forked from lsdefine/attention-is-all-you-need-keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer.py
471 lines (419 loc) · 18 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
import random, os, sys
import numpy as np
from keras.models import *
from keras.layers import *
from keras.callbacks import *
from keras.initializers import *
import tensorflow as tf
try:
from dataloader import TokenList, pad_to_longest
# for transformer
except: pass
class LayerNormalization(Layer):
def __init__(self, eps=1e-6, **kwargs):
self.eps = eps
super(LayerNormalization, self).__init__(**kwargs)
def build(self, input_shape):
self.gamma = self.add_weight(name='gamma', shape=input_shape[-1:],
initializer=Ones(), trainable=True)
self.beta = self.add_weight(name='beta', shape=input_shape[-1:],
initializer=Zeros(), trainable=True)
super(LayerNormalization, self).build(input_shape)
def call(self, x):
mean = K.mean(x, axis=-1, keepdims=True)
std = K.std(x, axis=-1, keepdims=True)
return self.gamma * (x - mean) / (std + self.eps) + self.beta
def compute_output_shape(self, input_shape):
return input_shape
class ScaledDotProductAttention():
def __init__(self, d_model, attn_dropout=0.1):
self.temper = np.sqrt(d_model)
self.dropout = Dropout(attn_dropout)
def __call__(self, q, k, v, mask):
attn = Lambda(lambda x:K.batch_dot(x[0],x[1],axes=[2,2])/self.temper)([q, k])
if mask is not None:
mmask = Lambda(lambda x:(-1e+10)*(1-x))(mask)
attn = Add()([attn, mmask])
attn = Activation('softmax')(attn)
attn = self.dropout(attn)
output = Lambda(lambda x:K.batch_dot(x[0], x[1]))([attn, v])
return output, attn
class MultiHeadAttention():
# mode 0 - big martixes, faster; mode 1 - more clear implementation
def __init__(self, n_head, d_model, d_k, d_v, dropout, mode=0, use_norm=True):
self.mode = mode
self.n_head = n_head
self.d_k = d_k
self.d_v = d_v
self.dropout = dropout
if mode == 0:
self.qs_layer = Dense(n_head*d_k, use_bias=False)
self.ks_layer = Dense(n_head*d_k, use_bias=False)
self.vs_layer = Dense(n_head*d_v, use_bias=False)
elif mode == 1:
self.qs_layers = []
self.ks_layers = []
self.vs_layers = []
for _ in range(n_head):
self.qs_layers.append(TimeDistributed(Dense(d_k, use_bias=False)))
self.ks_layers.append(TimeDistributed(Dense(d_k, use_bias=False)))
self.vs_layers.append(TimeDistributed(Dense(d_v, use_bias=False)))
self.attention = ScaledDotProductAttention(d_model)
self.layer_norm = LayerNormalization() if use_norm else None
self.w_o = TimeDistributed(Dense(d_model))
def __call__(self, q, k, v, mask=None):
d_k, d_v = self.d_k, self.d_v
n_head = self.n_head
if self.mode == 0:
qs = self.qs_layer(q) # [batch_size, len_q, n_head*d_k]
ks = self.ks_layer(k)
vs = self.vs_layer(v)
def reshape1(x):
s = tf.shape(x) # [batch_size, len_q, n_head * d_k]
x = tf.reshape(x, [s[0], s[1], n_head, s[2]//n_head])
x = tf.transpose(x, [2, 0, 1, 3])
x = tf.reshape(x, [-1, s[1], s[2]//n_head]) # [n_head * batch_size, len_q, d_k]
return x
qs = Lambda(reshape1)(qs)
ks = Lambda(reshape1)(ks)
vs = Lambda(reshape1)(vs)
if mask is not None:
mask = Lambda(lambda x:K.repeat_elements(x, n_head, 0))(mask)
head, attn = self.attention(qs, ks, vs, mask=mask)
def reshape2(x):
s = tf.shape(x) # [n_head * batch_size, len_v, d_v]
x = tf.reshape(x, [n_head, -1, s[1], s[2]])
x = tf.transpose(x, [1, 2, 0, 3])
x = tf.reshape(x, [-1, s[1], n_head*d_v]) # [batch_size, len_v, n_head * d_v]
return x
head = Lambda(reshape2)(head)
