-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation.py
206 lines (163 loc) · 10.7 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import numpy as np
import pandas
import sklearn.metrics
from skweak import utils
from spacy.tokens import Span # type: ignore
def evaluate(docs, all_labels, target_sources):
"""Extracts the evaluation results for one or more sources, and add them to a pandas DataFrame."""
if isinstance(target_sources, str):
target_sources = [target_sources]
records = []
for source in target_sources:
results = get_results(docs, all_labels, source)
labels = set(results["label_weights"].keys())
for name in sorted(labels) + ["micro", "weighted", "macro"]:
if name in results:
record = results[name]
record["label"] = name
record["model"] = source
if name in labels:
record["proportion"] = results["label_weights"][name]
records.append(record)
df = pandas.DataFrame.from_records(records)
df["proportion"] = df.proportion.apply(lambda x: "%.1f %%"%(x*100) if not np.isnan(x) else "")
df["tok_cee"] = df.tok_cee.apply(lambda x: str(x) if not np.isnan(x) else "")
df["tok_acc"] = df.tok_acc.apply(lambda x: str(x) if not np.isnan(x) else "")
df["coverage"] = df.coverage.apply(lambda x: str(x) if not np.isnan(x) else "")
df = df.set_index(["label", "proportion", "model"]).sort_index()
df = df[["tok_precision", "tok_recall", "tok_f1", "tok_cee", "tok_acc", "coverage",
"ent_precision", "ent_recall", "ent_f1"]]
return df
def get_results(docs, all_labels, target_source, conf_threshold=0.5):
"""Computes the usual metrics (precision, recall, F1, cross-entropy) on the dataset, using the spacy entities
in each document as gold standard, and the annotations of a given source as the predicted values"""
all_numbers = compute_raw_numbers(docs, all_labels, target_source, conf_threshold)
tok_tp, tok_fp, tok_fn, tok_logloss, tok_nb, tok_tp_tn, ent_tp, ent_fp, ent_fn, ent_support, tok_support = all_numbers
# We then compute the metrics themselves
results = {}
for label in ent_support:
ent_pred = ent_tp[label]+ent_fp[label] + 1E-10
ent_true = ent_tp[label]+ent_fn[label] + 1E-10
tok_pred = tok_tp[label]+tok_fp[label] + 1E-10
tok_true = tok_tp[label]+tok_fn[label] + 1E-10
results[label] = {}
results[label]["ent_precision"] = round(ent_tp[label]/ent_pred, 3)
results[label]["ent_recall"] = round(ent_tp[label]/ent_true, 3)
results[label]["tok_precision"] = round(tok_tp[label]/tok_pred, 3)
results[label]["tok_recall"] = round(tok_tp[label]/tok_true, 3)
ent_f1_numerator = (results[label]["ent_precision"] * results[label]["ent_recall"])
ent_f1_denominator = (results[label]["ent_precision"] +results[label]["ent_recall"]) + 1E-10
results[label]["ent_f1"] = 2*round(ent_f1_numerator / ent_f1_denominator, 3)
tok_f1_numerator = (results[label]["tok_precision"] * results[label]["tok_recall"])
tok_f1_denominator = (results[label]["tok_precision"] +results[label]["tok_recall"]) + 1E-10
results[label]["tok_f1"] = 2*round(tok_f1_numerator / tok_f1_denominator, 3)
results["macro"] = {"ent_precision":round(np.mean([results[l]["ent_precision"] for l in ent_support]), 3),
"ent_recall":round(np.mean([results[l]["ent_recall"] for l in ent_support]), 3),
"tok_precision":round(np.mean([results[l]["tok_precision"] for l in ent_support]), 3),
"tok_recall":round(np.mean([results[l]["tok_recall"] for l in ent_support]), 3)}
label_weights = {l:ent_support[l]/sum(ent_support.values()) for l in ent_support}
results["label_weights"] = label_weights
results["weighted"] = {"ent_precision":round(np.sum([results[l]["ent_precision"]*label_weights[l]
for l in ent_support]), 3),
"ent_recall":round(np.sum([results[l]["ent_recall"]*label_weights[l]
for l in ent_support]), 3),
"tok_precision":round(np.sum([results[l]["tok_precision"]*label_weights[l]
for l in ent_support]), 3),
"tok_recall":round(np.sum([results[l]["tok_recall"]*label_weights[l]
for l in ent_support]), 3)}
ent_pred = sum([ent_tp[l] for l in ent_support]) + sum([ent_fp[l] for l in ent_support]) + 1E-10
ent_true = sum([ent_tp[l] for l in ent_support]) + sum([ent_fn[l] for l in ent_support]) + 1E-10
tok_pred = sum([tok_tp[l] for l in ent_support]) + sum([tok_fp[l] for l in ent_support]) + 1E-10
tok_true = sum([tok_tp[l] for l in ent_support]) + sum([tok_fn[l] for l in ent_support]) + 1E-10
results["micro"] = {"ent_precision":round(sum([ent_tp[l] for l in ent_support]) / ent_pred, 3),
"ent_recall":round(sum([ent_tp[l] for l in ent_support]) / ent_true, 3),
"tok_precision":round(sum([tok_tp[l] for l in ent_support]) /tok_pred, 3),
"tok_recall":round(sum([tok_tp[l] for l in ent_support]) / tok_true, 3),
"tok_cee":round(tok_logloss/tok_nb, 3),
