished! ————
结果复现 无法达到你提供的权重的结果 我自己重新训练的
The text was updated successfully, but these errors were encountered:
#44 你可以参考一下这一条issue
Sorry, something went wrong.
No branches or pull requests
parser = argparse.ArgumentParser()
parser.add_argument('--root_path', type=str,
default='/data/LarryXu/Synapse/preprocessed_data/train_npz', help='root dir for data')
parser.add_argument('--output', type=str, default='/output/sam/results')
parser.add_argument('--dataset', type=str,
default='Synapse', help='experiment_name')
parser.add_argument('--list_dir', type=str,
default='./lists/lists_Synapse', help='list dir')
parser.add_argument('--num_classes', type=int,
default=8, help='output channel of network')
parser.add_argument('--max_iterations', type=int,
default=30000, help='maximum epoch number to train')
parser.add_argument('--max_epochs', type=int,
default=200, help='maximum epoch number to train')
parser.add_argument('--stop_epoch', type=int,
default=160, help='maximum epoch number to train')
parser.add_argument('--batch_size', type=int,
default=8, help='batch_size per gpu')
parser.add_argument('--n_gpu', type=int, default=1, help='total gpu')
parser.add_argument('--deterministic', type=int, default=1,
help='whether use deterministic training')
parser.add_argument('--base_lr', type=float, default=0.005,
help='segmentation network learning rate')
parser.add_argument('--img_size', type=int,
default=512, help='input patch size of network input')
parser.add_argument('--seed', type=int,
default=1234, help='random seed')
parser.add_argument('--vit_name', type=str,
default='vit_b', help='select one vit model')
parser.add_argument('--ckpt', type=str, default='checkpoints/sam_vit_b_01ec64.pth',# sam_vit_b_01ec64 medsam_vit_b
help='Pretrained checkpoint')
parser.add_argument('--lora_ckpt', type=str, default=None, help='Finetuned lora checkpoint')
parser.add_argument('--rank', type=int, default=4, help='Rank for LoRA adaptation')
parser.add_argument('--warmup', action='store_true', help='If activated, warp up the learning from a lower lr to the base_lr')
parser.add_argument('--warmup_period', type=int, default=250,
help='Warp up iterations, only valid whrn warmup is activated')
parser.add_argument('--AdamW', action='store_true', help='If activated, use AdamW to finetune SAM model')
parser.add_argument('--module', type=str, default='sam_lora_image_encoder')
parser.add_argument('--dice_param', type=float, default=0.8)
args = parser.parse_args()
——
Namespace(config=None, volume_path='testset/test_vol_h5/', dataset='Synapse', num_classes=8, list_dir='./lists/lists_Synapse/', output_dir='/mnt/d/Linux/SAMed-main/output', img_size=512, input_size=224, seed=1234, is_savenii=True, deterministic=1, ckpt='checkpoints/sam_vit_b_01ec64.pth', lora_ckpt='checkpoints/epoch_159.pth', vit_name='vit_b', rank=4, module='sam_lora_image_encoder')
12 test iterations per epoch
0it [00:00, ?it/s]idx 0 case case0008 mean_dice 0.441581 mean_hd95 34.595021
1it [02:15, 135.34s/it]idx 1 case case0022 mean_dice 0.684595 mean_hd95 3.275303
2it [03:32, 101.11s/it]idx 2 case case0038 mean_dice 0.669412 mean_hd95 27.522629
3it [05:01, 95.56s/it] idx 3 case case0036 mean_dice 0.681733 mean_hd95 19.580403
4it [07:59, 128.04s/it]idx 4 case case0032 mean_dice 0.621131 mean_hd95 6.248785
5it [10:06, 127.68s/it]idx 5 case case0002 mean_dice 0.690973 mean_hd95 2.605073
6it [12:07, 125.58s/it]idx 6 case case0029 mean_dice 0.671065 mean_hd95 18.496830
7it [13:33, 112.38s/it]idx 7 case case0003 mean_dice 0.428255 mean_hd95 71.256974
8it [16:39, 135.90s/it]idx 8 case case0001 mean_dice 0.653609 mean_hd95 26.554855
9it [18:54, 135.68s/it]idx 9 case case0004 mean_dice 0.666332 mean_hd95 14.264169
10it [20:58, 132.16s/it]idx 10 case case0025 mean_dice 0.639110 mean_hd95 7.775622
11it [22:11, 113.85s/it]idx 11 case case0035 mean_dice 0.662067 mean_hd95 7.006532
12it [23:28, 117.42s/it]
Mean class 1 name spleen mean_dice 0.863648 mean_hd95 9.370867
Mean class 2 name right kidney mean_dice 0.805086 mean_hd95 38.663117
Mean class 3 name left kidney mean_dice 0.804298 mean_hd95 42.883881
Mean class 4 name gallbladder mean_dice 0.000000 mean_hd95 0.000000
Mean class 5 name liver mean_dice 0.922219 mean_hd95 36.088610
Mean class 6 name stomach mean_dice 0.763024 mean_hd95 23.126339
Mean class 7 name aorta mean_dice 0.848302 mean_hd95 9.321985
Mean class 8 name pancreas mean_dice 0.000000 mean_hd95 0.000000
Testing performance in best val model: mean_dice : 0.625822 mean_hd95 : 19.931850
Testing Finished!
————
结果复现 无法达到你提供的权重的结果 我自己重新训练的
The text was updated successfully, but these errors were encountered: