forked from CGCL-codes/naturalcc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path10fold.py
206 lines (181 loc) · 8.24 KB
/
10fold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import pickle
import random
from collections import OrderedDict
import numpy as np
import pandas as pd
import torch
from sklearn.model_selection import StratifiedKFold
from torch.utils.data import DataLoader
from tqdm import tqdm
from dataset.opencl import (
LANGUAGES,
DATASET_DIR,
)
from ncc.criterions.mapping import DeepTuneLoss
from ncc.data import (
indexed_dataset,
)
from ncc.data.dictionary import Dictionary
from ncc.data.mapping.language_pair_dataset import (
LanguagePairDataset,
collate,
)
from ncc.data.tools import data_utils
from ncc.data.wrappers.truncate_dataset import TruncateDataset
from ncc.eval.mapping import mapping_metrics
from ncc.models.mapping.deeptune import DeepTuneEncoder
from ncc.modules.common.initializers import xavier_normal
from ncc.utils.utils import move_to_cuda
from dataset.opencl import INST2VEC_EMBEDDING
def init(model):
for p in model.parameters():
xavier_normal(p)
def load_mmap_dataset(dataset):
return indexed_dataset.MMapIndexedDataset(dataset)
def cli_main():
SEED = 204
BATCH_SIZE = 64
EPOCH = 50
from ncc.utils.set_seed import set_seed
set_seed(SEED)
use_cuda = torch.cuda.is_available()
if use_cuda:
device = os.environ.get('CUDA_VISIBALE_DEVICES', [0])[0] # get first device as default
torch.cuda.set_device(f'cuda:{device}')
criterion = DeepTuneLoss(task=None, sentence_avg=-1)
if use_cuda:
criterion = criterion.cuda()
data = []
for i, platform in enumerate(LANGUAGES):
DATA_DIR = os.path.join(DATASET_DIR, f'mapping/{platform}/data-mmap')
def get_attr(attr):
oracle_file = os.path.join(DATA_DIR, f'train.{attr}')
with open(oracle_file, 'rb') as reader:
out = pickle.load(reader)
return np.asarray(out)
platform_name = mapping_metrics.platform2str(platform)
benchmarks = get_attr('benchmark')
runtime_cpus = get_attr('runtime_cpu')
runtime_gpus = get_attr('runtime_gpu')
#################### load dataset ####################
src_dataset = load_mmap_dataset(os.path.join(DATA_DIR, f'train.xfg'))
MAX_SOURCE_POSITIONS = int(src_dataset.sizes.max())
tgt_dataset = load_mmap_dataset(os.path.join(DATA_DIR, f'train.oracle'))
src_dict = Dictionary.load(os.path.join(DATA_DIR, 'xfg.dict.jsonl'))
src_aux = OrderedDict()
src_aux['transfer'] = get_attr('transfer')
src_aux['wgsize'] = get_attr('wgsize')
tgt_dict = Dictionary.load(os.path.join(DATA_DIR, 'oracle.dict.jsonl'))
dataset = LanguagePairDataset(
src=src_dataset, src_sizes=src_dataset.sizes, src_dict=src_dict, src_aux=src_aux,
tgt=tgt_dataset, tgt_sizes=tgt_dataset.sizes, tgt_dict=tgt_dict, tgt_aux=None,
left_pad_source=True, pad=src_dict.unk(), max_source_positions=MAX_SOURCE_POSITIONS,
)
#################### load dataset ####################
# build toy dataset for 10-fold cross validation
tgt_data = [tgt_dataset[idx].item() for idx in range(len(tgt_dataset))]
src_data = [None] * len(tgt_data)
# 10-fold cross-validation
kf = StratifiedKFold(n_splits=10, shuffle=True, random_state=SEED)
for j, (train_ids, test_ids) in enumerate(kf.split(src_data, tgt_data)):
# deeptune model
with open(INST2VEC_EMBEDDING, 'rb') as reader:
embedding = pickle.load(reader)
vocab_size, embedding_dim = embedding.shape
