forked from Nealcly/templateNER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·52 lines (41 loc) · 1.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import pandas as pd
import logging
from seq2seq_model import Seq2SeqModel
logging.basicConfig(level=logging.INFO)
transformers_logger = logging.getLogger("transformers")
transformers_logger.setLevel(logging.WARNING)
train_data = pd.read_csv("./conll2003/train.csv", sep=',').values.tolist()
train_df = pd.DataFrame(train_data, columns=["input_text", "target_text"])
eval_data = pd.read_csv("./conll2003/dev.csv", sep=',').values.tolist()
eval_df = pd.DataFrame(eval_data, columns=["input_text", "target_text"])
model_args = {
"reprocess_input_data": True,
"overwrite_output_dir": True,
"max_seq_length": 50,
"train_batch_size": 100,
"num_train_epochs": 20,
"save_eval_checkpoints": False,
"save_model_every_epoch": False,
"evaluate_during_training": True,
"evaluate_generated_text": True,
"evaluate_during_training_verbose": True,
"use_multiprocessing": False,
"max_length": 25,
"manual_seed": 4,
"save_steps": 11898,
"gradient_accumulation_steps": 1,
"output_dir": "./exp/template",
}
# Initialize model
model = Seq2SeqModel(
encoder_decoder_type="bart",
encoder_decoder_name="facebook/bart-large",
args=model_args,
# use_cuda=False,
)
# Train the model
model.train_model(train_df, eval_data=eval_df)
# Evaluate the model
results = model.eval_model(eval_df)
# Use the model for prediction
print(model.predict(["Japan began the defence of their Asian Cup title with a lucky 2-1 win against Syria in a Group C championship match on Friday."]))