-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdatasets.py
325 lines (288 loc) · 13 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import torch
import cv2
import numpy as np
import os
import glob as glob
import random
from xml.etree import ElementTree as et
from torch.utils.data import Dataset, DataLoader
from utils.general import visualize_mosaic_images
from utils.transforms import (
get_train_transform, get_valid_transform,
get_train_aug
)
# the dataset class
class CustomDataset(Dataset):
def __init__(
self, images_path, labels_path,
width, height, classes, transforms=None,
use_train_aug=False,
train=False, mosaic=False
):
self.transforms = transforms
self.use_train_aug = use_train_aug
self.images_path = images_path
self.labels_path = labels_path
self.height = height
self.width = width
self.classes = classes
self.train = train
self.mosaic = mosaic
self.image_file_types = ['*.jpg', '*.jpeg', '*.png', '*.ppm']
self.all_image_paths = []
# get all the image paths in sorted order
for file_type in self.image_file_types:
self.all_image_paths.extend(glob.glob(os.path.join(self.images_path, file_type)))
self.all_annot_paths = glob.glob(os.path.join(self.labels_path, '*.xml'))
self.all_images = [image_path.split(os.path.sep)[-1] for image_path in self.all_image_paths]
self.all_images = sorted(self.all_images)
# Remove all annotations and images when no object is present.
self.read_and_clean()
def read_and_clean(self):
# Discard any images and labels when the XML
# file does not contain any object.
for annot_path in self.all_annot_paths:
tree = et.parse(annot_path)
root = tree.getroot()
object_present = False
for member in root.findall('object'):
if member.find('bndbox'):
object_present = True
if object_present == False:
image_name = annot_path.split(os.path.sep)[-1].split('.xml')[0]
image_root = self.all_image_paths[0].split(os.path.sep)[:-1]
# remove_image = f"{'/'.join(image_root)}/{image_name}.jpg"
remove_image = os.path.join(os.sep.join(image_root), image_name+'.jpg')
print(f"Removing {annot_path} and corresponding {remove_image}")
self.all_annot_paths.remove(annot_path)
self.all_image_paths.remove(remove_image)
# Discard any image file when no annotation file
# is not found for the image.
for image_name in self.all_images:
possible_xml_name = os.path.join(self.labels_path, image_name.split('.jpg')[0]+'.xml')
if possible_xml_name not in self.all_annot_paths:
print(f"{possible_xml_name} not found...")
print(f"Removing {image_name} image")
# items = [item for item in items if item != element]
self.all_images = [image_instance for image_instance in self.all_images if image_instance != image_name]
# self.all_images.remove(image_name)
# for image_path in self.all_image_paths:
# image_name = image_path.split(os.path.sep)[-1].split('.jpg')[0]
# possible_xml_name = f"{self.labels_path}/{image_name.split('.jpg')[0]}.xml"
# if possible_xml_name not in self.all_annot_paths:
# print(f"{possible_xml_name} not found...")
# print(f"Removing {image_name} image")
# self.all_image_paths.remove(image_path)
def load_image_and_labels(self, index):
image_name = self.all_images[index]
image_path = os.path.join(self.images_path, image_name)
# Read the image.
image = cv2.imread(image_path)
# Convert BGR to RGB color format.
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB).astype(np.float32)
image_resized = cv2.resize(image, (self.width, self.height))
image_resized /= 255.0
# Capture the corresponding XML file for getting the annotations.
annot_filename = image_name[:-4] + '.xml'
annot_file_path = os.path.join(self.labels_path, annot_filename)
boxes = []
orig_boxes = []
labels = []
tree = et.parse(annot_file_path)
root = tree.getroot()
# Get the height and width of the image.
image_width = image.shape[1]
image_height = image.shape[0]
# Box coordinates for xml files are extracted and corrected for image size given.
for member in root.findall('object'):
# Map the current object name to `classes` list to get
# the label index and append to `labels` list.
labels.append(self.classes.index(member.find('name').text))
# xmin = left corner x-coordinates
xmin = int(member.find('bndbox').find('xmin').text)
# xmax = right corner x-coordinates
xmax = int(member.find('bndbox').find('xmax').text)
# ymin = left corner y-coordinates
ymin = int(member.find('bndbox').find('ymin').text)
# ymax = right corner y-coordinates
ymax = int(member.find('bndbox').find('ymax').text)
ymax, xmax = self.check_image_and_annotation(
xmax, ymax, image_width, image_height
)
orig_boxes.append([xmin, ymin, xmax, ymax])
# Resize the bounding boxes according to the
# desired `width`, `height`.
xmin_final = (xmin/image_width)*self.width
xmax_final = (xmax/image_width)*self.width
ymin_final = (ymin/image_height)*self.height
ymax_final = (ymax/image_height)*self.height
boxes.append([xmin_final, ymin_final, xmax_final, ymax_final])
# Bounding box to tensor.
boxes = torch.as_tensor(boxes, dtype=torch.float32)
# Area of the bounding boxes.
area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])
# No crowd instances.
iscrowd = torch.zeros((boxes.shape[0],), dtype=torch.int64)
# Labels to tensor.
labels = torch.as_tensor(labels, dtype=torch.int64)
return image, image_resized, orig_boxes, \
boxes, labels, area, iscrowd, (image_width, image_height)
def check_image_and_annotation(self, xmax, ymax, width, height):
"""
Check that all x_max and y_max are not more than the image
width or height.