# l2 norm
embedding = torch.from_numpy(embedding)
embedding = embedding / torch.norm(embedding, dim=-1, keepdim=True)
model = DeepTuneEncoder(dictionary=src_dict, embed_dim=embedding_dim,
rnn_cell='lstm', rnn_hidden_dim=embedding_dim, rnn_dropout=0., rnn_num_layers=2,
aux_dim=2, inner_dim=32, out_dim=2)
# unk
model.embed.weight.data[0, :].copy_(embedding.data[-1, :])
model.embed.weight.data[1:, :].copy_(embedding.data[:-1, :])
if use_cuda:
model = model.cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
for epoch_i in range(EPOCH):
if dataset.shuffle:
random.shuffle(train_ids)
train_batch_sampler = data_utils.batch_by_size(
train_ids,
num_tokens_fn=lambda *args: -1,
max_sentences=BATCH_SIZE,
)
train_dataloader = DataLoader(dataset=dataset,
batch_sampler=train_batch_sampler,
collate_fn=collate, )
with tqdm(total=len(train_dataloader)) as t:
for sample_i, sample in enumerate(train_dataloader, start=1):
t.set_description(f'Epoch {epoch_i + 1}/{EPOCH} Batch {sample_i}/{len(train_dataloader)}')
if use_cuda:
sample = move_to_cuda(sample)
loss, sample_size, logging_output = criterion(model, sample)
loss.div_(sample_size)
t.set_postfix(loss=loss.item())
t.update()
optimizer.zero_grad()
loss.backward()
optimizer.step()
# test accuracy
test_batch_sampler = data_utils.batch_by_size(
test_ids,
num_tokens_fn=lambda *args: -1,
max_sentences=BATCH_SIZE,
)
test_dataloader = DataLoader(dataset=dataset,
batch_sampler=test_batch_sampler,
collate_fn=collate, )
predictions, ground_truth = [], []
for sample in test_dataloader:
if use_cuda:
sample = move_to_cuda(sample)
hybrid_out, _ = model(**sample['net_input'])
predictions.append(hybrid_out.max(dim=-1)[1])
ground_truth.append(sample['target'].view(-1))
predictions = torch.cat(predictions)
ground_truth = torch.cat(ground_truth)
accuracy = (predictions == ground_truth).tolist()
# runtimes of baseline mapping (CPU on AMD, GPU on NVIDIA)
gt_runtimes = (runtime_cpus if platform == "amd" else runtime_gpus)[test_ids]
pred_runtimes = [
(runtime_cpus if pred == 0 else runtime_gpus)[idx]
for idx, pred in zip(test_ids, predictions)
]
speedup = gt_runtimes / pred_runtimes
# record results
for benchmark_, o_, p_, accuracy_, p_speedup_ in \
zip(benchmarks[test_ids], ground_truth, predictions, accuracy, speedup):
data.append({
"Model": model.__class__.__name__,
"Platform": platform_name,
'Benchmark': mapping_metrics.escape_benchmark_name(benchmark_),
'Benchmark Suite': mapping_metrics.escape_suite_name(benchmark_),
"Oracle Mapping": o_,
"Predicted Mapping": p_,
"Accuracy": accuracy_,
"Speedup": p_speedup_,
})
del model, optimizer
performance = pd.DataFrame(
data, index=range(1, len(data) + 1), columns=[
"Model",
"Platform",
"Benchmark",
"Benchmark Suite",
"Oracle Mapping",
"Predicted Mapping",
"Accuracy",
"Speedup"
])
benchmark_out = performance.groupby(['Platform', 'Benchmark Suite'])[['Platform', 'Accuracy', 'Speedup']].mean()
benchmark_out['Accuracy'] = round(benchmark_out['Accuracy'] * 100, 2)
benchmark_out['Speedup'] = round(benchmark_out['Speedup'], 2)
print(benchmark_out)
out = performance.groupby(['Platform'])[['Platform', 'Accuracy', 'Speedup']].mean()
out['Accuracy'] = round(out['Accuracy'] * 100, 2)
out['Speedup'] = round(out['Speedup'], 2)
print(out)
if __name__ == '__main__':
cli_main()