elif self.mode == 1:
heads = []; attns = []
for i in range(n_head):
qs = self.qs_layers[i](q)
ks = self.ks_layers[i](k)
vs = self.vs_layers[i](v)
head, attn = self.attention(qs, ks, vs, mask)
heads.append(head); attns.append(attn)
head = Concatenate()(heads) if n_head > 1 else heads[0]
attn = Concatenate()(attns) if n_head > 1 else attns[0]
outputs = self.w_o(head)
outputs = Dropout(self.dropout)(outputs)
if not self.layer_norm: return outputs, attn
outputs = Add()([outputs, q])
return self.layer_norm(outputs), attn
class PositionwiseFeedForward():
def __init__(self, d_hid, d_inner_hid, dropout=0.1):
self.w_1 = Conv1D(d_inner_hid, 1, activation='relu')
self.w_2 = Conv1D(d_hid, 1)
self.layer_norm = LayerNormalization()
self.dropout = Dropout(dropout)
def __call__(self, x):
output = self.w_1(x)
output = self.w_2(output)
output = self.dropout(output)
output = Add()([output, x])
return self.layer_norm(output)
class EncoderLayer():
def __init__(self, d_model, d_inner_hid, n_head, d_k, d_v, dropout=0.1):
self.self_att_layer = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout)
self.pos_ffn_layer = PositionwiseFeedForward(d_model, d_inner_hid, dropout=dropout)
def __call__(self, enc_input, mask=None):
output, slf_attn = self.self_att_layer(enc_input, enc_input, enc_input, mask=mask)
output = self.pos_ffn_layer(output)
return output, slf_attn
class DecoderLayer():
def __init__(self, d_model, d_inner_hid, n_head, d_k, d_v, dropout=0.1):
self.self_att_layer = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout)
self.enc_att_layer = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout)
self.pos_ffn_layer = PositionwiseFeedForward(d_model, d_inner_hid, dropout=dropout)
def __call__(self, dec_input, enc_output, self_mask=None, enc_mask=None):
output, slf_attn = self.self_att_layer(dec_input, dec_input, dec_input, mask=self_mask)
output, enc_attn = self.enc_att_layer(output, enc_output, enc_output, mask=enc_mask)
output = self.pos_ffn_layer(output)
return output, slf_attn, enc_attn
def GetPosEncodingMatrix(max_len, d_emb):
pos_enc = np.array([
[pos / np.power(10000, 2 * (j // 2) / d_emb) for j in range(d_emb)]
if pos != 0 else np.zeros(d_emb)
for pos in range(max_len)
])
pos_enc[1:, 0::2] = np.sin(pos_enc[1:, 0::2]) # dim 2i
pos_enc[1:, 1::2] = np.cos(pos_enc[1:, 1::2]) # dim 2i+1
return pos_enc
def GetPadMask(q, k):
ones = K.expand_dims(K.ones_like(q, 'float32'), -1)
mask = K.cast(K.expand_dims(K.not_equal(k, 0), 1), 'float32')
mask = K.batch_dot(ones, mask, axes=[2,1])
return mask
def GetSubMask(s):
len_s = tf.shape(s)[1]
bs = tf.shape(s)[:1]
mask = K.cumsum(tf.eye(len_s, batch_shape=bs), 1)
return mask
class Encoder():
def __init__(self, d_model, d_inner_hid, n_head, d_k, d_v, \
layers=6, dropout=0.1, word_emb=None, pos_emb=None):
self.emb_layer = word_emb
self.pos_layer = pos_emb
self.emb_dropout = Dropout(dropout)
self.layers = [EncoderLayer(d_model, d_inner_hid, n_head, d_k, d_v, dropout) for _ in range(layers)]
def __call__(self, src_seq, src_pos, return_att=False, active_layers=999):
x = self.emb_layer(src_seq)
if src_pos is not None:
pos = self.pos_layer(src_pos)
x = Add()([x, pos])
x = self.emb_dropout(x)
if return_att: atts = []
mask = Lambda(lambda x:GetPadMask(x, x))(src_seq)
for enc_layer in self.layers[:active_layers]:
x, att = enc_layer(x, mask)
if return_att: atts.append(att)
return (x, atts) if return_att else x
class Decoder():