"tok_acc": round(tok_tp_tn/tok_nb, 3),
"coverage":round((sum(tok_tp.values()) +sum(tok_fp.values())) / sum(tok_support.values()), 3)}
for metric in ["macro", "weighted", "micro"]:
ent_f1_numerator = (results[metric]["ent_precision"] * results[metric]["ent_recall"])
ent_f1_denominator = (results[metric]["ent_precision"] +results[metric]["ent_recall"]) + 1E-10
results[metric]["ent_f1"] = 2*round(ent_f1_numerator / ent_f1_denominator, 3)
tok_f1_numerator = (results[metric]["tok_precision"] * results[metric]["tok_recall"])
tok_f1_denominator = (results[metric]["tok_precision"] +results[metric]["tok_recall"]) + 1E-10
results[metric]["tok_f1"] = 2*round(tok_f1_numerator / tok_f1_denominator, 3)
return results
def compute_raw_numbers(docs, all_labels, target_source, conf_threshold=0.5):
"""Computes the raw metrics (true positives, true negatives, ...) on the dataset, using the spacy entities
in each document as gold standard, and the annotations of a given source as the predicted values"""
# We start by computing the TP, FP and FN values
tok_tp = {}
tok_fp = {}
tok_fn ={}
tok_logloss = 0
tok_nb = 0
tok_tp_tn = 0
ent_tp ={}
ent_fp = {}
ent_fn = {}
ent_support = {}
tok_support = {}
for doc in docs:
if target_source in doc.spans:
spans = utils.get_spans_with_probs(doc, target_source)
else:
spans = []
spans = [span for (span, prob) in spans if prob >= conf_threshold]
for label in all_labels:
true_spans = {(ent.start, ent.end) for ent in doc.ents if ent.label_==label}
pred_spans = {(span.start,span.end) for span in spans if span.label_==label}
ent_tp[label] = ent_tp.get(label,0) + len(true_spans.intersection(pred_spans))
ent_fp[label] = ent_fp.get(label,0) + len(pred_spans - true_spans)
ent_fn[label] = ent_fn.get(label,0) + len(true_spans - pred_spans)
ent_support[label] = ent_support.get(label, 0) + len(true_spans)
true_tok_labels = {i for start,end in true_spans for i in range(start, end)}
pred_tok_labels = {i for start,end in pred_spans for i in range(start, end)}
tok_tp[label] = tok_tp.get(label, 0) + len(true_tok_labels.intersection(pred_tok_labels))
tok_fp[label] = tok_fp.get(label, 0) + len(pred_tok_labels - true_tok_labels)
tok_fn[label] = tok_fn.get(label,0) + len(true_tok_labels - pred_tok_labels)
tok_support[label] = tok_support.get(label, 0) + len(true_tok_labels)
gold_probs, pred_probs = _get_probs(doc, all_labels, target_source)
tok_logloss += sklearn.metrics.log_loss(gold_probs, pred_probs, normalize=False)
tok_tp_tn += sum(gold_probs.argmax(axis=1) == pred_probs.argmax(axis=1))
tok_nb += len(doc)
return (tok_tp, tok_fp, tok_fn, tok_logloss, tok_nb, tok_tp_tn, ent_tp,
ent_fp, ent_fn, ent_support, tok_support)
def _get_probs(doc, all_labels, target_source):
"""Retrieves the gold and predicted probabilities (as matrices)"""
out_label_indices = {"O":0}
for label in all_labels:
for prefix in "BI":
out_label_indices["%s-%s" % (prefix, label)] = len(out_label_indices)
gold_probs = np.zeros((len(doc), len(out_label_indices)), dtype=np.int16)
for ent in doc.ents:
gold_probs[ent.start, out_label_indices.get("B-%s" % ent.label_, 0)] = 1
for i in range(ent.start+1, ent.end):
gold_probs[i, out_label_indices.get("I-%s" % ent.label_, 0)] = 1
pred_probs = np.zeros(gold_probs.shape)
if target_source in doc.spans and "probs" in doc.spans[target_source].attrs:
for tok_pos, labels in doc.spans[target_source].attrs["probs"].items():
for label, label_prob in labels.items():
pred_probs[tok_pos, out_label_indices[label]] = label_prob
pred_probs[:,0] = np.clip(1-pred_probs[:,1:].sum(axis=1), 0.0, 1.0)
else:
vector = utils.spans_to_array(doc, all_labels, [target_source])[:,0]
pred_probs[np.arange(vector.size), vector] = True
return gold_probs, pred_probs
def show_errors(docs, all_labels, target_source, conf_threshold=0.5):
"""Utilities to display the errors/omissions of a given source"""
for i, doc in enumerate(docs):
spans = utils.get_spans_with_probs(doc, target_source)
print("Doc %i:"%i, doc)
true_spans = {(ent.start, ent.end):ent.label_ for ent in doc.ents}
pred_spans = {(span.start,span.end):span.label_ for span, prob in spans if prob >=conf_threshold}
for start,end in true_spans:
if (start,end) not in pred_spans:
print("Not found: %s [%i:%i] -> %s"%(doc[start:end], start, end, true_spans[(start,end)]))
elif true_spans[(start,end)]!=pred_spans[(start,end)]:
print("Wrong label: %s [%i:%i] -> %s but predicted as %s"%(doc[start:end], start, end,
true_spans[(start,end)], pred_spans[(start,end)]))
for start,end in pred_spans:
if (start,end) not in true_spans:
print("Spurious: %s [%i:%i] -> %s"%(doc[start:end], start, end, pred_spans[(start,end)]))