diff --git a/design/HU3/HU3.ghx b/design/HU3/HU3.ghx
index 5ef76e8..00fecd1 100644
--- a/design/HU3/HU3.ghx
+++ b/design/HU3/HU3.ghx
@@ -49,10 +49,10 @@
-
- 246
- 136
+ -6238
+ -1185
- - 0.12090558
+ - 0.7225003
@@ -73,7 +73,7 @@
4
58
608
- 90
+ 114
- false
-
@@ -237,9 +237,9 @@
- - 394
+ - 399
-
+
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
@@ -2190,6 +2190,7 @@ Bezier curve evaluator
Bezier curve evaluator
Bezier curve evaluator
Bezier curve evaluator
+Bezier curve evaluator
Bezier curve evaluator
- f7ddb66a-be5e-4573-b97f-0e8ee4ead875
- Graph Mapper
@@ -3559,7 +3560,7 @@ Bezier curve evaluator
- false
- 0
-
- 255;255;38;38
+ 78;255;36;36
@@ -6298,6 +6299,7 @@ Gaussian (normal) distribution
Gaussian (normal) distribution
Gaussian (normal) distribution
Gaussian (normal) distribution
+Gaussian (normal) distribution
Gaussian (normal) distribution
- 81c2930e-100e-4e5f-88d4-9510e1e9aa12
- Graph Mapper
@@ -7339,6 +7341,7 @@ Bezier curve evaluator
Bezier curve evaluator
Bezier curve evaluator
Bezier curve evaluator
+Bezier curve evaluator
Bezier curve evaluator
- 48204827-9fc0-4221-ab07-1aa08fa131fb
- Graph Mapper
@@ -8686,6 +8689,7 @@ Gaussian (normal) distribution
Gaussian (normal) distribution
Gaussian (normal) distribution
Gaussian (normal) distribution
+Gaussian (normal) distribution
Gaussian (normal) distribution
- 69bc1cf8-99f5-4b74-8132-2ef7d374656d
- Graph Mapper
@@ -9222,6 +9226,7 @@ Bezier curve evaluator
Bezier curve evaluator
Bezier curve evaluator
Bezier curve evaluator
+Bezier curve evaluator
Bezier curve evaluator
- c6a74489-abcb-4020-acba-eaf565e54efd
- Graph Mapper
@@ -9546,7 +9551,7 @@ Bezier curve evaluator
- ddba3b08-27c8-4e9d-8584-8f3fec7088b2
- 1
-
- PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0idXRmLTgiIHN0YW5kYWxvbmU9InllcyI/Pg0KPEdhbGFwYWdvcz4NCiAgPCEtLUdQX1NvbHZlciBEdW1wLS0+DQogIDwhLS1DcmVhdGVkIG9uOiAyMDozODozOCwgVGh1cnNkYXksIDE2IEphbnVhcnkgMjAyNS0tPg0KICA8U29sdmVyPjE8L1NvbHZlcj4NCiAgPFRhcmdldD4tSW5maW5pdHk8L1RhcmdldD4NCiAgPFRocmVzaG9sZD5OYU48L1RocmVzaG9sZD4NCiAgPEdBX0luaXRpYWxTaXplPjUwPC9HQV9Jbml0aWFsU2l6ZT4NCiAgPEdBX01pbmltdW1TaXplPjIwPC9HQV9NaW5pbXVtU2l6ZT4NCiAgPEdBX0luaXRpYWxCb29zdD4yPC9HQV9Jbml0aWFsQm9vc3Q+DQogIDxHQV9GcnVpdGxlc3NMaW1pdD41MDwvR0FfRnJ1aXRsZXNzTGltaXQ+DQogIDxHQV9JbmJyZWVkaW5nRmFjdG9yPjc1PC9HQV9JbmJyZWVkaW5nRmFjdG9yPg0KICA8R0FfTWFpbnRhaW5QZXJjZW50YWdlPjU8L0dBX01haW50YWluUGVyY2VudGFnZT4NCiAgPEdBX0NvdXBsaW5nQ291bnQ+MzwvR0FfQ291cGxpbmdDb3VudD4NCiAgPEdBX0NvdXBsaW5nXzA+DQogICAgPGNvdXBsaW5nX2FsZ29yaXRobT4zPC9jb3VwbGluZ19hbGdvcml0aG0+DQogICAgPGNvdXBsaW5nX2JpYXM+MjwvY291cGxpbmdfYmlhcz4NCiAgICA8Y291cGxpbmdfaW5jbHVzaW9uPjEwPC9jb3VwbGluZ19pbmNsdXNpb24+DQogIDwvR0FfQ291cGxpbmdfMD4NCiAgPEdBX0NvdXBsaW5nXzE+DQogICAgPGNvdXBsaW5nX2FsZ29yaXRobT4zPC9jb3VwbGluZ19hbGdvcml0aG0+DQogICAgPGNvdXBsaW5nX2JpYXM+NTwvY291cGxpbmdfYmlhcz4NCiAgICA8Y291cGxpbmdfaW5jbHVzaW9uPjEwPC9jb3VwbGluZ19pbmNsdXNpb24+DQogIDwvR0FfQ291cGxpbmdfMT4NCiAgPEdBX0NvdXBsaW5nXzI+DQogICAgPGNvdXBsaW5nX2FsZ29yaXRobT4xPC9jb3VwbGluZ19hbGdvcml0aG0+DQogICAgPGNvdXBsaW5nX2JpYXM+MTwvY291cGxpbmdfYmlhcz4NCiAgICA8Y291cGxpbmdfaW5jbHVzaW9uPjA8L2NvdXBsaW5nX2luY2x1c2lvbj4NCiAgPC9HQV9Db3VwbGluZ18yPg0KICA8R0FfQ29hbGVzY2VuY2VDb3VudD4zPC9HQV9Db2FsZXNjZW5jZUNvdW50Pg0KICA8R0FfQ29hbGVzY2VuY2VfMD4NCiAgICA8Y29hbGVzY2VuY2VfYWxnb3JpdGhtPjM8L2NvYWxlc2NlbmNlX2FsZ29yaXRobT4NCiAgICA8Y29hbGVzY2VuY2VfcHJlZmVyZW5jZT44MDwvY29hbGVzY2VuY2VfcHJlZmVyZW5jZT4NCiAgPC9HQV9Db2FsZXNjZW5jZV8wPg0KICA8R0FfQ29hbGVzY2VuY2VfMT4NCiAgICA8Y29hbGVzY2VuY2VfYWxnb3JpdGhtPjI8L2NvYWxlc2NlbmNlX2FsZ29yaXRobT4NCiAgICA8Y29hbGVzY2VuY2VfcHJlZmVyZW5jZT41MDwvY29hbGVzY2VuY2VfcHJlZmVyZW5jZT4NCiAgPC9HQV9Db2FsZXNjZW5jZV8xPg0KICA8R0FfQ29hbGVzY2VuY2VfMj4NCiAgICA8Y29hbGVzY2VuY2VfYWxnb3JpdGhtPjE8L2NvYWxlc2NlbmNlX2FsZ29yaXRobT4NCiAgICA8Y29hbGVzY2VuY2VfcHJlZmVyZW5jZT41MDwvY29hbGVzY2VuY2VfcHJlZmVyZW5jZT4NCiAgPC9HQV9Db2FsZXNjZW5jZV8yPg0KICA8R0FfTXV0YXRpb25Db3VudD40PC9HQV9NdXRhdGlvbkNvdW50Pg0KICA8R0FfTXV0YXRpb25fMD4NCiAgICA8bXV0YXRpb25fYWxnb3JpdGhtPjE8L211dGF0aW9uX2FsZ29yaXRobT4NCiAgICA8bXV0YXRpb25fcG9pbnRyYW5nZT4xPC9tdXRhdGlvbl9wb2ludHJhbmdlPg0KICAgIDxtdXRhdGlvbl9mcmVxdWVuY3k+NTwvbXV0YXRpb25fZnJlcXVlbmN5Pg0KICA8L0dBX011dGF0aW9uXzA+DQogIDxHQV9NdXRhdGlvbl8xPg0KICAgIDxtdXRhdGlvbl9hbGdvcml0aG0+MTwvbXV0YXRpb25fYWxnb3JpdGhtPg0KICAgIDxtdXRhdGlvbl9wb2ludHJhbmdlPjEwPC9tdXRhdGlvbl9wb2ludHJhbmdlPg0KICAgIDxtdXRhdGlvbl9mcmVxdWVuY3k+MTU8L211dGF0aW9uX2ZyZXF1ZW5jeT4NCiAgPC9HQV9NdXRhdGlvbl8xPg0KICA8R0FfTXV0YXRpb25fMj4NCiAgICA8bXV0YXRpb25fYWxnb3JpdGhtPjE8L211dGF0aW9uX2FsZ29yaXRobT4NCiAgICA8bXV0YXRpb25fcG9pbnRyYW5nZT4yNTwvbXV0YXRpb25fcG9pbnRyYW5nZT4NCiAgICA8bXV0YXRpb25fZnJlcXVlbmN5PjMwPC9tdXRhdGlvbl9mcmVxdWVuY3k+DQogIDwvR0FfTXV0YXRpb25fMj4NCiAgPEdBX011dGF0aW9uXzM+DQogICAgPG11dGF0aW9uX2FsZ29yaXRobT4xPC9tdXRhdGlvbl9hbGdvcml0aG0+DQogICAgPG11dGF0aW9uX3BvaW50cmFuZ2U+MTAwPC9tdXRhdGlvbl9wb2ludHJhbmdlPg0KICAgIDxtdXRhdGlvbl9mcmVxdWVuY3k+NjA8L211dGF0aW9uX2ZyZXF1ZW5jeT4NCiAgPC9HQV9NdXRhdGlvbl8zPg0KICA8U0FfSW5pdGlhbEVuZXJneT4xMDA8L1NBX0luaXRpYWxFbmVyZ3k+DQogIDxTQV9FbmVyZ3lEZWNheT45NTAwMDA8L1NBX0VuZXJneURlY2F5Pg0KICA8U0FfRHJpZnRSYXRlPjI1PC9TQV9EcmlmdFJhdGU+DQo8L0dhbGFwYWdvcz4=
+ PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0idXRmLTgiIHN0YW5kYWxvbmU9InllcyI/Pg0KPEdhbGFwYWdvcz4NCiAgPCEtLUdQX1NvbHZlciBEdW1wLS0+DQogIDwhLS1DcmVhdGVkIG9uOiAxNjo0NDowMiwgU3VuZGF5LCAxOSBKYW51YXJ5IDIwMjUtLT4NCiAgPFNvbHZlcj4xPC9Tb2x2ZXI+DQogIDxUYXJnZXQ+LUluZmluaXR5PC9UYXJnZXQ+DQogIDxUaHJlc2hvbGQ+TmFOPC9UaHJlc2hvbGQ+DQogIDxHQV9Jbml0aWFsU2l6ZT41MDwvR0FfSW5pdGlhbFNpemU+DQogIDxHQV9NaW5pbXVtU2l6ZT4yMDwvR0FfTWluaW11bVNpemU+DQogIDxHQV9Jbml0aWFsQm9vc3Q+MjwvR0FfSW5pdGlhbEJvb3N0Pg0KICA8R0FfRnJ1aXRsZXNzTGltaXQ+NTA8L0dBX0ZydWl0bGVzc0xpbWl0Pg0KICA8R0FfSW5icmVlZGluZ0ZhY3Rvcj43NTwvR0FfSW5icmVlZGluZ0ZhY3Rvcj4NCiAgPEdBX01haW50YWluUGVyY2VudGFnZT41PC9HQV9NYWludGFpblBlcmNlbnRhZ2U+DQogIDxHQV9Db3VwbGluZ0NvdW50PjM8L0dBX0NvdXBsaW5nQ291bnQ+DQogIDxHQV9Db3VwbGluZ18wPg0KICAgIDxjb3VwbGluZ19hbGdvcml0aG0+MzwvY291cGxpbmdfYWxnb3JpdGhtPg0KICAgIDxjb3VwbGluZ19iaWFzPjI8L2NvdXBsaW5nX2JpYXM+DQogICAgPGNvdXBsaW5nX2luY2x1c2lvbj4xMDwvY291cGxpbmdfaW5jbHVzaW9uPg0KICA8L0dBX0NvdXBsaW5nXzA+DQogIDxHQV9Db3VwbGluZ18xPg0KICAgIDxjb3VwbGluZ19hbGdvcml0aG0+MzwvY291cGxpbmdfYWxnb3JpdGhtPg0KICAgIDxjb3VwbGluZ19iaWFzPjU8L2NvdXBsaW5nX2JpYXM+DQogICAgPGNvdXBsaW5nX2luY2x1c2lvbj4xMDwvY291cGxpbmdfaW5jbHVzaW9uPg