def __init__(self, d_model, d_inner_hid, n_head, d_k, d_v, \
layers=6, dropout=0.1, word_emb=None, pos_emb=None):
self.emb_layer = word_emb
self.pos_layer = pos_emb
self.layers = [DecoderLayer(d_model, d_inner_hid, n_head, d_k, d_v, dropout) for _ in range(layers)]
def __call__(self, tgt_seq, tgt_pos, src_seq, enc_output, return_att=False, active_layers=999):
x = self.emb_layer(tgt_seq)
if tgt_pos is not None:
pos = self.pos_layer(tgt_pos)
x = Add()([x, pos])
self_pad_mask = Lambda(lambda x:GetPadMask(x, x))(tgt_seq)
self_sub_mask = Lambda(GetSubMask)(tgt_seq)
self_mask = Lambda(lambda x:K.minimum(x[0], x[1]))([self_pad_mask, self_sub_mask])
enc_mask = Lambda(lambda x:GetPadMask(x[0], x[1]))([tgt_seq, src_seq])
if return_att: self_atts, enc_atts = [], []
for dec_layer in self.layers[:active_layers]:
x, self_att, enc_att = dec_layer(x, enc_output, self_mask, enc_mask)
if return_att:
self_atts.append(self_att)
enc_atts.append(enc_att)
return (x, self_atts, enc_atts) if return_att else x
class Transformer:
def __init__(self, i_tokens, o_tokens, len_limit, d_model=256, \
d_inner_hid=512, n_head=4, d_k=64, d_v=64, layers=2, dropout=0.1, \
share_word_emb=False):
self.i_tokens = i_tokens
self.o_tokens = o_tokens
self.len_limit = len_limit
self.src_loc_info = True
self.d_model = d_model
self.decode_model = None
d_emb = d_model
pos_emb = Embedding(len_limit, d_emb, trainable=False, \
weights=[GetPosEncodingMatrix(len_limit, d_emb)])
i_word_emb = Embedding(i_tokens.num(), d_emb)
if share_word_emb:
assert i_tokens.num() == o_tokens.num()
o_word_emb = i_word_emb
else: o_word_emb = Embedding(o_tokens.num(), d_emb)
self.encoder = Encoder(d_model, d_inner_hid, n_head, d_k, d_v, layers, dropout, \
word_emb=i_word_emb, pos_emb=pos_emb)
self.decoder = Decoder(d_model, d_inner_hid, n_head, d_k, d_v, layers, dropout, \
word_emb=o_word_emb, pos_emb=pos_emb)
self.target_layer = TimeDistributed(Dense(o_tokens.num(), use_bias=False))
def get_pos_seq(self, x):
mask = K.cast(K.not_equal(x, 0), 'int32')
pos = K.cumsum(K.ones_like(x, 'int32'), 1)
return pos * mask
def compile(self, optimizer='adam', active_layers=999):
src_seq_input = Input(shape=(None,), dtype='int32')
tgt_seq_input = Input(shape=(None,), dtype='int32')
src_seq = src_seq_input
tgt_seq = Lambda(lambda x:x[:,:-1])(tgt_seq_input)
tgt_true = Lambda(lambda x:x[:,1:])(tgt_seq_input)
src_pos = Lambda(self.get_pos_seq)(src_seq)
tgt_pos = Lambda(self.get_pos_seq)(tgt_seq)
if not self.src_loc_info: src_pos = None
enc_output = self.encoder(src_seq, src_pos, active_layers=active_layers)
dec_output = self.decoder(tgt_seq, tgt_pos, src_seq, enc_output, active_layers=active_layers)
final_output = self.target_layer(dec_output)
def get_loss(args):
y_pred, y_true = args
y_true = tf.cast(y_true, 'int32')
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y_true, logits=y_pred)
mask = tf.cast(tf.not_equal(y_true, 0), 'float32')
loss = tf.reduce_sum(loss * mask, -1) / tf.reduce_sum(mask, -1)
loss = K.mean(loss)
return loss
def get_accu(args):
y_pred, y_true = args
mask = tf.cast(tf.not_equal(y_true, 0), 'float32')
corr = K.cast(K.equal(K.cast(y_true, 'int32'), K.cast(K.argmax(y_pred, axis=-1), 'int32')), 'float32')
corr = K.sum(corr * mask, -1) / K.sum(mask, -1)
return K.mean(corr)
loss = Lambda(get_loss)([final_output, tgt_true])
self.ppl = Lambda(K.exp)(loss)
self.accu = Lambda(get_accu)([final_output, tgt_true])
self.model = Model([src_seq_input, tgt_seq_input], loss)
