-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathnpnn.py
134 lines (95 loc) · 3.66 KB
/
npnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from datetime import datetime
import numpy as np
from sklearn import preprocessing
from sklearn.decomposition import PCA
import torch
import torch.utils.data
import util
torch.backends.cudnn.benchmark = True
def coeff(x, k, beta):
aa = bb = torch.sum(x * x, dim=1, keepdim=True)
ab = torch.mm(x, x.t())
d = aa + bb.t() - 2 * ab
c = torch.exp(-d / beta)
s, _ = d.sort()
c = c * (d < s[:, k+1].clone().view(-1, 1)).type_as(d) * (1 - torch.eye(d.size(0))).cuda()
return c
class Metric(object):
def __init__(self):
self.sum = 0.
self.count = 0
def update(self, loss, count):
self.sum += loss * count
self.count += count
def get(self):
return self.sum / self.count
class MLP(torch.nn.Module):
def __init__(self, i, h, o):
super(MLP, self).__init__()
self.fc1 = torch.nn.Linear(i, h)
self.act1 = torch.nn.ReLU(True)
self.fc2 = torch.nn.Linear(h, o)
def forward(self, x):
x = self.act1(self.fc1(x))
x = self.fc2(x)
return x
class NPNN(object):
def __init__(self, i, h, o, A):
self.model = MLP(i, h, o).cuda()
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=0.001, weight_decay=0.0005)
self.A = torch.nn.Parameter(A)
def train(self, train_loader):
self.model.train()
me = Metric()
for data, _ in train_loader:
# k=20, beta=1
data = data.cuda()
M = torch.eye(data.size(0)).cuda() - coeff(data, 20, 1)
x = torch.autograd.Variable(torch.mm(M, data))
o = self.model(x)
loss = torch.mean(torch.pow(x - torch.mm(o, self.A.t()), 2))
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
try:
U, _, V = torch.svd(torch.mm(x.data.t(), o.data))
except:
continue
self.A.data[:] = torch.mm(U, V.t())
me.update(loss.data.cpu().numpy()[0], data.size(0))
return me.get()
def predict(self, data_loader):
self.model.eval()
def _predict(data):
x = torch.autograd.Variable(data[0].cuda())
o = self.model(x)
return o.data.cpu().numpy()
return np.vstack(list(map(_predict, data_loader)))
def get_data():
train_data, _ = util.read_data(error=0, is_train=True)
test_data = np.vstack(list(map(lambda x: util.read_data(x, False)[0], range(22))))
scaler = preprocessing.StandardScaler().fit(train_data)
train_data = scaler.transform(train_data)
test_data = scaler.transform(test_data)
return train_data, test_data
def get_loader(train_data, test_data):
train_loader = torch.utils.data.DataLoader(
torch.utils.data.TensorDataset(torch.from_numpy(train_data), torch.ones(train_data.shape[0])),
batch_size=500, shuffle=True)
test_loader = torch.utils.data.DataLoader(
torch.utils.data.TensorDataset(torch.from_numpy(test_data), torch.zeros(test_data.shape[0])),
batch_size=128, shuffle=False)
return train_loader, test_loader
def main():
train_data, test_data = get_data()
train_loader, test_loader = get_loader(train_data, test_data)
pca = PCA(27).fit(train_data)
A = torch.from_numpy(pca.components_.T).cuda()
npnn = NPNN(52, 27, 27, A)
for i in range(1000):
loss = npnn.train(train_loader)
if i % 10 == 0:
print('{} Epoch[{}] loss = {:0.3f}'.format(datetime.now(), i, loss))
pred = npnn.predict(test_loader)
if __name__ == '__main__':
main()