0KICA8L0dBX0NvdXBsaW5nXzE+DQogIDxHQV9Db3VwbGluZ18yPg0KICAgIDxjb3VwbGluZ19hbGdvcml0aG0+MTwvY291cGxpbmdfYWxnb3JpdGhtPg0KICAgIDxjb3VwbGluZ19iaWFzPjE8L2NvdXBsaW5nX2JpYXM+DQogICAgPGNvdXBsaW5nX2luY2x1c2lvbj4wPC9jb3VwbGluZ19pbmNsdXNpb24+DQogIDwvR0FfQ291cGxpbmdfMj4NCiAgPEdBX0NvYWxlc2NlbmNlQ291bnQ+MzwvR0FfQ29hbGVzY2VuY2VDb3VudD4NCiAgPEdBX0NvYWxlc2NlbmNlXzA+DQogICAgPGNvYWxlc2NlbmNlX2FsZ29yaXRobT4zPC9jb2FsZXNjZW5jZV9hbGdvcml0aG0+DQogICAgPGNvYWxlc2NlbmNlX3ByZWZlcmVuY2U+ODA8L2NvYWxlc2NlbmNlX3ByZWZlcmVuY2U+DQogIDwvR0FfQ29hbGVzY2VuY2VfMD4NCiAgPEdBX0NvYWxlc2NlbmNlXzE+DQogICAgPGNvYWxlc2NlbmNlX2FsZ29yaXRobT4yPC9jb2FsZXNjZW5jZV9hbGdvcml0aG0+DQogICAgPGNvYWxlc2NlbmNlX3ByZWZlcmVuY2U+NTA8L2NvYWxlc2NlbmNlX3ByZWZlcmVuY2U+DQogIDwvR0FfQ29hbGVzY2VuY2VfMT4NCiAgPEdBX0NvYWxlc2NlbmNlXzI+DQogICAgPGNvYWxlc2NlbmNlX2FsZ29yaXRobT4xPC9jb2FsZXNjZW5jZV9hbGdvcml0aG0+DQogICAgPGNvYWxlc2NlbmNlX3ByZWZlcmVuY2U+NTA8L2NvYWxlc2NlbmNlX3ByZWZlcmVuY2U+DQogIDwvR0FfQ29hbGVzY2VuY2VfMj4NCiAgPEdBX011dGF0aW9uQ291bnQ+NDwvR0FfTXV0YXRpb25Db3VudD4NCiAgPEdBX011dGF0aW9uXzA+DQogICAgPG11dGF0aW9uX2FsZ29yaXRobT4xPC9tdXRhdGlvbl9hbGdvcml0aG0+DQogICAgPG11dGF0aW9uX3BvaW50cmFuZ2U+MTwvbXV0YXRpb25fcG9pbnRyYW5nZT4NCiAgICA8bXV0YXRpb25fZnJlcXVlbmN5PjU8L211dGF0aW9uX2ZyZXF1ZW5jeT4NCiAgPC9HQV9NdXRhdGlvbl8wPg0KICA8R0FfTXV0YXRpb25fMT4NCiAgICA8bXV0YXRpb25fYWxnb3JpdGhtPjE8L211dGF0aW9uX2FsZ29yaXRobT4NCiAgICA8bXV0YXRpb25fcG9pbnRyYW5nZT4xMDwvbXV0YXRpb25fcG9pbnRyYW5nZT4NCiAgICA8bXV0YXRpb25fZnJlcXVlbmN5PjE1PC9tdXRhdGlvbl9mcmVxdWVuY3k+DQogIDwvR0FfTXV0YXRpb25fMT4NCiAgPEdBX011dGF0aW9uXzI+DQogICAgPG11dGF0aW9uX2FsZ29yaXRobT4xPC9tdXRhdGlvbl9hbGdvcml0aG0+DQogICAgPG11dGF0aW9uX3BvaW50cmFuZ2U+MjU8L211dGF0aW9uX3BvaW50cmFuZ2U+DQogICAgPG11dGF0aW9uX2ZyZXF1ZW5jeT4zMDwvbXV0YXRpb25fZnJlcXVlbmN5Pg0KICA8L0dBX011dGF0aW9uXzI+DQogIDxHQV9NdXRhdGlvbl8zPg0KICAgIDxtdXRhdGlvbl9hbGdvcml0aG0+MTwvbXV0YXRpb25fYWxnb3JpdGhtPg0KICAgIDxtdXRhdGlvbl9wb2ludHJhbmdlPjEwMDwvbXV0YXRpb25fcG9pbnRyYW5nZT4NCiAgICA8bXV0YXRpb25fZnJlcXVlbmN5PjYwPC9tdXRhdGlvbl9mcmVxdWVuY3k+DQogIDwvR0FfTXV0YXRpb25fMz4NCiAgPFNBX0luaXRpYWxFbmVyZ3k+MTAwPC9TQV9Jbml0aWFsRW5lcmd5Pg0KICA8U0FfRW5lcmd5RGVjYXk+OTUwMDAwPC9TQV9FbmVyZ3lEZWNheT4NCiAgPFNBX0RyaWZ0UmF0ZT4yNTwvU0FfRHJpZnRSYXRlPg0KPC9HYWxhcGFnb3M+
@@ -10860,13 +10865,13 @@ Bezier curve evaluator
-
- 5324
+ 5360
1801
67
28
-
- 5354
+ 5390
1815
@@ -10900,13 +10905,13 @@ Bezier curve evaluator
-
- 5326
+ 5362
1803
13
24
-
- 5334
+ 5370
1815
@@ -10938,13 +10943,13 @@ Bezier curve evaluator
-
- 5369
+ 5405
1803
20
24
-
- 5379
+ 5415
1815
@@ -13279,6 +13284,7 @@ Bezier curve evaluator
Bezier curve evaluator
Bezier curve evaluator
Bezier curve evaluator
+Bezier curve evaluator
Bezier curve evaluator
- ea1f8f2c-c756-4b1e-8794-09ca482bcedd
- Graph Mapper
@@ -24125,7 +24131,7 @@ The light will automatically take the scene units scale into consideration to pr
- 10
- 0
- 0
- - 4
+ - 3
@@ -28498,7 +28504,7 @@ Click on the Arrow to select an existing scene material from a list.
- 0
- 1
-
+
-
@@ -28513,26 +28519,6 @@ Click on the Arrow to select an existing scene material from a list.
-
-
- - 1
-
-
-
-
- - 1
- - {0}
-
-
-
-
- - /Silver_Polished
-
-
-
-
-
-
@@ -33566,7 +33552,7 @@ Right-click on this parameter to set the matching method.
- Toggle
- false
- 0
- - false
+ - true
@@ -34393,7 +34379,7 @@ Right-click on this parameter to set the matching method.
- 1
- 0
- 0
- - 0.33
+ - 0.1
@@ -34528,7 +34514,7 @@ Right-click on this parameter to set the matching method.
- 10
- 0
- 0
- - 2
+ - 1
@@ -34663,7 +34649,7 @@ Right-click on this parameter to set the matching method.
- 10
- 0
- 0
- - 6
+ - 7
@@ -34679,7 +34665,7 @@ Right-click on this parameter to set the matching method.
-
- 7F0HXBRH2z96EakiYl07oIJiiRqjcHf0KlgxloNb4SLcXa4oaFQ0mtgl9t4LiBpsBCtoNJaY2NBoNMaCvb8xxpbwzezuAbs7e4U7wr2+H7+fb9nZMvP/P22eeWbOXihLUWfgUlU5+LPg8Xi24J+zPF2dKpEOH40rlBKZFDbFg8uwGf7Zw1s0z4XjIjGugLfYUM2OmqYIIbzsAC4VPG0TdCg5PWZ99+TCpz5JznbxCny0BB8D2x3hRxPTwFvELtTlGFyZ1i9LjsNmK9BsCf7VpdpiZYoMUTpsaUV8bVHFU4l4Op6iwsUVbYt44npCfKREKlGBUcQrZHJcoZLgSniDNWiHr7YWilTEd+CgyvGdvy+9eM2+jhBXpigkcviYpos8+ygcl8fJceIKAYV1rCgD17Tbhffv7J+alumQADoDUSM+o4GsruaqQKYmsbbSoAX69RnoN/UpOFT4Z9tPpEjFiTubgv/74Lfycg/Y7SSZLKMS7Ow+NgPAyGmfcoBXWJ9xSEiRR4uyZOoKouGXHMMUMrWcdjO8bENcJoZI0W7LB/eIie+0oC73Bv9GgLvT4dsFsvR0kVxJgk/0xBZckqkVlUSBzlfFyxE+QgJlE6HCMypYIXoLr9C6ZVWJCXED+Jf2xMcy2OplXN7DK+P+nLB6H9VsQTXPxbZZPHZrE1eUP77LjpWvPqWaLanmVxPrrF+3c0f42tIvVVdiyx+RY7bQPmZraszd9BrzmjVr6GN2iMXHYMR3KodsyTlkC/aQH7jPkQUOtQv5euazmMGL79W3DVar0mQKGtECmTxLIUlNU2m+ah3YMbALrR91gkUKmRRLkAAFtxuIJyslqoq2JmkqlVzZMyAgVaJKUyf7p8gyAkQiBbxVljLKKSw8OFqSrAAXSD3SmAwbWtfhFTvyviyNGBEAVfYXfqthgiwZqCQWkxKL4+lYGyxYqZSlSIBGKi0jCFjhoJl/9KGEKURKZZpMDnTbbkClvYJtLt39OwX6B3YJ7B7o/1HHjp00PdKQbD49gkJgXj0ibKNZ9Uijf+bTIxuz6ZFbpZuLS4bepEI3A+CbyGs0DYXXbcnr8MtQAAm1COtf6bVvfzUue/YhecS8Pa9/+jGkYBSte7YCiSIlHQfmRqoSSaSVIQBEBOVAOwkUOBg/JsJSiCcxMewzLsaSs7BkkRLH5OkiKWiWijGFSCxRK/1twyVicaW/tXCKkCpVImkKHqaWVGA486s3vKP9uwflZ+yUbT03PBnVSftYScqoqtetwHXHYJVKIUlWA0pojrfS6reE/z/TLpSXbS/k8SbzebyOfJt4yWgZgWIz2PoStIJYqI5cpBBlDJdI5WoCTjsKUhQO9fiVg5WNpMBADm3oi1LHW1YLgjYnTVr+DivuRBuaTTx8A2tkFvH2ccTnyBiJdEuJwCml4PB/wtcWzlp0tdnKzpG7S482++vhnoZ1yGaW79EToGwIgQMAaEQwcHnBDIDWQfjqCJ3joQArVSAqBAGXqIJSOBC20+MrABRpVeWSfZN1vEiVVsHnuI7jraEDhc9oAiEbAmN4SzhC1+h/z/vo216VagsdVLsmEIKsg2bvu3f+FDgeiVjktzqD/2rRNboEk69g85ygk+dNYdOv9l3mFLH42NuRKbnrskzBs7NWnl1rhWdbqToDGFt4j20VwpxIokDESymlLfUMmilcqU5XSaSp2pjaUv5d9/6t/IN39eJf9p9o1U4vW2MhYDOFooKnPxUd7SmVmwaowJg2KQG2Ogsp627BZd1n8JRWT7MPhUwbn5/UKvK9L20w9oKsdIkUTOzo9h3adhsOCJtU2nfiWYUkRZSOKdWKkaIU3B+J51PVoNx9L9KiVjydFv3Sgjcd3QWE9c5K1xOpo85ALJ8LgHwC653NRCrIJZQXxDPIejtWWm/kkB7earC2/UtRzKHPQvgT88re0oZkDR9mCwj/3zbZpyEqLwQcqvwUtr4S/G+abBeN1FFBCJLkba2eful+fUbc9NH+bjcnRb81U4tN0PxOG81A+M3GYt/oU5UnS715SsPhZBfJU/L0HhfzjzePnnnh7baT+4vok2DbaFyaqkpj8xStk6fU1tf/shY8EMz66PyAvCv/2JmApxJLoTaebMzas9pp8azuVTwrRRmSq+KMnX6rMFdhUTf5zU2HjqzT0xegvKtToiRDni4ZmUUDykif+4ULZTOtgSeRMz3JKtKTUD7XksvnHrT7dWD+46HBK7/6ttsvdj0P0AZZN5ZAG0tMl7Acr60WVcDAczjwtpiSeBAbKVNgSoA3mGKNFqWrcbQNK9rAG3V7Xv+I2S/XHHBfv6qRlq6wQLcNJ3TO5HHNNQeAsR9QhLYCtiIEX3cI/We9n9CW7BS8bKd5j1ACslXKqilMMHuWyIUSJXAoWVWF3j5CqsIVAJeq3bOKEWXShbxVkFWMREq/BnQ/USqiZ0vhn80AiDLj3iBKFKy4RCFm6oFfnf+cEVRgcVZw/LpnE7ptSpSn4QoDJteNKoIvJXySFnrpNY3OWDHvwpjP10UsHSkuPdf2709Q3WEHYuC6ntSOqAsUBIas2ahp9DXQWuJs0kBsbIfm707FS2Nm9Kh7wumbo7FmGYilwXFzzp1nQMyc/kfnznVJmdMWhm3p3q59aN7FsD09tvmP+kEgNdMwjCDZWSvJbh/CxJmwPGhldFP9eTds376QZWBZ8IbdEAu9rItFoskdTAMYaRFWCDVx7g5bKybO1pwT52AX36f4Z0F5Z7tKlnjucadHKonA9OJYbH/2xNmeA0Jf8hGRFJMRH8bGgJUXTCqTdlBLJcCZZ2DAjKtkCiV6Ej28L1+5w6cgbG/Ek9095mzYgu4OC92KFj2hOwsnE1CKNwEDfpYJXTyMjhohDTiX5NQlDHgqLsvAVYos5NDOn1t7bkezzsHLbh5++KPHqX/oQwujHmULThhLcCwYKs4USCNV/DIAh+cCwJGjVPw9hM5NaIj10+XdRnh3DH2xPS1k4dDwk/a7ziWZZ2qYgKWeVljqf6DuDfZOW9DeDKoftJqkbmMSKTYuczwmlijIWgAk64ec+icFe/QML1g31XporybF9AIEUqEHsXkfZHI7ShDrrZXYRubk0qoyY1UNZrJ0MfOw2+knu8cuDD9g0/jBk0c/zUIxM5jNzOCaYaapVmYwc2XGWodRRDEzVhczsTvutTpmuyxuT3nHKz57vVujmEliM5Ok01Y+waY8rp90Pnj/6bLtv1g79DSFrWyplbjW/7VJIBcCZ7F2b3939W3vvs22BM07sKu3x6Qv3avv7WsmAzTLhXLy9iACCmdGQAUwA+QppMGiKY7hgsWjH2BICUM8EbyMiUFvkdDYHxngdC5/s3D98enPcjo9y6RXFVW85d8w/RAFYNy1oFDSXBNC23CF0BN3FJ6ZfGpoXKF16avVA1bepo3HiQhfMLLQT/8UiG9FCoRcWwdlE6BYTyxJUaeLFJhKBhpGgz7JFPolRDZ7lNc7PHt86DzrhQVrX6aUcXeRhbplvL7LU92tgEi5CsnlKVZWpAi0ZnsalBVxiQOlX8AughVn7uDxYnnR0cy0JxFLSpu73NgznT5jsCXfwBalOJ0W0eH7gj3uLo9ip5Y1SBBuaBpupEUMgsN35bKIYgidR61YRFC6KFOIJVKqcrRzhVVk/xkS83sndQjOlCgr/Zl2FrMsX+Zs/25O5MbZdkczyif40Vkk31Udv7az191NF3L50ZO2N/3rlsKvsylY9NTKYoPa8WukNdDOoIF+zpW0C+KKaiwkc1EFP1+b+8+08G+uxCWduVW3Q3UnbzXi5V5qtI7HR6RI6lkTbFL23ZbLvmOpLQunzZ7On//91uilb/aOo48wAQdJebpht9dwG5ySgivpmXyU4wwGSRKYHIRvotImSKiZE1pER1hQ83SqCJNAI1XE1RY4TTibwmCRAlNFRsDWRhrI7bggX3T/z5Ud+s+K3nsq7nBY+ZoW9GLrkEy5AuAKRsV2qFwg1w+By0eES5VieMULqrxLc6edT6ZfoG87dFhXmld2P3b8p6GbO8/6LNtBRQ/Aq7yMxUOVNn2BvBjCy+4FgHyMcqeXL4UAoRbWjYcKjYNVII3aQBAgZY4R0EyzquHtiMsRYg37S/7O3rf2m0ERhZvzYoPutLuqabfgaK8TR9gOlnTYk9crXzxYfGKORbGDcN9Tr5i67TzOkv0huqvL8HhUYgUW/RQSUTJHCVPUyePbQrNW8VflzTwweOuyXDobA6hHsUy2AcrUmVTz/1oc77kgJHL6tQkRH0+7dtVItcAAm7xPAJtBKM/xKeS6j7AKRhamwujuhAYxn815LVjS/UIJ/lvoRxwYIaYiWToxau51/4dbtxqFLijYv23iy3MSU2DE14qRUEgJYIUgaZuS1CPz+TD0qFR5JEpfuBYWLl6TH7ky7lTWxWNTJjFWX4jX6LX6YqTD8rlMiQmyGC4dtvI11tOey3rm7V/Bf9p/SuySh1+nC69+vYw+wUpUJ2MCtWI0Y0FWU5GOwrEbuFOpUqhBOh8UxMFnsZEKWQamSsPBwmxyB7EsA7wHwiwiq5+Je9AZ/gG/DLr8jc2j8MULL6+/n3u/Dkfn2Mv0oEmgGK0njvFPAVJeAMcpKOMZ/wyIUmODEvxkDpsYF3JYjndvRG8cnxy2pPcP+VsG5dWlq1nlw3rVfDDUbG5uzEXlsDnBM3oJWp4OebXISDUbAbDJ9uIKYnMhcg2R+X0ubDwTK2UATE3xTJUC5LSQMPXo1/mkw3LbsC9X5aTe7DP+GF3PhMQ72BAJdUKUFNdjR/HrDOFch+y5E4vtG5oCosZaIWpGz47oMkUeVZYWgYxzC9JrxcA369b6Be1ICMmPsw3oRg/y0LpRA1W5J55RQoI0RE7PCXwoQ+TAZYgWzll3btGZbhHFXWa+4P/SiZ7id600KiTv+tujwIrsiJSqFqKkj7RKY2QV16Es4hk4x2qje6Melwplf0RPt5pyrln0p+Xa+8euGAHX9YQz50EIL6gngFOFskfTHobwSvoYlBtpkqgSKVRkTRQ0vHQgkKO16rfUYpNVVNC2z+8Wfb50Yik9CUSOEQOPKRCeLlinBp76KXf+pWfbw1f4v+jrbd/S2DLCNQCwkp5cdQZlEM5PzCeDbFhupFGIVGwQc0OXCBPvS74NWZG3d/YAH95FunOhmAPpweoUAa0KL/NQZsVFrg7aN/rJwWatTMFbH6288f9r60NaxNLNTTKuGoPjYOEmeDyx1WscfzySP6Z30s/rRZjcqPMeUUoVjzLqXWBrH41RJ3K/KKP+NnnI8c6Om2M2HrT6m5f293xUHTLblFtxQNo0BheB2j6ciCXTiYfJOFJLCFnocdqjY1lY7NKIbT/fbtfqmV6V0Fbgup4wTbsNvFtnANMXwFjfYMpwdhnw/h8ZFDy6Em4bxkYZ5GiRw/pzVe53l8arBXl3xwj+Wmn5e3U9f81Gj0sAOLwulIKXMMG5Bls/Miw0ciLRIclHIjPY88KO92t5EVN+kBZe8ytKr3bpu5H687qMGrscNfYud4ixU/pTh0t/rMfyVlw5Wxa+cv3ytfwDMaG0wdQBoTQRPbOSW5oKLhSCDWKA9cPhuhtZKlvxCnRx+oW+8/fX84+b8TT08cML6iLODrB1KLgDX9/s1V1gTHpx7TS1v0f4AaOzV8wkEzN7xWz/N7JXTUIlCiXIOYAlO+gTiAJ2HYz8JliwW/3xhNAdPYec89ofQp8Tg9hLj3CMmZphqoyxqZm7RMDF4dbFkGyD0ldNE/EUGUDHEJSyD0fO7lsyJXSj1XI8d8ZNOR0lvj7Bj0XNBq0ESnytKBmWwPKsTGDpQocZx9VWBisbqjZnBusoqfiUjXTispGFAW4f7+t9nr9P7ZLTq8HbfHqdC7SLoI/s5L8tB4ytKzcU4ASYfAUux4DIwbN5sBTydUq9VtJfX3dMLLY+HZKzcO7ACcedryF7xsJZ06Cvj/0VSEpDgOEGYDxzmRguuQowbG1QAOJFGzCIQ6gxI4foOexuxk/DH/InnfJ0bbD8YAo9DklME8n1K29m6Bq+Bv84yXdZcG6HG/Hbki4Zu6CeCzAKasSVonkOEWxiUJWqB8UROQXG5DKJFJ3DslGVPyiWuYVtO+6w6UJ8gDVjxRM+V51y1RZLUm61ubhKcKg4I31i7tYWpsAH04pPi/+mggNdNagNNPRJiToWHYV0i3pek+yWvI1bJfgr4ZZy59/0LLRQ8yybx1iTG0yCqNZaiWprzjUFzHJUbXbIWyghuaiYOmuML5KlP7aU9T3xZljo3rJjrXIGrJ1IL6LTvKs6+WLmeo8plM1PK4ft2ZMiA+sE2lbZfEqhhvmkwgO4yHNnlKTM+iKh/MjjfJ0NqcPivllY3tfN8UwbuxiRXA5eRRMJ+i5V6hv/RrbZ9RplzOF+1DVMh9cPtrbWBA11uYIG1R+/Dm5+YFjk5Mn9rd+NfbCdrtPRQFowKOLomgEXuERDzQKkYjyz6iCQIUUCqN+U4KPJXYp4imQkSAtJwOvJHLQISwffQ6cv/vP3ifp2x+PDtlqcnCu5lriVo58s3AkF1TeFcQ6IHCzAXYM6KqLBBdDaDjH9ggbWGj39sqrG9Eu+t6d/yNT9oV+mN3a7I6rzs6Zdc2zd9KsLf8RFhYIVwQMtDwx58ZGppmcOaMXiskoOxPIcJAzJ1/Gf9x1eP+u7qGmtHTdGnbChq4k15Eu/3EMCkBaFEqfZb+asrUvh9iYpFpErFqgm9ijtMMTYXA2QgqBWGrVimqW080AK2jBnbdp8rCOUQFCpDvQDiVT0a/HGnOgjsXusz/wwc8eUFfTIiNArNlQSk1sTYti+WofdrrZz0BVDqkRfV4TjPVAhkpPowxAeyiuWTIwcScbyO7ZrYwY9DNq+OHHOVzFTB9DFFr6LzcXAmuHCXysXHWuFC7tkmSwdF1VO95jzcm1xjBOhCCIVNk7SFp3yd/gpLvPj0p5Ra48nPT+bcnKFXYxaBQttKnCl04E0+DWgGjkXKIsAVwBYBz8cJf0C5WiduRztgpaX1jRY24Gfv+uzF57Hh9CL4OyDxWKJYelLT1r6UkQ9j4TV9cCz6zvObAw7kH/54IuM69vRn0YkLtvpm7i8UQoQasGVuLx8kQjHP8jEpReZuCSDGJAr0EpE/9EBykOx7yNm9TogLmx2ydcEKctbsmVJo7tOjpky9ZbzNO/i50Y6v+elxBSXIxnX5SIRUxqQsmxApSz1w+fkwNeHSqWZ/OXt5yXdbTH5gAmSlUyTYgp82mrFx8+gZCV1OA6xfKcNmk7WI0Jn+D2PKRqyeMjV+jGq2spUxl+iBASZqVwAW9tqbKELly30ezmp67yFESEHRzV2+X6lLb043KWyhIRIC+l//pxv1Yo7IhVFzivGZWaNHQ+mf5oMCkdhi82hDJez52xDp51934vXQXJGa68QW35U+nr3X8BKKZShaahpRg4oV8wOYCUqtcU4znDfcOXwkIP7Pezrw2fTl4fsmLu43uVvLsTT61gGVXn839hClgsg4PlwqdFjCJCfOReqaGcjSycbXSWXhosy3CJXzMo+xRNsosc1ToO1sjG4ZtjooJWNAHNlQ9cpcc5wf7AONhKuLLzq1coxdv7E4/eOiGecpbORpJUN3bupmJbb2KwZJCtQK1ldzIksw86SIWyrLr6YSX991hKAeTa53thfoazYGtS8YNAVQm8oX+jK5Qv55Z13HZw/KmiOl2emnXfhY3pwDku7YbJE/2W7JiFkJTFMsamT4dJd1dyaXst1OUtb31/YfHZc0eyv03olKJ+iu4QsNk/E9fWCN65TU4bTKC/oepOMpBhekFA5k+WocjyGWX8/yTZo7sRxZ8vG3yzQmd41bd6KmV02NjS9TkVm/VBJgxE3WOufumJ3b6pGEoSmIH8iAYCTi6By9C6vzIFn5+eMCwyZX5DvlpR0t4upqtRtJkxIun3VMmbJfYf92wdukZsCprZaYaLLna4Mk08CmIXLKyFKAxkOGSQ/TSZTkQknLVWqN1Kevt3/Tdfg3VsKGg8ZXhReOwknApT2WkEJMI+EE+dmXD1NggcwUlQ9Q7JW48CsAKyuITCOmGk3KaWGa2TPmcQcBa3ZbdgnThiIiVcEJbtkxQyEB87X0RnSTu0au/2d+ixm08TrZSNPH4vVK10dUSPAVCweIoHh+Wt8rxuX7/W/l9z8veJ11ILBpZcDcrfUowd+QsloiRjn2vZlxzUJpR7T7PkCwYgMwz9XgyQdVamrxFPhb2Oh4e119fjBM+1286ds7d1pa8zoc9xdYvtfslXfmvM3QHbqAwBPofzvmregtalB5TIuFfW6YqIfaK3K/uuYTfIb4fqiT9/ubt55kInKdZn7f4z0EQVvqI1wyJXp1xA5b4PKZNyp03Shgmljf/moWX3PjxkWuqs08r5oyw03BjxwOHpVVzDgcQ8/tP32vBWCFV/OXOf2/brRpoCnsVZ4mtb2FIRIK0M2DPDkXonydImqgiG4VDFKIh2Fpkp2ndenze0nkTsfTO4YaDcDp1MVBZ9jUxVlcjtIcNFcKxctzcJzsyeCBi44u0DzRmzdJlJ7aFYsfe/EXvpoc8gmn4t/TC0bNYsZ0sMR0QNTYrqorL3TNhq8o2xNPCr0GvSOsDXGevgW/UTSVMA+df4RIdpiPeB81W7wypvjhguKX853S6vzH/q2FXvqpQjw+pn+3NZ3lM3hhqkpHSZLw2FqWbFCRZ2bri9OA1q1+Pxq4JPgrzas37d2RIN3NJwcK96KQEpVM0g114pUS01k5G6++5UyJj7z7NrzdvCiO6/HTtk+a4Wp9yuteQ4CSB+u/UpLXhCLuqbfr7RW6screfaIP++E+9FbV6NKzTQAAuCUaPLzrD07L2FrO1PvV7J+NDsu+/M7YVuXl86qv8myTm3tV3L9DzV25H6l6P9UXe334NKfZm2nrng7fXXs6shfBlm6O51mFmGSJkX/zdv01X6NSULiOIE//Ivg5X9F7pp+pUH7VbM6oj+NWO0P0He1P+gPYGECuFb7u78kUtCGqI43URlSMXPAfMj/lorRZZkX7k2alG//PqxwkfOy30JXxFZjGZ2pP0zhM1J/4v8gcr8cSfoFEL9Ag3JxTRgIEQeEEzApZQo0Skn3Fz4/fTE4fLWl/Pkh1bqj1VhMr+ECYAKlLlpRMnBXZMN+wMEoKlbUobvRCDwSo1lzVl91fP06evoEPOqco2Nkba2qF7yk5AW5qv6S1CjK5tQzx/O/7EemgzUbn0y0KI5ZeOr6uw03hN8dfPzk/vp6QTV4ABiBJDz9+D3Srb8CMtUCUYmkqbRCVCJZ6HEAmFkd8DXgkzsuJz9pG7Hp6KEhd+5brzDlAV9MhTHSApS8JA6FIQ+vYvna97C1RQ0dXsXMidSW6tu/piCYhgw3YGsLjep7cqn+wm1Po9bN8AidubeVeobLp9G0wbgT+9gE6TIlrkTW1GhbTsRCwcIGYUhTqBeQhTVACEVYMnixXiuKX+9ZdKxspl/YZt8/LsWeuJSnq3/svYDkPfH6WoF/gBXwoCIUdnKzPMTQn6pwShSBqT+uZYPbmm49IvuNksQdKH7UcucQFysTbXBjJjSMVTgADPF7DPGotDkPAFPiZVBgQi6xQnaQqHwf/qBlvodUsOinG/FWUZbb6Kso8LHqxCEm3hUJQSEOtOYEJcjAg6vqaqSZW16YRyVXV16MND9OPOoHOnJQMVhH0AoWCQw60rw5eSZ2lUOMQRIlRScef+8q7SA9UhKdf/ubi0d/+G0g3R5znLNdAzsLCUC8tQLSiJ1o0gZIG9b+PWUVY0KcgcOpP6KdPlv964qCCpLuqs9k/e5lxGY+U+DSVCsumMZP1YeGC7nbLDvz4tBfmgftWF/nzbx5U6fQhmNH1UywnRNXXqkF9UTFwe6YTwbc7CdPz4J7+zp08tWv4MVj7v0HwzuN5K/3bS9MWbX0ErJb7BkzaNC35NMilFfSmPJHrKi0nmUo3HVsiD+qQ5hdctDIIT0ovTsvLOYWP+/GIr+nPkdH0tVpAPEgW2wG6DS9TDU19uQrAExQE65E0xHYihlmel0ousTa0GGecF5tdIytprakho8M/hSkXFBK5WX2R20zfzXPNEdtm/hM4a02wI6VCziO2n4PWrMtNJA3MHvImWex6AN5nRBxKo7FiBTwRx50oR9g3eHHFg3kIdsz6t8tGnbFy9gzQs+ACDOFOqSDhX7uWdCKa9D3Nnv0maKpD/qaX6XUBfyEvBdfDOr9XdDWIb2T2wz1/MRI4F8D4HlB1KoQC/gTZ6uekdzQ7IFn/vy2PsA7xoNaRmoZQRf4j7MsmxY1mxy7q8e3YyYPU+821stB8PvC2AkFfgkEP1EDfiOzB5/5s1emMfPD1nbsf0Q1JXafMjBxUvkvs42E/L0diLhgfRjSzEfbg9b2Gsgbmz3kTHD0gdyhn0SOEb+6pRP7extXFfT12Ri9uU3/Kd0jAuobO5+G4j4IYJ+Jwr4IinuSBvsmZo8987x+fbC3CgN1uzoDm2XhvJ8TN0dsttm+5+G3P0YZiXpHgGtQOJfEn4WtkRrUm5o96sx9rXpZ+H4yORY3ciQoYNUJvteuVZ17J5dFLKqbW+wc0OYLE4h8STcA/iwU+JdhXNNdA34zLvCf/batV7umDtHzc5znZv41YjV9zDG4IhVRh8qFdBPifpikVYNqLpgQh78thylVClzEUdob+GvjC7OG3orZ+JNf7iS7eqmI77MwJy/re5SuB4iubTV+kHVEG2x1rvkDVrjaLWt4GzlHvRsXgXWFlXxhndBHPRUMHxESMCL0wLcPG/oMXn1O+3kJtsQLO7G3Rgk76Vz3yXvVt1FWmatwvu3iyJs262KNVBd7QDXPDghCLiqZ1B0KggNzm7kx8AUi4XteP0CRtPXHuGV+P0z+ZF3oC33gC0TAF6gTPstOvvW6++4Jz1l56tXZ/is/NwV8Tlrhc64KH3yPvRHwdUbCd2fsqdBjgsNBq54sXrp48aAN+sDXGQFfZzZ8xq6pQXzctOLjwVpWtDMMIJfKlcYMaAKREM3+9VSb4rHSqJ3LpwlPbgpuWFuLjKUafZuG2qn4ihQYyj1hXO4pqEdjuw5rx0Ttb8nfc6FTJOPXWgSw2Bfrp8AN8FFdEvAM2WiQqhOlp2NSNfgPmAyXSEHVgYQ8M0Kp2b1IOC8gjRzVgqe6Y5I+XaIipr8ZsmYd7j2Gq29s/0W06TupcAVAnReQaVzWEaNfuIHWewK2/4KSZYP2X9YI/8U84Ivpv7jauQ4I07Rb1bB/01Zaj5FMkyRXIRYuLHOz+vtnZ7pKGtqHHno7xkvQ+k4yjVUn6pWx4JXKf2NlyBrye0HAUWrvA1svC8yh1N7CgNPJWlIoIpROOzf8Bbfjpw4+HTL1ct/mkZMKb9G4cabeGkG+9d84UoJg5zet7NwyO3Z07UhpReGIZ8hVYEmL6A+uFz0vn2JjRkQ4BH93//6Xl2eccUCqTgh8LZuckJoh555Wch6bHTlWhkdN7kSQA1khtkrDNyPZ+blIEpCSrQ7a7zD7TPTkGPovelkjHRVqTwUjyizO2Om3CnMVFnWT39x06Mg6I6NMgrQXWkl7JTAyinJPlMtU6eDGSgePBIw5/6gmYEaKcZHGA2RDRFjHnJFCToVRzf8bw6iNo3uNbCvPE266cn7Azy5RW2swjIKlBJxhFM8XkQb4/zCqmmHUhDcjZR8vPBK87m1Icc7E3+fWfhhFFDxym5Xmwv+ZMGrq1ud2S44Mi1qYU5Iff3TpYXMIo3ittLLTRvi/E0alq/s0aqEsicz/GHPac8c5tPbDKGAatZFTO2f01lIY9fvv+Z+NH+oT/FWd4xu/Xp3/2DRh1N3Vt737NtsSNO/Art4ek750N0EYxfPXSlpH4b8URjHzkLUXRhEegDOMAkJOhVEtzH6link+kT4rVdYJsjG6S0Dm7qx3pcknBwR7R+0PFT6OCjBSEF3BKlS2FMDenasEJFuugb2l2cPOrAHXC/ZEdbLuA6e8pEM/vZBjH53r8UebsfKjxp6WcRb+qoAXF+zT4GHe3hrYW5k97MzD9vWBXY9DEr0iPT4veKeKnrfs+auOjVONPQstDS7HtuJaC7eHy7FtNJi35sK8/q3ZQveeZwRru94u/vbEGKFOzDUrVG4CtVIly0DADOZQRBOtNMaZusYsmTGKJ2bdnvGFgXoafQuuTcOnAejJgJISQElJMAV+mw8SfGbtnlF1gUbifhngzoO/LTylKu5tP0jcmWV7RpcFGol9NsQ+HmC/tSr2Ph8k9swaMmNL1IyEfg2EfiCAfllV6H0/SOiZhWTVr1AzEnTXn0CRWRic6lQF3e+DBJ1ZQGZ0gZoJBL6kK8B+S1Xs232Q2DMnRkZMuYxE/TlAPTuDKfHtP0jUmfMiI2ZcRqJe8DOQ9fpM1Dt8mKgzZkbVnXAZCfmNH6nfxqNB7s8F+T9Td27w8LfmF37aYNkmecxGVOETHXPHmsdcr5Ktr3iuQxoF3AjOO/xon2zVIPoSmCElW4wZLrMUTM8ZLicfnmBvIFxDI/n4PwAAAP//AwA=
+ 7F0HXBRH2z96EakqYF07oIJiiRqjcHf0KlgxloNb4SLcXa4oaFQ0GrsSe+8FRQ02gh2NxhITUdFoNMaCvb8xxhq+md09YHdnr3BHuNf34/fzLTtbZv7/p80zz8zZC2Up6gxcqioDfxY8Hs8W/HOWp6tTJdKhI3GFUiKTwqZ4cBk2wz97eIvmuXBcJMYV8BYbqtlR0xQhhJcdwKX8p62CDiWnx6zrmlzw1CfJ2S5egY+U4KNguyP8aGIaeIvYhbocgyvT+mTJcdhsBZotwb/aVFusTJEhSoctLYivLSx/KhFPx1NUuLi8bSFPXEeID5dIJSowiniFTI4rVBJcCW+wBu3w1dZCkYr4DhxUGb7zjyUXr9nXEuLKFIVEDh/TdJFnH4Xj8jg5TlwhoLCOFWXgmna78L4d/VPTMh0SQGcgasRnNJDV1lwVyNQk1lYatEC/vgD9pj4Fhwr/bPuIFKk4cWdj8H+/v1RWNuUD6HaSTJahAbtrRnEvm35g5LRPOcArrM84JKTIo0VZMnU50fBLjmEKmVpOuxletiEuE0OkaLflg3vExHeaUZd7gn/DwN3p8O0CWXq6SK4kwSd6YgsuydSKCqJA5yvj5QgfIYGyiVDhGeWsEL2FV2jdsqrAhLgB/Et74mMZbPUybvPDK2P+GrdqH9VsQTXPwbZZPHZrFVeYN7bTjhWvPqeaLanmV+NrrVu7c0f4mpKvVVdiyx6RY7bQPmZrasxd9Brz6tWr6WN2iMVHYcR3KoZsyTlkC/aQH7jPlgUOtguZMuNZzMBF9+rZBqtVaTIFjWiBTJ6lkKSmqTRftQ5sH9iJ1o9awSKFTIolSICC2/XHk5USVXlbozSVSq7sHhCQKlGlqZP9U2QZASKRAt4qSxnhFBYeHC1JVoALpB5pTIYNrevwih15X5ZGjAiAKvoLv1U/QZYMVBKLSYnF8XSsFRasVMpSJEAjlZYRBKxw0Mw/+lDCFCKlMk0mB7pt16/CXsE2l67+HQL9AzsFdg30/6R9+w6aHmlINp8eQSEwrx4RttGseqTRP/PpkY3Z9Mitws3FJUNvUq6bAfBN5DWahsLrtuR1+GUogIRahPWt8Nq3vxmTPeuQPGLuntc//xSSP4LWPVuBRJGSjgNzI1WJJNKKEAAignKgHQQKHIwfE2EpxJOYGPYZF2PJWViySIlj8nSRFDRLxZhCJJaolf624RKxuMLfWjhFSJUqkTQFD1NLyjGc8c0b3rG+XYPyMnbKtp4bmozqpH2sJGVE5etW4LpjsEqlkCSrASU0x1th9ZvD/59pF8rLthfyeBP5PF57vk28ZKSMQLEJbH0JWkEsVEsuUogyhkqkcjUBpx0FKQqHOvyKwcqGU2Aghzb4RYnjLav5QZuSJix7hx3uQBuaTTx8A2tkFvH2ccTnyBiJdEuJwCml4PB/wtcWzFx4tcmKjpG7S441+fvhnvq1yGaW79EToGwIgQMAaFgwcHnBDIDWQvhqCZ3joQArVSAqBAGXqJxSOBC20+MrABRpleWSfZN1vEiVVs7nmPZjraEDhc9oAiEbAmN4SzhC1+h/z3vp216ZagsdVLsmEIKsg2bvu3f+EjgejVjotyqD/2rhNboEk69g85ygk+eNYdOu9l7qFLHo+NvhKblrs0zBs7NWnl1rhGdbqToDGFt4j20lwpxIokDESymlLfUMmilcqU5XSaSp2pjaUvZ9174t/IN39eBf9h9v1UYvW2MhYDOFooKnPxXt7SmVmwqowJg2KQG2Ogsp627BZd2n85RWT7MPhUwdm5fUIvK9L20w9oKsdIkUTOzo9h3adhsOCBtV2HfiWYUkRZSOKdWK4aIU3B+J51PVgNx9L9Kilj+dGv3SgjcN3QWE9c5K1xOpY85ALJ8LgHwC653NRCrIJZQXxDPIejtWWG/kkB7e8lrT9qUo5tAXIfzxm0vf0oZkDR9mCwj/3zbZZyAqLwQcqvwUtr4S/G+abBeN1FFBCJLkbS2efu1+fXrctJH+bjcnRL81U4tN0PxOG81A+M3GYt/oVZknS715SsPhZBfJU/K0bhfzTjSNnnHh7bZT+wvpk2DbaFyaqkpj8xStk6fUltf/thY8EMz85Hy/zVf+sTMBT0WWQm082Zi1Z7XT4lndK3lWijIkV4czdvqtxFyFhV3kNzceOrpWT1+A8q5OiZIMebpkeBYNKCN97lculM20Bp5EzvQkK0lPQvlcSy6fe9Dut/55jwcHr/jmuy6/2nU/QBtk7VgCbSwxXcJyvLZaVAEDz+HA22JK4kFsuEyBKQHeYIo1UpSuxtE2rHA9b8TtuX0jZr1cfcB93coGWrrCAt02nNA5k8c11xwAxn5AEVoL2IoQfN0h9J91fkJbslPwsp3mPUIJyFYpK6cwwexZIhdKlMChZFUWevsIqQpXAFwqd88qRpRJF/IWQVYxEin9GtD9RKmIni2Ffzb9IMqMe4MoUbDiEoWYyQd+c/5relC+RbHgxPW6jei2KVGehisMmFw3KA++