self.model.add_loss([loss])
self.output_model = Model([src_seq_input, tgt_seq_input], final_output)
self.model.compile(optimizer, None)
self.model.metrics_names.append('ppl')
self.model.metrics_tensors.append(self.ppl)
self.model.metrics_names.append('accu')
self.model.metrics_tensors.append(self.accu)
def make_src_seq_matrix(self, input_seq):
src_seq = np.zeros((1, len(input_seq)+3), dtype='int32')
src_seq[0,0] = self.i_tokens.startid()
for i, z in enumerate(input_seq): src_seq[0,1+i] = self.i_tokens.id(z)
src_seq[0,len(input_seq)+1] = self.i_tokens.endid()
return src_seq
def decode_sequence(self, input_seq, delimiter=''):
src_seq = self.make_src_seq_matrix(input_seq)
decoded_tokens = []
target_seq = np.zeros((1, self.len_limit), dtype='int32')
target_seq[0,0] = self.o_tokens.startid()
for i in range(self.len_limit-1):
output = self.output_model.predict_on_batch([src_seq, target_seq])
sampled_index = np.argmax(output[0,i,:])
sampled_token = self.o_tokens.token(sampled_index)
decoded_tokens.append(sampled_token)
if sampled_index == self.o_tokens.endid(): break
target_seq[0,i+1] = sampled_index
return delimiter.join(decoded_tokens[:-1])
def make_fast_decode_model(self):
src_seq_input = Input(shape=(None,), dtype='int32')
tgt_seq_input = Input(shape=(None,), dtype='int32')
src_seq = src_seq_input
tgt_seq = tgt_seq_input
src_pos = Lambda(self.get_pos_seq)(src_seq)
tgt_pos = Lambda(self.get_pos_seq)(tgt_seq)
if not self.src_loc_info: src_pos = None
enc_output = self.encoder(src_seq, src_pos)
self.encode_model = Model(src_seq_input, enc_output)
enc_ret_input = Input(shape=(None, self.d_model))
dec_output = self.decoder(tgt_seq, tgt_pos, src_seq, enc_ret_input)
final_output = self.target_layer(dec_output)
self.decode_model = Model([src_seq_input, enc_ret_input, tgt_seq_input], final_output)
self.encode_model.compile('adam', 'mse')
self.decode_model.compile('adam', 'mse')
def decode_sequence_fast(self, input_seq, delimiter=''):
if self.decode_model is None: self.make_fast_decode_model()
src_seq = self.make_src_seq_matrix(input_seq)
enc_ret = self.encode_model.predict_on_batch(src_seq)
decoded_tokens = []
target_seq = np.zeros((1, self.len_limit), dtype='int32')
target_seq[0,0] = self.o_tokens.startid()
for i in range(self.len_limit-1):
output = self.decode_model.predict_on_batch([src_seq,enc_ret,target_seq])
sampled_index = np.argmax(output[0,i,:])
sampled_token = self.o_tokens.token(sampled_index)
decoded_tokens.append(sampled_token)
if sampled_index == self.o_tokens.endid(): break
target_seq[0,i+1] = sampled_index
return delimiter.join(decoded_tokens[:-1])
def beam_search(self, input_seq, topk=5, delimiter=''):
if self.decode_model is None: self.make_fast_decode_model()
src_seq = self.make_src_seq_matrix(input_seq)
src_seq = src_seq.repeat(topk, 0)
enc_ret = self.encode_model.predict_on_batch(src_seq)
final_results = []
decoded_tokens = [[] for _ in range(topk)]
decoded_logps = [0] * topk
lastk = 1
target_seq = np.zeros((topk, self.len_limit), dtype='int32')
target_seq[:,0] = self.o_tokens.startid()
for i in range(self.len_limit-1):
if lastk == 0 or len(final_results) > topk * 3: break
output = self.decode_model.predict_on_batch([src_seq,enc_ret,target_seq])
output = np.exp(output[:,i,:])
output = np.log(output / np.sum(output, -1, keepdims=True) + 1e-8)
cands = []
for k, wprobs in zip(range(lastk), output):
if target_seq[k,i] == self.o_tokens.endid(): continue