"""
if ymax > height:
ymax = height
if xmax > width:
xmax = width
return ymax, xmax
def load_cutmix_image_and_boxes(self, index, resize_factor=512):
"""
Adapted from: https://www.kaggle.com/shonenkov/oof-evaluation-mixup-efficientdet
"""
image, _, _, _, _, _, _, _ = self.load_image_and_labels(index=index)
orig_image = image.copy()
# Resize the image according to the `confg.py` resize.
image = cv2.resize(image, resize_factor)
h, w, c = image.shape
s = h // 2
xc, yc = [int(random.uniform(h * 0.25, w * 0.75)) for _ in range(2)] # center x, y
indexes = [index] + [random.randint(0, len(self.all_images) - 1) for _ in range(3)]
# Create empty image with the above resized image.
result_image = np.full((h, w, 3), 1, dtype=np.float32)
result_boxes = []
result_classes = []
for i, index in enumerate(indexes):
image, image_resized, orig_boxes, boxes, \
labels, area, iscrowd, dims = self.load_image_and_labels(
index=index
)
# Resize the current image according to the above resize,
# else `result_image[y1a:y2a, x1a:x2a] = image[y1b:y2b, x1b:x2b]`
# will give error when image sizes are different.
image = cv2.resize(image, resize_factor)
if i == 0:
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
elif i == 1: # top right
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
elif i == 2: # bottom left
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, max(xc, w), min(y2a - y1a, h)
elif i == 3: # bottom right
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
result_image[y1a:y2a, x1a:x2a] = image[y1b:y2b, x1b:x2b]
padw = x1a - x1b
padh = y1a - y1b
boxes[:, 0] += padw
boxes[:, 1] += padh
boxes[:, 2] += padw
boxes[:, 3] += padh
result_boxes.append(boxes)
for class_name in labels:
result_classes.append(class_name)
final_classes = []
result_boxes = np.concatenate(result_boxes, 0)
np.clip(result_boxes[:, 0:], 0, 2 * s, out=result_boxes[:, 0:])
result_boxes = result_boxes.astype(np.int32)
for idx in range(len(result_boxes)):
if ((result_boxes[idx,2]-result_boxes[idx,0])*(result_boxes[idx,3]-result_boxes[idx,1])) > 0:
final_classes.append(result_classes[idx])
result_boxes = result_boxes[
np.where((result_boxes[:,2]-result_boxes[:,0])*(result_boxes[:,3]-result_boxes[:,1]) > 0)
]
return orig_image, result_image/255., torch.tensor(result_boxes), \
torch.tensor(np.array(final_classes)), area, iscrowd, dims
def __getitem__(self, idx):
# Capture the image name and the full image path.
if not self.mosaic:
image, image_resized, orig_boxes, boxes, \
labels, area, iscrowd, dims = self.load_image_and_labels(
index=idx
)
if self.train and self.mosaic:
while True:
image, image_resized, boxes, labels, \
area, iscrowd, dims = self.load_cutmix_image_and_boxes(
idx, resize_factor=(self.height, self.width)
)
if len(boxes) > 0:
break
# visualize_mosaic_images(boxes, labels, image_resized, self.classes)
# Prepare the final `target` dictionary.
target = {}
target["boxes"] = boxes
target["labels"] = labels
target["area"] = area
target["iscrowd"] = iscrowd
image_id = torch.tensor([idx])
target["image_id"] = image_id
if self.use_train_aug: # Use train augmentation if argument is passed.
train_aug = get_train_aug()
sample = train_aug(image=image_resized,
bboxes=target['boxes'],
labels=labels)
image_resized = sample['image']
target['boxes'] = torch.Tensor(sample['bboxes'])
else:
sample = self.transforms(image=image_resized,
bboxes=target['boxes'],
labels=labels)
image_resized = sample['image']
target['boxes'] = torch.Tensor(sample['bboxes'])
return image_resized, target
def __len__(self):
return len(self.all_images)
def collate_fn(batch):
"""
To handle the data loading as different images may have different number
of objects and to handle varying size tensors as well.
"""
return tuple(zip(*batch))
# Prepare the final datasets and data loaders.
def create_train_dataset(
train_dir_images, train_dir_labels,
resize_width, resize_height, classes,
use_train_aug=False,
mosaic=True
):
train_dataset = CustomDataset(
train_dir_images, train_dir_labels,
resize_width, resize_height, classes,
get_train_transform(),
use_train_aug=use_train_aug,
train=True, mosaic=mosaic
)
return train_dataset
def create_valid_dataset(
valid_dir_images, valid_dir_labels,
resize_width, resize_height, classes
):
valid_dataset = CustomDataset(
valid_dir_images, valid_dir_labels,
resize_width, resize_height, classes,
get_valid_transform(),
train=False
)
return valid_dataset
def create_train_loader(train_dataset, batch_size, num_workers=0):
train_loader = DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
collate_fn=collate_fn
)
return train_loader
def create_valid_loader(valid_dataset, batch_size, num_workers=0):
valid_loader = DataLoader(
valid_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
collate_fn=collate_fn
)
return valid_loader