lPBJWuil1zQ6Y/ncC6O+XBuxZLi45FzrD5+husMOxMB1PakdVhsoCAxZs1HT6GugtcjZpIHY6HZN352Ol8ZM71b7pNO3x2LNMhBLg+PmnDtPh5g5/Y/OnWuTMqctDNvStU3b0M0Xw/Z02+Y/4keB1EzDMIJkZ60ku30ME2fC8qCV0U31192wfftCloJlwRt2gyz0si4WiSZ3MF4w0iKsEGri3BW2lk+crTknzsEuvk/xL4I2F3eWLK67x50eqSQC04tjsX3ZE2d7Dgh9yUdEUkxGfBgbBVZeMKlM2k4tlQBnnoEBM66SKZToSfTQ3nzlDp/8sL0RT3Z3m71+C7o7LHTLW/SErhhOJqAUbwQGvJgJXTyMjhogDTiX5NQmDHgqLsvAVYos5NDOn1tzbkeTjsFLbx55+JPH6X/oQwujHmULThhLcCwYKs4USCNV/DIAh+cCwJGjVPw9hM5NaIj10+Xdhnm3D32xPS1kweDwU/a7ziWZZ2qYgKWOVljqfaTuDfZOW9DeBKoftJqkbmMSKTYmcywmlijIWgAk64ec+iYFe3QPz1872Xpwj0aH6QUIpEIPYPM+wOR2lCDWWyuxDczJpVVmxqoKzGTpYuZhlzNPdo9eEH7ApuGDJ49+noliZiCbmYHVw0xjrcxg5sqMtQ6jiGJmtC5mYnfca3HcdmncnrL2V3z2erdEMZPEZiZJp618gk16XC/pfPD+M6Xbf7V26G4KW9lcK3Et/2uTQC4EzmLt3v7uqtvevZtsCZp7YFdPjwlfu1fd21dPBmimC+Xk7UEEFM6MgPJhBqiukAaLpjiGCxaPPoAhJQzxRPAyJga9RUJjf7Sf07m8TcJ1J6Y9y+nwLJNeVVT+ln/D9EMUgHHXgkJRU00IbcMVQo/fUXB24unBcQXWJa9W9VtxmzYeJyJ8wchCP/1TIL7lKRBybR2UTYBiPbEkRZ0uUmAqGWgYCfokU+iXENnkUVbnyKyxoXOtF+SveZlSyt1FFuqW8fouT3W1AiLlKiSXp1hZkULQml3XoKyISxwo/QJ2Eaw4cwePF8sKj2WmPYlYXNLU5caeafQZgy35BrYoxem0iA4/5O9xd3kUO7nUK0G4vnG4kRYxCA7flcsiiiF0HjViEUHpokwhlkipytGO5VaR/WdIzO+d1C44U6Ks8GfaWcyyfJmz/fvZkRtm2R3LKBvnR2eRfFdV/NrOHnc3XsjlR0/Y3vjvWwq/jqZgsa5WFr1qxq+R1kA7gwb6OVfSLojLq7GQzEXl/3Jtzj9Tw7+9Epd09lbtdlWdvFWLl3up0ToeH5EiqWNNsEnZd1su+46lNi+YOmsaf94PW6OXvNk7hj7CBBwk5emG3V7DbXBKCq6kZ/JRjjMYJElgchC+iUqbIKFmTmgRHWFBzdOpIkwCjVQRV1vgNOFsCoNFCkwVGQZbG2ggt+OCfOH9v1a06zszeu/puCNhZaub0YutQzLlCoArGBXboXKBXC8ELh8RLlWK4eUvqPQuzZ12Ppl+gb5t0GFdyebS+7FjPw/d1HHmF9kOKnoAXullLB4qtekL5MUQXnYPAORjlDu9fCkECLWwdjxUaBysAmnUBoIAKXOMgGaaVQ1vR1yOEGvYX/whe9+abwdEFGzaHBt0p81VTbsFR3utOMJ2sKTDnrxe8eKB4pOzLQ47CPc99Yyp3cajmOwP0V1dhsejAiuw6KeQiJI5SpiiTp3YFpq1kr9y84wDA7cuzaWz0Y96FMtkG6BMnUk1/yni+LrzQyKnXRsX8enUa1eNVAsMsMn7DLAZhPIcn0OuewkrYWRhKozujvOK+WL2a8HirheK8N9DP+HACDEVydKJUVPP+z/eutUgdH7+/m3jX56TmAIjvlaMhEJKAMsFSduUpA6Zz4ehR4XKI1H6yrWgYNHqvMgVcaezLh6fNIGx+kK8Rq/VFyMdls9lSkyQxXDpsJWvsZ72XNZz8/7l/Kd9J8UufjglXXh1ylL6BCtRnYwJ1IqRjAVZTUU6Cscu4E6lSqEG6XxQEAefxYYrZBmYKg0HC7PJ7cSyDPAeCLOIrH4m7kFn+Pv9OuDytzaPwhctuLzufu79WhydYy/TgyaBYqSeOMY/BUh5AhwnoYxn/DMgSg0NSvCTOWxiXMhhOd69Eb1hbHLY4p4/5m0ZsLk2Xc0qHtar5oOhZnNyYy4qh8wOnt5D0PxMyKuFRqrZMIBNtidXEJsLkauPzO9zYVM3sUIGwNQUz1QpQE4LCVO3Ph1POSyzDft6ZU7qzV5jj9P1TEi8gw2RUCdESXHddhx+nSGc45A9Z/xh+/qmgKihVoia0LMjukyRR6WlRSDj3IL0WtH/zdo1fkE7EkLy4mwDutCDPLRuVENV7slnlJAgDZHTcwIfyhA5cBmiBbPXnlt4tkvE4U4zXvB/7UBP8btWGBWSd/3tUWB5dkRKVQtR0kdapVGy8utQFvEMnGO10b1Bt0sFsj+jp1lNOtck+vMy7f1jV4yA63rCmfMghBfUHcCpQtmjqQ9DeEW9DMqNNEpUiRQqsiYKGl46EMjRWvVZYrHRKipo25d3C79cMr6EngQix4iBxxQITxesUwNP/5w779Kz7eHL/V/09rZvbmwZ4WoAWFF3rjqDUgjnZ+aTQTYsN9IgRCo2iLnBi4WJ9yXfhSzfvHdWPx/eRbpzoZgD6cGqFAGtDC/1UGbFRa4K2jfyycEmLUzBWy+tvPH/a+tDmsXSzU0yrhqF42DhJngssdVrDH8skj+md9LP60WY3KjzHlFKFY8y6p1gay+NUSdyvyij/jZ50ImOjptiNhy0+sBL+zAPVYfMNuVWHJA2jsFFoLYPJ2LJdOJhMo7UEkIWeJzxaF8aFrskYtsvt9u0eKZXJbQVuK4nTFNvA+/WEcD0FTDWN5gynF0KvP8nBgWProTbhrFRBjla5LD+Wpn7/aWxasHmu6MEf6+w/KOqnr96o8fFABxeJ0rBi5jgXIOtnxgWGjmR6JDkI5EZWPfCjvdreBGTfpQWXPMrTK9y6buR+vO6lBq7HDX2TneIsVP6U4tLf6xH85ZfKS4NX7Fu2Rr+gZhQ2mBqgVCaiJ5ZyS1NBRcKQa8YYP1wuO5GlsqWvwJdnH6h97z9dfzjpj8NffzwgrqQswNsHQpux9c3e3UXGJMeXDtN7e8RfsDo7BUzycTMXjHb/43sVaNQiUIJcg5gyQ76BKKAXQcjvwvm71Z/Oi50R/dB5zz3h9DnxCD20iMcY6ZmmCpjbGrmLhFwcbh1MSTboPRV40Q8RQbQMQSl7CORs3oXTQrdYLUMz51+U05Hia9P8GNRvUErgRJfK0qGJbDqViSwdKHDjONqKoOVDVWbM4N1jFR8ykY6cdnIggC3T/f1PM/fp3bJ6eH1No9e5wLtIugj2z7acsDYsmJDAU6AyVfgcgyIHDybB0shX4cuy3593THxsPWZkJwFc/qPO+F8DdkTFq6aBn196m9AMuoDzNYDY5nLxGzxVYBZS4MCDk/aAEHcQY0ROcS6Q+5m/Dz0IX/C6bquXssOptDjjsQ0kVy/cmaGbuGr8U+TfJcG57a7Eb8t6ZKxC+i5AKOgBlwpmecQwUYGVaV6UByRU15MLpNI0TkrG1XZg8Myt7BtJxw2XogPsGascMLnqlKe2mxxyq1WF1cKDh3OSB+fu7WZKfDBtOLT7L+pwEBXzamXhj4pUbeio3BuYfdrkt2St3ErBX8n3FLu/EDPOgs1z7J5jDW5gSSIaqmVqNbmXEPALD/VZoe8hRKSi/KpslZj++eW0t4n3wwJ3Vt6vEVOvzXj6UVzmndVJT/MXN8xhbL5aeWwLXsSZGBdQOtKm00p1DCfVHjgFnnOjJKUWV8klJ94nK+1PnVI3LcLynq7OZ5tZRcjksvBq2giQd+VSn3j38guu16jjDncf7qa6fD6wNaWmiChNleQoPrzt4FNDwyJnDixr/W70Q+203U6GkgLBkUcXSPgApdkqKhfKsYzKw8CGUIkgHpNCT6S3JWIp0iGgzSQBLyezDmLsHTwPXS64j8fTtazOxEfttXi1BzJtcStHP1k4U4oqL4pi3NA5GDB7WrU0RBeF0BrG8R0CxpYa/R0y6oK0y353u7+IZP3h36d3tDtjqjWL5p2zTF1064u+AkXFQiWB/e3PDDoxSemmo45oBWLyyo5EMtxkDAkXyd+2Xdk3czvo6a2dNwQddKGribWkC/9cg0JQFoUSpxmv5mztE4F2xulWEQun68a362k3SBjczNACoJaaNSKaZbSzgMpaMWcpWnzsY5QAkFlOtAPJFLRr8UbcqKPxu6xPvvjjB2TltMjI0Kv2FBJTG5NiGH7ah12m5rOOZcPqQJ9XRGOd3+FSE6iD0N4KK9YMjFyJBnL7tiuiRnwMGj7osTZ38RM7kcXW/guNhf9q4cLf61ctK8RLuySZbJ0XFRRKM2ch2uLY5wIRRCpsDGS1ugUv8PPcZmflnSPWnMi6XlxyqnldjFqFSysKceVTgfS4FeDauRcoCwCzPizDno4RvoFytE6czna+c0vrfZa046ft+uLF3VPDKIXvdkHi8USw9KVdWnpShH1PBJW1wPPru84uyHsQN7lgy8yrm9HfxqRqGyjb6LyRglAqBlXovLyRSIc/ygTlZ5kopIMYkCuQCsRfUcGKA/Fvo+Y2eOAuKDJJV8TpChvyZYmjew8MWbS5FvOU70PPzfS+T0vIaa4HMm3TheJmNKAFKUXlaLUD59T/V8fKpFm8pe1nZt0t9nEAyZITjJNiinwaa0VHz+DkpPUYTjEcp02aDpYDwud7vc8pnDQokFX68WoaiozGX+JEhBkZnI+bG2tsYUuXLbQ7+WEznMXRIQcHNHQ5YcVtvRicJeKkhEiLaT/eXO+lSvsiFQUOa8Yk5k1eiyY/mkyKByFLDaHMlyKz9mGTi1+34PXTnJWa68QW3xU+nr3X8HKKJShqahpRg4oT8wOYCUqtcU4znCfcMXwkIP7I2zKkeL0ZSE75iyqc/nbC/H0upUBlR7/N7aM5QIIeD5cavQYAuRnzoUp2tnI0slGZ8mloaIMt8jlM7NP8wQb6XGN00CtbAysHjbaaWUjwFzZ0HUqnDPcD6yDjYQrC656tnCMnTf+xL2j4unFdDaStLKhe/cU03IbmzWDZAVqJauTOZFl2NkxhG3VxRcz6a/PWgIwzybXG/srlBVbjZoXDLhC6A3lC125fCG/rOOug/NGBM32rJtp513wmB6cw1JumCxh59+4lukahZCVwzDFpk6GS3WVc2t6bXTNWdLy/oKms+IKZ01J65GgfIruErK4PBHX1wveuE5NGc6gvKDrTTKSYnhBQuVMlqPK8Rhi/cME26A548cUl469ma8zvWvavBUzu2xsaHqdisz6oJIGw26w1j91xe7eVE0kCE1B/kQCACcXQeXoXV2Z/Yvn5YwJDJmXn+eWlHS3k6mq0m3GjUu6fdUyZvF9h/3b+2+RmwKm1lphosudrgyTTwKYhcsrIEoDGQ4ZJD9NJlORCSctVak3Up6+3f9t5+DdW/IbDhpaGF4zCScClLZaQQkwj4QT5+ZbPU2CBzBSVP1CslbjwKz4q6ohMI6YqTcppYZrZM+ZxBwDrdmt2CdMGIiJZwQlu2SFDIQHztfRGdIObRq6fUh9FrNx/PXS4WeOx+qVro6oFmDKFw+RwPD8Nb7Xjcv3+t9Lbvpe8Tpq/sCSywG5W+rQAz+hZKREjHNt87LjmoRSj2n2eIFgRIbhX6pBko6qzFXiqfC3sNDw9rh64uDZNrv5k7b27LA1ZuQ57i6x/S/Zqm+N+RsgO/UAgKdR/nf1W9Da2KByGZfy+lwx0Q+0VmX/fdwm+Y1wXeHnb3c37TjAROW5zP0+RvqI/DfUxjfkyvRriJy3QWUy7tTpuVDBtLG/bMTM3udHDQndVRJ5X7TlhhsDHjgcvaorGPC4hx/afnvucsHyr2esdfth7UhTwNNQKzyNa3oKQqSVIRsGeHLPRHm6RFXOEFyqGCGRjkBTJbvO69Xq9pPInQ8mtg+0m47TqYqCz7GpijK5HSS4aKqVi+Zm4bnZE0EDF5xdoHkjtmoTqT00K5a+d2IvfbIpZKPPxT8nl46YyQzp4YjogSkxXVTW3OkaXu8oWxOPCr0GvCNsjbEevlkfkTQVsE+dd0SItlgPOF+1Gbji5pihgsMv57ml1foPfZuKPfVSBHh9TH9O6zvK5nDD1JgOk6XhMDUvX6GizknXF6d+LZp9eTXwSfA369ftWzPM6x0NJ8fytyKQUlUPUk21ItVcExm5m+/+pIzxz+p27n47eOGd16MnbZ+53NT7k1Y/BwGkD9f+pMUviEVd0+9PWiP14xU9e8Sfe9L92K2rUSVmGgABcIo0+XnWHp2XsLWNqfcnWT+aFZf95Z2wrctKZtbbaFmrpvYnuf6HGjtyf1L0fyqv9ntw6U+T1pOXv522KnZV5K8DLN2dzjCLMEmTov9mbfpqv8YkIXEcxx/6VfCyvyN3Tbvi1XblzPboTyNW+wP0Xe0P+hNYmACu1f6uL4kUtCGq401UhpTPHDAf8r+lYnRZ5oV7Eybk2b8PK1jovPT30OWxVVhGZ+oPU/iM1J/4P4ncL0eSfj7EL9CgXFwjBkLEgeAETEqZAo1S0v0Fz89cDA5fZSl/fki19lgVFtOruQCYQKmTVpQM3AVZvw9wMIryFXXobjQCj8Ro5uxVVx1fv46eNg6POufoGFlTq+r5Lyl5Qa6qvyQ1irI5dczxvC/74elgzcYnEy2Koxacvv5u/Q3h9wcfP7m/rk5QNR74RSAJTzt+j3Trr4BMNUNUImkqrRCVSBZ6HPhlVgd69fvsjsupz1pHbDx2aNCd+9bLTXmgF1NhjLQARS+JQ2DIw6pYvvY9bG1WTYdVMXMiNaX69q8pCKYiww3Y2kyj+nW5VH/BtqdRa6d7hM7Y20I93eXzaNpg3Il9bIJ0mRJXImtqtC0nYqFgYYMwpCnUC8jCGiCEIiwZvFivFcUpexYeL53hF7bJ989LsScvbdbVP/ZeQPKeeH2twD/ACnhQEQo7uVkWYuhPUzglisDUH9eywW11l26RfUZI4g4cftR85yAXKxNtcGMmNIxVOAAM8fsL8ai0OQ8AU+RpUGBCLrFCdpCo/BD+oHmeh1Sw8Ocb8VZRltvoqyjwsarEISbeFQlBIQ6w5gQlyMCDqmprpJlbXphHI1dVXow0P0486gc5clAxWHvQChYJDDrCvCl5BnalQ4tBEiVFJx4fdpW0kx4tis67/e3FYz/+3p9ujznO1a6GnYUEIN5aAWnATjRpA6QVa/+espIxIc684dQf0U6frf61RUH5SXfVZ7P+8DRiM58pcGmsFRdM46fqQcOF3G2WnXlx8K9Ng3asq/Vm7tzJk2jDsaNqJtjOiSuv1Ix6ovwgd8wnA272k6dnwb197Tr46lfw4jHn/oOhHYbz1/m2FaasXHIJ2S32jBk06FvyaRHKK2pI+SNWVFrHMhTuOjbEH9UizC45aOSQHpTcnRsWc4u/+cZCv6c+x4bT1akf8SBbbPrpNL1MNTX2pCsATFAjrkTTUdiKGWZ6XSi6xNrQYZ5oXmV0jK2mtqSGjwz+FKRcUErlafZHazN/Jc80R2ub+AzhrTbAjpUJOI7Wfg9asy00kHuZPeTMs1f0gbxWiDgVx2JECvijDrrQD7Bu91MzL3nI9ox6dwuHXPE09kzQsyDCTKEO6WChn1sMWnEN+t5mjz5TNPVBX/MrlLqAH7f5xVcDen4ftHVQz+RWg+t+ZiTwrwHwvCBqVYgF/Mniymci1zd74Jk/t60P8I7xoJaRWkbQBf7jLMvGhU0mxu7q9t2oiUPUu431chD83jB2QoFfBMFP1IDfwOzBZ/7MlWnM/JA17fseVU2K3acMTJxQ9ussIyF/bwciLlgfhjTz0fagta0G8oZmDzkTHH0gd+gjkWPEr2zpxP7ehpX5vX02RG9q1XdS14iAesbOp6G4DwDYZ6KwL4TinqTBvpHZY888n18f7K3CQN2uzsBmaTjvl8RNEZtstu95+N1PUUai3h7gGhTOJfHFsDVSg3pjs0edua9VLwvfRybH4oYPBwWsOsH33LWyY8/k0oiFtXMPOwe0+soEIl/UBYA/EwX+ZRjXdNWA34QL/Ge/b+vRprFD9Lwc5zmZfw9bRR9zDK5IRdShciHdiLgfJmnVoJoLJsThb8lhSpUCF3GU9gb+1vDCzMG3Yjb87Jc7wa5OKuL7LMzJy/oenesBomtbjR9kHdEGW52r/4AVrnbLat5GzlHvxkVgbWEFX1gH9FFP+UOHhQQMCz3w3cP6PgNXndN+XoIt8cIO7K1Rwg461302v+rdIKvUVTjPdlHkTZu1sUaqiz2gmmcHBCEXlUzqCgXBgbnN3Bj4ApHwPa8XoEja+lPcUr8fJ362NvSFPvAFIuAL1AmfZQffOl1994TnrDj9qrjvii9NAZ+TVvicK8MH32NvBHwdkfDdGX069LjgSNDKJ4uWLFo0YL0+8HVEwNeRDZ+xa2oQHzet+HiwlhXtDAPIpWKlMQOaQCREs3473erwaGnUzmVThac2BtevqUXGEo2+TUXtVHxFCgzlnjAu9xTUraFduzWjovY35++50CGS8essAljsi/VR4Ab4qE4JeIZsJEjVidLTMaka/AdMhkukoOpAQp4ZodTsXiScF5BGjmrB010xSa9OURHT3gxavRb3HsXVN7b/Itr0nVS4AqDOC8g0LuuI0a/cQOs9Adt/QcmyQfsva4T/Yh7wxfRfXO1cB4Rp2q2q2b9pK63HSKZJkisRCxeWuVn944uznSX17UMPvR3lKWh5J5nGqhP1yljwSuW/sTJkDfm9IOAotfeBrZcF5lBqb2HA6WTNKRQRSqedG/782/GTB54JmXy5d9PICQW3aNw4U2+NIN/6bxwpQbDzu1Z2bpkdO7p2pLSgcMQz5CqwpEX0B9eLnpdPsVHDIhyCv79//+vL0886IFUnBL6WTU5I9ZBzTys5j82OHCvDoyZ3IsiBrBBbpeGbkez8UigJSMlWB+13mHU2emIM/Re8rJGOCrWnghFlHs7Y6bcScxUWdpHf3Hjo6Fojo0yCtBdaSXslMDKKck+Uy1Tp4MYKB48EjDn/qCJgRopxocYDZENEWMeckUJOhVFN/xvDqA0jewxvLd8s3HjlfL9fXKK2VmMYBUsJOMMoni8iDfD/YVQVw6hxb4bLPl1wNHjt25DDOeP/mFPzYRRR8MhtVpoK/2fCqMlbn9stPjokakFOUV78sSVHzCGM4rXQyk4r4f9OGJWu7tWgmbIoMu9TzGnPHefQmg+jgGnURk7NnNFbQ2HUH3/kfTF2sE/wN7VObJiyKu+xacKou6tue/dusiVo7oFdPT0mfO1ugjCK56+VtPbCfymMYuYhay6MIjwAZxgFhJwKo5qZ/UoV83wifVaqrBNko3SXgMzZWedKo88OCPaO2B8qfBwVYKQguoJVqGwpgL0rVwlItlwDe3Ozh51ZA64X7InqZN0HTnlKB39+Icc+Otfjz1aj5ceMPS2jGP6qgCcX7FPhYd7eGthbmD3szMP29YFdj0MSPSM9vsx/p4qeu/T5q/YNU409Cy0NLse24FoLt4fLsa00mLfkwrzerVlC9+5nBWs63z783clRQp2Ya1ao3ARqpUqWgYAZzKGIJlppjDN1jVkyYxRPzLo94wsD9TT6Flybhs8A0JMBJUWAkqJgCvxWHyX4zNo9o+oCjcT9MsCdB39LeFJl3Ft/lLgzy/aMLgs0EvtsiH08wH5rZex9PkrsmTVkxpaoGQn9agh9fwD90srQ+36U0DMLyapeoWYk6K4/gyKzMDjVqQy630cJOrOAzOgCNRMIfFFngP2Wyti3+SixZ06MjJhyGYn6c4B6dgZT4tt+lKgz50VGzLiMRD3/FyDr9Ziot/s4UWfMjKo64TIS8hs/Ub+NR4PcnwvyfybvXO/hb80v+Nxr6UZ5zAZU4RMdc8fqx1yvkq1veK6DGgTcCN585NE+2coB9CUwQ0q2GDNcZimYnjNcTj7qgr2BcA2N5OP/AAAA//8DAA==
- Contains a cluster of Grasshopper components
- true
@@ -35790,13 +35776,13 @@ Right-click on this parameter to set the matching method.
-
- 8303
+ 8307
938
70
104
-
- 8337
+ 8341
990
@@ -35815,13 +35801,13 @@ Right-click on this parameter to set the matching method.
-
- 8305
+ 8309
940
17
20
-
- 8315
+ 8319
950
@@ -35842,13 +35828,13 @@ Right-click on this parameter to set the matching method.
-
- 8305
+ 8309
960
17
20
-
- 8315
+ 8319
970
@@ -35888,13 +35874,13 @@ Right-click on this parameter to set the matching method.
-
- 8305
+ 8309
980
17
20
-
- 8315
+ 8319
990
@@ -35934,13 +35920,13 @@ Right-click on this parameter to set the matching method.
-
- 8305
+ 8309
1000
17
20
-
- 8315
+ 8319
1010
@@ -35980,13 +35966,13 @@ Right-click on this parameter to set the matching method.
-
- 8305
+ 8309
1020
17
20
-
- 8315
+ 8319
1030
@@ -36026,13 +36012,13 @@ Right-click on this parameter to set the matching method.
-
- 8352
+ 8356
940
19
33
-
- 8361.5
+ 8365.5
956.6667
@@ -36053,13 +36039,13 @@ Right-click on this parameter to set the matching method.
-
- 8352
+ 8356
973
19
33
-
- 8361.5
+ 8365.5
990
@@ -36080,13 +36066,13 @@ Right-click on this parameter to set the matching method.
-
- 8352
+ 8356
1006
19
34
-
- 8361.5
+ 8365.5
1023.3334
@@ -36125,14 +36111,14 @@ Right-click on this parameter to set the matching method.
-
- 8293
- 1058
+ 8302
+ 1074
80
64
-
- 8337
- 1090
+ 8346
+ 1106
@@ -36166,14 +36152,14 @@ Right-click on this parameter to set the matching method.
-
- 8295
- 1060
+ 8304
+ 1076
27
20
-
- 8310
- 1070
+ 8319
+ 1086
@@ -36206,14 +36192,14 @@ Right-click on this parameter to set the matching method.
-
- 8295
- 1080
+ 8304
+ 1096
27
20
-
- 8310
- 1090
+ 8319
+ 1106
@@ -36245,14 +36231,14 @@ Right-click on this parameter to set the matching method.
-
- 8295
- 1100
+ 8304
+ 1116
27
20
-
- 8310
- 1110
+ 8319
+ 1126
@@ -36283,14 +36269,14 @@ Right-click on this parameter to set the matching method.
-
- 8352
- 1060
+ 8361
+ 1076
19
30
-
- 8361.5
- 1075
+ 8370.5
+ 1091
@@ -36321,14 +36307,14 @@ Right-click on this parameter to set the matching method.
-
- 8352
- 1090
+ 8361
+ 1106
19
30
-
- 8361.5
- 1105
+ 8370.5
+ 1121
@@ -37620,7 +37606,7 @@ Right-click on this parameter to set the matching method.
- - C# scripting component
+
- true
- true
- 4449a3aa-3a32-4401-9015-74a68e1af500
@@ -38282,7 +38268,7 @@ Right-click on this parameter to set the matching method.