wsorted = sorted(list(enumerate(wprobs)), key=lambda x:x[-1], reverse=True)
for wid, wp in wsorted[:topk]:
cands.append( (k, wid, decoded_logps[k]+wp) )
cands.sort(key=lambda x:x[-1], reverse=True)
cands = cands[:topk]
backup_seq = target_seq.copy()
for kk, zz in enumerate(cands):
k, wid, wprob = zz
target_seq[kk,] = backup_seq[k]
target_seq[kk,i+1] = wid
decoded_logps[kk] = wprob
decoded_tokens.append(decoded_tokens[k] + [self.o_tokens.token(wid)])
if wid == self.o_tokens.endid(): final_results.append( (decoded_tokens[k], wprob) )
decoded_tokens = decoded_tokens[topk:]
lastk = len(cands)
final_results = [(x,y/(len(x)+1)) for x,y in final_results]
final_results.sort(key=lambda x:x[-1], reverse=True)
final_results = [(delimiter.join(x),y) for x,y in final_results]
return final_results
class LRSchedulerPerStep(Callback):
def __init__(self, d_model, warmup=4000):
self.basic = d_model**-0.5
self.warm = warmup**-1.5
self.step_num = 0
def on_batch_begin(self, batch, logs = None):
self.step_num += 1
lr = self.basic * min(self.step_num**-0.5, self.step_num*self.warm)
K.set_value(self.model.optimizer.lr, lr)
class LRSchedulerPerEpoch(Callback):
def __init__(self, d_model, warmup=4000, num_per_epoch=1000):
self.basic = d_model**-0.5
self.warm = warmup**-1.5
self.num_per_epoch = num_per_epoch
self.step_num = 1
def on_epoch_begin(self, epoch, logs = None):
self.step_num += self.num_per_epoch
lr = self.basic * min(self.step_num**-0.5, self.step_num*self.warm)
K.set_value(self.model.optimizer.lr, lr)
class AddPosEncoding:
def __call__(self, x):
_, max_len, d_emb = K.int_shape(x)
pos = GetPosEncodingMatrix(max_len, d_emb)
x = Lambda(lambda x:x+pos)(x)
return x
add_layer = Lambda(lambda x:x[0]+x[1], output_shape=lambda x:x[0])
# use this because keras may get wrong shapes with Add()([])
class QANet_ConvBlock:
def __init__(self, dim, n_conv=2, kernel_size=7, dropout=0.1):
self.convs = [SeparableConv1D(dim, kernel_size, activation='relu', padding='same') for _ in range(n_conv)]
self.norm = LayerNormalization()
self.dropout = Dropout(dropout)
def __call__(self, x):
for i in range(len(self.convs)):
z = self.norm(x)
if i % 2 == 0: z = self.dropout(z)
z = self.convs[i](z)
x = add_layer([x, z])
return x
class QANet_Block:
def __init__(self, dim, n_head, n_conv, kernel_size, dropout=0.1, add_pos=True):
self.conv = QANet_ConvBlock(dim, n_conv=n_conv, kernel_size=kernel_size, dropout=dropout)
self.self_att = MultiHeadAttention(n_head=n_head, d_model=dim,
d_k=dim//n_head, d_v=dim//n_head,
dropout=dropout, use_norm=False)
self.feed_forward = PositionwiseFeedForward(dim, dim, dropout=dropout)
self.norm = LayerNormalization()
self.add_pos = add_pos
def __call__(self, x, mask):
if self.add_pos: x = AddPosEncoding()(x)
x = self.conv(x)
z = self.norm(x)
z, _ = self.self_att(z, z, z, mask)
x = add_layer([x, z])
z = self.norm(x)
z = self.feed_forward(z)
x = add_layer([x, z])
return x
class QANet_Encoder:
def __init__(self, dim=128, n_head=8, n_conv=2, n_block=1, kernel_size=7, dropout=0.1, add_pos=True):
self.dim = dim
self.n_block = n_block
self.conv_first = SeparableConv1D(dim, 1, padding='same')
self.enc_block = QANet_Block(dim, n_head=n_head, n_conv=n_conv, kernel_size=kernel_size,
dropout=dropout, add_pos=add_pos)
def __call__(self, x, mask):
if K.int_shape(x)[-1] != self.dim:
x = self.conv_first(x)
for i in range(self.n_block):
x = self.enc_block(x, mask)
return x
if __name__ == '__main__':
print('done')