-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathoption.py
36 lines (30 loc) · 1.72 KB
/
option.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import argparse
def get_args():
parser = argparse.ArgumentParser()
# model architecture & checkpoint
parser.add_argument('--model', default='ResNet18', choices=('ResNet18', 'ResNet50'),
help='optimizer to use (ResNet18 | ResNet50)')
parser.add_argument('--norm', default='batchnorm')
parser.add_argument('--num_classes', type=int, default=6)
parser.add_argument('--pretrained', type=int, default=1)
parser.add_argument('--pretrained_path', type=str, default=None)
parser.add_argument('--checkpoint_dir', type=str, default='checkpoint')
parser.add_argument('--checkpoint_name', type=str, default='')
# data loading
parser.add_argument('--num_workers', type=int, default=16)
parser.add_argument('--seed', type=int, default=42, help='random seed')
# training hyper parameters
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--epochs', type=int, default=120)
parser.add_argument('--log_interval', type=int, default=20)
parser.add_argument('--evaluate', action='store_true', default=False)
parser.add_argument('--amp', action='store_true', default=False)
# optimzier & learning rate scheduler
parser.add_argument('--learning_rate', type=float, default=0.0001)
parser.add_argument('--weight_decay', type=float, default=0.0001)
parser.add_argument('--optimizer', default='ADAM', choices=('SGD', 'ADAM'),
help='optimizer to use (SGD | ADAM)')
parser.add_argument('--decay_type', default='cosine_warmup', choices=('step', 'step_warmup', 'cosine_warmup'),
help='optimizer to use (step | step_warmup | cosine_warmup)')
args = parser.parse_args()
return args