forked from chineseocr/chineseocr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdarknet_detect.py
61 lines (56 loc) · 1.72 KB
/
darknet_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import os
import sys, os
pwd = os.getcwd()
import numpy as np
from PIL import Image
from config import yoloCfg,yoloWeights,yoloData,yoloData,darknetRoot
os.chdir(darknetRoot)
sys.path.append('python')
import darknet as dn
def array_to_image(arr):
arr = arr.transpose(2,0,1)
c = arr.shape[0]
h = arr.shape[1]
w = arr.shape[2]
arr = (arr/255.0).flatten()
data = dn.c_array(dn.c_float, arr)
im = dn.IMAGE(w,h,c,data)
return im
def detect_np(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45):
im = array_to_image(image)
num = dn.c_int(0)
pnum = dn.pointer(num)
dn.predict_image(net, im)
dets = dn.get_network_boxes(net, im.w, im.h, thresh, hier_thresh, None, 0, pnum)
num = pnum[0]
if (nms): dn.do_nms_obj(dets, num, meta.classes, nms)
res = []
for j in range(num):
for i in range(meta.classes):
if dets[j].prob[i] > 0:
b = dets[j].bbox
res.append((meta.names[i], dets[j].prob[i], (b.x, b.y, b.w, b.h)))
res = sorted(res, key=lambda x: -x[1])
dn.free_detections(dets, num)
return res
import cv2
def to_box(r):
boxes = []
scores = []
for rc in r:
if rc[0]==b'text':
cx,cy,w,h = rc[-1]
scores.append(rc[1])
prob = rc[1]
xmin,ymin,xmax,ymax = cx-w/2,cy-h/2,cx+w/2,cy+h/2
boxes.append([int(xmin),int(ymin),int(xmax),int(ymax)])
return boxes,scores
import pdb
#dn.set_gpu(0)
net = dn.load_net(yoloCfg.encode('utf-8'), yoloWeights.encode('utf-8'), 0)
meta = dn.load_meta(yoloData.encode('utf-8'))
os.chdir(pwd)
def text_detect(img):
r = detect_np(net, meta, img,thresh=0.1, hier_thresh=0.5, nms=0.8)
bboxes = to_box(r)
return bboxes