-
- 7F0JVBNX9w/7JouiuFLHHYoColYEEbIAYU/BulWrIRnC1JCJWQTqUlDrinu1LrUiWtQKVlQqLkX6Wa1au7qUWneta/tVT7W1tsr/vckMMMnMkJhQaL9/zvGc8LZ593fvu9u7GV1FuEyfg6p0deBjx+PxnME/L7VSr8BUE6eiGi2Gq2CXBDTDbvhxhUOoeWJUKkc1cAicCT/uVFeCCDa7gabFOz7E20QnJO4Y8p/j02XferlINOhUDM2F/e7woRnZYBW5J9kchyl1hjVhp1sGqkRlOrARb7I/BdVmj8xXo3CEAxhhD/5Rc1NxTY5UCXt6E7tZLadmGZZB5fV9q3ny9iI0C1NhcHGJBlejGh2GauEAR9APl3YUSXXEcyDRdejuy2vPXnD1EKFamQZTw2nULnmuSSiqTlOjRAsBlWOqNAel+l3ErwwKVmTnuaWDzUBUicdQkHpSrUJcb+CFA4Um2NfrBvJhMyQVfpxHSjUKlBj5Avhzya26up7PwLbH4XgObHQiRhVEO40ClNMe5QZbTB7jli5TJ0vzcX29IMAnucdrcL2aNhg2OxHNBImkWDgLwBg58ZyeZHME+DcJjB4HVxfiSqVUrTWAT+zEGTThek0Do8DmG+PlDqcYgHJK0KE59VwhdgtbaNtyaMCEGAD+Zf8cYM93eJi2/e730x7N3HiA7LYju5ci5XY/te2bVrVjxuCKDb+NJ7vtye7f3vTYXLK7QrzpzGzd96l19ww023HT7EjSHGYWzcXFxXSa3VLRXIR4TgPJ9qwk25mSfKfdEjxsgkvsvEW/pIx955afM1+vy8Y1NEYLcXW+BlNk66inOoaFhg2m7cODL9XgKiQdAwrAZTSaqcV09X3+2TqdWhsREqLAdNn6zGAZnhMilWrgUFw2uU28mJ+MZWpAg+EcwU1CWXSibR22uBjG5VNiRADUsF/4rC7peCY4kkiKLBVFlUhfhK/V4jIMnEitfQIBKyTa+EMnJV4j1WqzcTU42y6jGvQZ7PMODx4YFhw2OCw8LHhoaOhAakcUk1vPjqAQtK4dEbqxVe3IsdXsqG2DUUnLhLq7/iR0gysZ2mjnAbY7G9rhkyG7CSGMf6XBhh4SnX5S4faKuOSmcOajKROv07bnOnYcIlFKVSg43iqdFFMZzCc8Z3B9JoPlPRrXKOUImKiGE4OdxZhc3mC97NokqLQ6qUqGxuuxeowu8O9Uv9uhbdzHqRsm+c4O+Yl5E66pmGxy4x77sePc+TqdBsvUA8xpdqxBifaCfxecjOUV9BHxeLMEPN4VvpMEm4oTMHUnej+P5fECRR5qqUaaMxFTqfUEXtDzsGcjMw0oO0yF4FkGOhnJSn+tKvxQklNMVdZnB/sX7+lNI8vZsIIJUXZprmnEowzuBqHhPTKAfpehplbcPOqXAep5fQH1aj6PV2NMfS3sDRR5SaD4aXXAwwLOibSeYSZa1mCkNIDY7MZSZTrIUSLVZVNkOUwLneEIjQ2cQzkNwBrjGjmmIp2hQQzHhfq0MTAHeBKNuGPHwh0vuhAyMufwS2dKi8VicVE2P3PaqNSNNOY4MQucncTmvHn8OcmbAibehJ8ieEMeYju2Q9xxdEAvZYelcaXLdwvERc6ldBeRdPVMz7ATC3zdyRmIFAg48WQETMURqSVnutph4vveaJ5gU/v++6orttUw7skEYarDTPTmfxPLi+kK0JsLznWowAi9+d/G8moQk3PtwiE5vvEonoPqNPkIoFdt2AsjeXkrI907h9YI11zp/sreg5ESusqiVjGVoHgTCbJzNkgQ3Bpcec+93tcKpywS7toaEXlnx5cIk4DBeWZCtAZAVNOVPPzFxgJ2BQL4Ag0iOxIiNtXn0xA6cByvwJQNFzYV9ItZv99/Q9WnAsXzHi8jcIxPrS3AQTjB6dUimtGJQBYOETOqw8af+9Hm9lukRNuRfEbliIIUZ0ZOV3y95EmewiGt1Kna5aN9MSnPfxKs1aW806SoL2Pipvg0Ieo0DKjUBKs6GAm4qc2CwT8h73LAf0YQHqU9iAtc9m7qnIUzHybd3v+UHoDVr2KKwpjmQQHhRKEXZVHs2SzKnNWnMoe9HizY+eRnkXzI6P00etrE5oHDIEeEes1UBtfQmQXMfuQ0KSKDE5HMfPBVq0ZlWBYGhEyOGWA1z7x8V3b+j3Nl68Sbi152dGn/yWD2DZpg7gB6zfWcagGW/gDLhcC+bDO2L9u+B1gGWGRfvIktQeOCEltkpK0H1mft9Q6/xqzvNb9u/Tf8w3TdyUyUnbBJ3TlJfMjnQVBATPE7A/buX73zvpW6s7iWOE8scvaw1sT2UoeNzbAEweQb9KgJaGAohASERiUD0eqPDIzia2T9kbCojBwc12UHMuJW1r1sfZ3/W6lzpl451ff6Qhcabo5wdVPYRtr8/BG49OLEpU+L2BRnlT4HBKyNSWrMHvsm2NMztp4tSlSl0GUjUh0CmAAiYMAz4kgzcuWzAyvKHnc6IzgsGb7zzKrr2+nSnAEXMI3skkObhy8BnHx5saX5QiW7ebzBMY1549AEbxAm3kANyMmZi8rs1yN97sVVTpx/tXO3m0dpnHGIVckZ+DKwefgygJMvIa2JL5ZFogZLBMwbOxt8Xx117oun1YmFbfgzFgrC9jyvureSD8h5Up/Ph3wwtnVy2BtA+Q0ObH5Dn9PhXS6tGR+78sGhLQMPtRPSzXJaVpYW1VnqNwSS0yi/IRekiK3wHApHCd3PDk8Vruyc8cGn3Txr2bdogrqzoddc5+EHELz7AEDnMDkPyy6AlFSX53QecGIfzEmn/8R5lvZ3EiwM+++KW98+m2kj58FYSK11HgA2BT5sgddtiJyvRVGpN8k4ShYYsUnos2u6S/TUpL1F23seVb6XTA9VRORUU3hETcLzw4jIWT9+ckO4pFc1dmPB5QBbwNOBE55OrUcn3o9m8iPYpLgLEfwjIBwixRiBN6REfMXItNxCfvj2P/9K2Syc+FbNunaez5lJsLPWTEGWdOFkib/IEps9QYhrgPZDdNDrzVJKFcGIBNdqsUwlikyVKvWoNsLT3dNdhQOwopBQT3dttlSjBl8HerqDyzxg3KOQMNBKOMTg+yBPd1m2NCcLLBmFDGaEMrX7m7OPbj8Vu9T92KILNYJUek7OsB/t32FrCDC7c4LZs6Xlm5pkYu8pFe3Ml8lQrbbxWCY+t01HtXqlDlMpSHnXMvLm+Oj7P3Q9XZtYGL0xOqLHd7tbyAtwvUgqZkYvIBn2dqG8AEc2L2DBrsop7pLS1MKjIasd+cW36XpWgivzYVRn6gE4skAYKtSg4I4AJqDBXCWYgshwlQomIQGqUsTANOIyBsdUOq15jsCEjOCAkvtdE8o3bZBuqG0jZt6lCehOEthsJpzHz3AlqGvOMiaoXS0TMD8JBQq4LdeheSQIjDQXPRqlmFBxK3U9v8d1t4pt7eg0gxtIHQYeaSpoo5q0gMZpQCstYO0ZMpc3iUlDdDvLmLbmUrdeQiWuResFiBGd9WfTqv1nlIuXKtp+8MvrpQH0CztiAfnfcQgJ4hFO4lsmLe2SieNKVNpQjGRZRrlBE3KywThRZXow4VTT4FSitDknws+RYrgGcAIxPr9zYC9CqUOnf3BQFLnu6twHIQ/itnlVTbK3e7NTswVF2dC2BwNAtzAFRbdhUBRu+6Do1R5bR/X+WSqo/H3h2PsrHKtaZ1CUB70iiM1jpmMfA7DhDTTRea7WBkV9sUvf3Ivom7Lyz8eP75X00LRLUIEySUB1bJ5aA8xPo/XsB+TZLmS6dDj08tGbaFL5pej9bj51abYAbxAneC/9r4RM0jtnQib6aIS7e4x/ctI+4oUWCpkIloRzsiSytYdM+5Z94vbwnl/ynLUDr/acf3BCi4VMBJhRnGDG/I+FTM8qXW9F9h4gWs7TaI9ebXenhUKmSRdJtc0YMm2BveGUj+D8TyrhcU1fNKE81j+5vMRl7cQ3a8ObpYSnBsh1jYg1QgJyHZPYPCU8d1MeJg19PSL5wGvl0o57dDdsV8KzoeOw/9YeXJo6N/SSwzBMG22lafsaQBQTy5Yt6QQgqolvhhKeF/Mf3D+Ue0GwbEVaz6mBqp9aZwkPAU4iJzjJ/1/Cw13Cc7HuR+eVsrtxsx7UvVw750Boy5XwhF8kRZ3xMrDgIiHqzVPC0+fW4su+Y8OSF28/8NV4x5CSFizhIVBI5EQhmbIoLmwWRVi16euoef4pq8dXCiKH/NqPRo+X0JA/M8R0WvPjTn9qIog10Sl6FIBYf8lsZt4tCD16J1TbNnkL2is6527PAVwbM7UuZL+5BaJXyUt/xju4+dcAkmEm1sXNQm/FsFVobsisJCPZfkMnez9y2xi39YO9L3vklQ4ySi4xk2tGEGrsBZHdcChxtndNua7/Ynf8W2Pe3VHp3Gcik2jaW1AxCQCtCWCtmIRwB1mUl4uAooep9JguHwoScOXB42DhjxrXEj92gMU/AEwFELV8WAEERU2q02tQ5iKg5XVVPWRrVGnL5+dWtgt0uEKD2b3hYX+HNiPAGsAJVmhr8NktLQXqXZ+PlxE5UUSJ42okS4PnIFKlklQGjNwZLcYyy2Z2SqmO9HP59bwYMXLZ4WqmjEluHsaEcTJmSKtIsNpZEh73FuiVChAYS2U6kCmA2YJGtyRaVAF/PcvMlqfiF/ZOnBMm2Kzz39B1bzd69OFELGvKFkHzsGUoJ1siWlMOx6Lsd59EcC0DzgrFCBCayRsziOPUOJ8rulPY/njcXA//90sCfF5uoUCXd53U/YyBrgj2hlFuiSubW9LdY23Pm+unx5cv+F3/xeApTnT9HKfE1GypcLZYN4iYRCXC9VriThCEvST1iAIgiRp6zXNQxON0tycPXyCcF1L5avX4J3lsWzTB3BH2mVsddAnkBTqSnolJ3Lvsskk9AaEeOOTLsz4RngV2wUhYmzHHXhu981J8RcXnK5NnLam2URrc+Ora2uKXS0R5C1txwCWTuqmmQoD2aQyiwAjQSkcscneALHX/+eSOG+et/Y0OEByJmpUPsLY8AiLgz4lAd5FFyscTSqaaswzR2FFsqQKEKyT35zPRnnyF4L5FEaCHQT8Q6Q5GyuuWfbHiYY573Owq/pjcQfuu0uvG40Ce2ZTwuOYh3J+T8O6UdnVj066nPYK2bv1sSey8CW47/XrLiuixlQQWBiAJKks17IsjUS2M+IjCAoNjYfD7DCpXZlgHWjXzFOwVzeGSmz/2TijMe7h8y8enj3Ht0jQCTFARHWbCGvAj8BoGs+UXkZvAaA2zSM92l9SjoEEVMKWAqWRKYHbAN7AX5uBvVa7Gd/Ls0eKFR+YJU6WjDxrl0uCKz5NLm3NX/nLoDxlxhX2PnHjRrUxtpeYNB1jVDGarO5gOkRzKmGhkw6o38QApyMWSUAU0FhwtyEkr85nDONmns1Hfwz6pRVuvV+RvrLhhI1Nl7EnZArBhnIANt0xRCwlZCEk3wKVBlUTWSpsNNFhAKLilAqtogRUCQTH4QwbGysBfKh0IjMHfmAr2MQO6ftCSX+e+20nw9uLF7yZJpmTSb/jTGz3IFNd023v6N0lJW8ME3I2bhKSZaHkuUUMMx5JM+AMRI+AjULTgyqNmQuBgf99S/lz3iOiTs6anmnNO7SX9mgefYZz4DKeMgTubMcDXLeEtjPcVFy0cmak9FDGZznKhHoTqIPKBl/10U0C984IJ5uHEtAANmoNPRQMRVIkaghlMBeyDEoRllAMOwFeDJAH8nonpkBypdnIwI+QdZo9d1X7KxviDPiuDTimVr7Hv0tTfhr1mIjrmNpFtARepTHZAfAfgPcTaSrw2yRAAmAcE+2Ik9ttNJxL73/wlpnBbznl9xHn6bz0c4XSz0h/Ne9+UDaCqgVBJmIRvGwRyEGsdiplQgbIdpZKoBDPwltkIPMis6xJXm1I5s8+qauekERaIhhnG88NfhwjfiD+Wup13o+q3FRKVLVAbwolauFXJC0eTQY7PV7RHjKAeyz7CnmOEHTHCgWuEtUUAHpC/MLcI4GKUjuvouXn7xd7xG0o3Zpfu6fb7c54lKzV1zR3ysKiZKgT/MugVUlN7sGlq3tyzoTu6/CAo2PzgrlKAFdNI8UiGb+PSICOzpQyKms1n70zO0oFZSABwVsFtDYiAdTize3BSU/ddQkxGXNnoQQ5dD5wNYN2Baf2fodNMuO7fIN93soJJDd8GHlMB/f6gseQw1vWmGoq/gdZl9b4PjPpe+DhtVfL2oSdl0w7MOETXI3GYBmhtwzKmEsNvUo8Ye1ZW6hEexKAvm08p+tHkXUVN3bD40RFCpAogQCxIPfBRv//2Kte48rrMTr19FspoSHlmoCDUk7NCZfuEMIFFECcWwf/YhLDnSI0eRbAshI+MQASM7DA2UYynEp5wU2aMsH2d001SMI8zMePTm4RgWpSZ8WqEQBQLBPt2fDDiXOBx0YIjX2ZU/fWknAaB97WCUgTotlhSt5n65iOimgeHIE4cgimN34ZN49/Ix/5aPtM1donT0GMFue/QU/pesbCaEd6wWVgV3r9+IpUOlwJ/NBttVBdO8AcFPpN5AdH8Pz9cnZFYnVT+fpvr638aK+Hap6l/DvvNzXmeApYSFouWAMNQYGwYOn0JemNY/XP2a3niVRvkLhkJ/Ci2PP/clMnxBR/tK9cl5Hd93kSDVzpaDy32BspWGnb3sPjA1ajKxB2vZqGizMSDVhqLXQC1GBgn3geyeN9YFnVfAFmMsihj00dCEQEDaIMMyfEcIH1NIvlsQ+bn85K8kwoXeKzxvho+jF5AU7+uKZq6Jk3sCfvg7jtX+cQu21wWI5KMTbEBakCaOFArEFmWtulsyD7AFCA4bfVHb5puBiNUxu/4et50oLUvBvySlB7GlPMZeOYiLdPoHUYSlRo6ZCpQfkAxc2AwbELU0eNHPk5cN9JnZo/xy93o1aXkOn/HC1sIFEZwohBDR6Gpev1wvkoBStIDwKFJl8oxUDkWCGtbQLIOz4Ex71RtMEzkKfD6e18uoLoU6090+sMndefx4tyz3mX0wjQn4lFmua22gEnICVMsZfY8/+lm7+3a8ZX6irkxHwzN+O5QjGp8s5m9KnivI2Qze6GgQK0gqTnM3sdP22+cuNdFWLWh3+Rv9vxc2Mxmz7jC1EoFfhzelYnYFHjRVdaK6GYwe9JrA79ausJP/J4me/9LtYvybWj2FLpx59UzlQlLn60sPNKvRGED1IA0caAWk9asZs/4uqqFzN62a6T0MGqyn+CZi2s2s+freGHIJzPfSFn/p/zue3PuP2oxs0egkMCJQlJLmj3s1pj0XQt+F62xO7FkQv/JQS1k9giYUjlhklBmz4vN7CGKXh/NX7xAsPJIWfLaP/ZPo9MCL9/y6daO5eKBLcXjy0dyMQ1K3BeCMlpD6MkEqvFNAcNGTF94ECtXgNLkppTVSf2xcbe3+cUWdH3vjehePkFWKqsr8LVg4wDuYmgY+UyvXhxP4e7d6nE3fj+QObi7kr/eHdgk9OWzfkv7/M8g8ZrTl/cseLX4rpXQxxwHQl0nBFcaTNAHnADW1Y6C3qfVQ2/8O2NLoA9rEnrNJX3XkE13xMvj4327vHnkhC2gdxFxQF/gRkHfttVDbxy2mwO9l0SDZ2HAjAiBHQRuU1MMqHz8yWTHmtPCyguC6JRrfzyyNjXwGVAs8P03ZUwMcAUMiGlHMaBdq2eAsQNpDgM8CXVvKKfgN+2j1oUU7V/0i3vsru0vVA4Kc7tjA/yJsthdTPj7wAPQmcLft9Xjb5ztMwd/7xQQnwL5r3/PSVMcKFqVsONwx8DkEvXmQruSJROs5EDNZ8Tv8sEXJg7EnCBSiiQH2rNx4Nlbu7f4BjsKPhrfaV2pOuV9hvCSzgHCezOEr1odnsP0X2G5G7oar8TzItuMMLR1Af7cEHEPdHpU4uLXqro9VWRFtGw1mh3bT2FvAcvcDV5FA87V8EkedXguHhH35387i5q887dTZhVfPpQfW56e/vbO5d7v2KZ+xriSwEo+5N2jfl3UmA9+bHzwu7ZY1C7iK+GmIdcPf3g8V9SktnJrfkaYreGMvX5rAgozIzU22G/D92KNBbBPbwx7x38l7MYev5XxhJXII0eBWX4KAoZljZHv9K9E3tjhtzKcsAXyziIj5Dv/K5E39vRtEk1Yif+yT4HO8Ya1AI3x7/KvxN/Y07dFMGED+Av8APynGsPf9V8Jv7Gbb5tYwkoGhB4B4UAEYMB5ggH/BwAA//8DAA==
+ 7F0JVBNX9w/7JouiuFLHHYoColZEEbIAYU/BulWrIRnC1JCJWQTqUlDrinu1rhXRolawolJxKdLPatXa1aXUumtVtP2qp9paW8v/vckMMMnMkJhQaL9/zvGc8LZ593fvu9u7GV1FuEyfjap0deBjx+PxnME/L7VSr8BUk6ahGi2Gq2CXBDTDbvhxhUOoeWJUKkc1cAicCT/uVFe8CDa7gaYluz7A20TFJ+wa8p+TM2TfeLlINOg0DM2B/e7woelZYBW5J9kciyl1hjVhp1s6qkRlOrARb7I/GdVmjcpTo3CEAxhhD/5Rc1NwTbZUCXt6E7tZI6dmGZZB5fV9a3jy9iI0E1NhcHGJBlejGh2GauEAR9APl3YUSXXEcyDRdejeq+vOX3L1EKFamQZTw2nULnmuiSiqTlWjRAsBlWOKNBul+l3ErwwKVmTluqWBzUBUicdQkHpSrUJcb+CFA4Um2NfrBvJhMyQVfpxHSTUKlBj5AvhzY21dXeJfYNvjcTwbNjoRo/KjnEYDymmPcoMtJo9xS5Opk6R5uL5eEOCT3OM0uF5NGwybnYhmgkRSLJwFYIyceE5PsjkC/JsMRo+HqwtxpVKq1hrAJ3biDJpwvaaBUWDzjfFyh1MMQDnF69Dseq4Qu4UttG05NGBCDAD/sn4KsOc7PErdee+76Y9nbT5EdtuR3cuQMrsf2/ZNrdw1c3D5pl8nkN32ZPevb3psLd5bLt5ybo7uu5S6+waa7bhpdiRpDjOL5qKiIjrNbiloDkI8p4Fke1aS7UxJrm23FA+b6BIzf/HPyePeuePnzNfrsnANjdFCXJ2nwRRZOuqpjmGhYYNp+/DgSzW4CknDgAJwGYNmaDFdfZ9/lk6n1kaEhCgwXZY+I1iGZ4dIpRo4FJdNaRMn5idhGRrQYDhHcJNQFp1oW4ctLoZxeZQYEQA17Bc+q0sangGOJJIsS0FRJdIX4Wu1uAwDJ1JrH0/ACok2/tBJidNItdosXA3OtsvoBn0G+7zDgweGBYcNDgsPCx4aGjqQ2hHF5NazIygErWtHhG5sVTtybDU7attgVFIzoO6uPwnd4EqGNtp5gO3Ohnb4ZMhuQgjjXmmwoUdEZ5+Wu70iLr4tnPV46qSbtO25jhuPSJRSFQqOt0onxVQG8wnPGVyfyWB5j8E1SjkCJqrhxGBnMSaXN1gvuzbxKq1OqpKhcXqsHqNL/NqqjR3axn6Usmmy75yQH5k34ZqCyaY07rEfN96dr9NpsAw9wJxmxxqUaC/4d/7pGF5+HxGPN1vA413jO0mwaTgBU3ei97MYHi9Q5KGWaqTZkzCVWk/gBT0PezYyU4Gyw1QInmmgk5GstNcqw48kOkVXZn56uH/Rvt40spwNK5gQZZfqmko8yuBuEBreIx3odxlqasXNo345oJ7XF1Cv5vN41cbU18DeQJGXBIqfVgc8LOCcSOsZZqJlDUZKA4jNaixVpoMcJVJdFkWWw/TQmY7Q2MA5lNMArDGukWMq0hkaxHBcqE8bA3OAJ9GIO3Ys3PGiCyEjc46+dK6kSCwWF2bxM6aPTtlMY44Ts8DZSWzOmyefkbzJZ+JN+BmCN+QhtmM7xB3HBPRSdlgWW7Jir0Bc6FxCdxFJV8/0DDuxwNednIFIgYATT0bAVByRWnKmqxwmveeN5gq2tO9/oKp8RzXjnkwQpjrMRG/B1zG86K4AvXngXIcKjNBb8E0MrxoxOdcuHJLjG4fi2ahOk4cAetWGvTCSl7tquHvn0Grh2mvdX9l/eLiErrKoVUwlKM5EguycDRIEtwZX3ne/942CqYuFe7ZHDK/d9QXCJGBwnpkQrQUQVXclD3+RsYBdgwC+QIPIjoSITfX5NIQOHMcrMHnTpS35/aI3HPTfVPmJQPG8x8sIHONTawtwEE5werWIZnQikIVDxIzqsPHnQZS5/RYp0XYkn1E5oiDFmZHT5V8tfZqrcEgtcapy+fBAdPLznwRrdSnvLCnqy5m4KT5LiDoNAyo1waoORgFuajNh8E/IuxzwnxGEx6kPYwOXb0yZu2jWo8S7B5/RA7D6VUxRGNs8KCCcKPSiLIo9m0WZu+ZMxrDXgwW7n/4kkg8Zc5BGT5uYXHAY5IhQr5nG4Bo6s4DZj5wmRWRwIpKRB75q1agMy8SAkMkxA6zmmZdvSy/+fqF0vXhr4cuOLu0/Hsy+QRPMHUCvuZ5TDcDSH2C5CNiXHcb2Zcd3AMsAi+yLN7ElaFxQYouMtPXA+qy72eGX6A29FtRt+Jp/lK47mYmyEzapOyeLj/g8DAqILnpnwP6Da3Y/sFJ3FtUQ54lFzh7VmNhe6rCxGZYgmHyDHjUBDQyFkIDQyCQgWv2RgZF8jaw/EhaZno3juqxARtxKu5duqPN/K2XutGtn+t5c5ELDzRGubgrbKJufPwKXXpy49GkRm+Ks0meDgLUxSY3ZY98Ee3rG1LNFiaoUuixEqkMAE0AEDHhGHGlGrnx6aGXpk07nBEclI3afW31zJ12a0+ECppFdUmjz8CWAky8vtjRfqGQ3jzc4ujFvHJrgDcLEG6gBOTlzWZn1+nCf+7EVkxZc79zt9nEaZxxiVHIGvgxsHr4M4ORLSGvii2WRqMESAfPGzgbfV0df+PxZVUJBG/7MRYKwfc+r7q3kA3KR1OcLIB+MbZ0c9gZQfoMDm9/Q52x4lytrJ8Ssenhk28Aj7YR0s5yamalFdZb6DYHkNMpvyAEpYis8h4LRQvfzI1KEqzqnv/9JN88a9i2aoO5s6DXXefgeBO8+ANC5TM7D8ksgJdXlOZ0HnNgHc9LpP7GeJf2dBIvC/rvyzjd/zbKR82AspNY6DwCbfB+2wOsuRM7XoqjUm2QcJQuM2MT32TPDJWpa4v7CnT2PK99NoocqInKqKTyiJuH5fuTw2T98fEu4tFcVdmvh1QBbwNOBE55OrUcnPohi8iPYpLgLEfwjIBwixRiBN6REfMXItJwCfvjOP/5M3iqc9Fb1+naez5lJsLPWTEGWdOFkib/IEps9UYhrgPZDdNDrzVRKFcGIBNdqsQwlikyTKvWoNsLT3dNdhQOwIpFQT3dtllSjBl8HerqDyzxg3CORMNBKOMTg+yBPd1mWNDsTLBmJDGaEMqX7m3OO7zwTs8z9xOJL1YIUek7OsB/t32FrCDC7c4LZs6Xlm5pkYu8pFe3Ml8lQrbbxWCY+t01DtXqlDlMpSHnXMvLm5JgH33c9W5NQELU5KqLHt3tbyAtwvUwqZkYvIAn2dqG8AEc2L2Dhnoqp7pKSlILjIWsc+UV36XpWgivzYFRn6gE4skAYKtSg4I4AJqDBXCWYgshwlQomIQGqUsTANOIyBsdUOq15jsDE9OCA4gdd48u2bJJuqmkjZt6lCehOEthsJpwnz3ElqKvPMyaoXS0TMD8JBQq4LdehuSQIjDQXPh6tmFh+J2UDv8dNt/Id7eg0gxtIHQYeaSpoo5u0gMZpQCstYM05Mpc3mUlDdDvPmLbmUrdeQiWuResFiBGdDedTq/xnlomXKdq+//PrJQH0CztiAfnfcQgJ4hFO4lsmLe2SgeNKVNpQjGRZRrlBE3KywThRZXow4VTT4FSitDknwi+QYrgWcAIxPr9zYS9CqUOnf3BQNHz99XkPQx7G7vCqnGxv92anZguKsqBtDwaAbmMKiu7CoCjc9kHRqz22j+79k1RQ8duicQ9WOla2zqAoF3pFEJsnTMc+GmDDG2ii81ytDYr6Yle+vh/RN3nVH0+e3C/uoWkXrwJlkoDqmFy1BpifRuvZD8i1Xch05Wjo1eO30cSyK1EH3XzqUm0B3iBO8F76XwmZpLXnQib5aIR7e0x4eto+4oUWCpkIloRzsmR4aw+ZDiz/2O3Rfb+kuesGXu+54PDEFguZCDAjOcGM/h8Lmf6qcL0zvPcA0QqeRnv8ervaFgqZJl8m1TZjyLQN9oZTPoLzP6mExzVt8cSyGP+ksmKXdZPerAlvlhKeaiDX1SLWCAnIdXRC85Tw3Et+lDj09YikQ6+VSTvu092yXQnPpo7D/ltzeFnKvNArDsMwbZSVpu0rAFF0DFu2pBOAqDquGUp4Xsx7+OBIziXB8pWpPacFqn5snSU8BDgJnOAk/X8JD3cJz+W6H5xXye7Fzn5Y93LN3EOhLVfCE36ZFHXGy8D8y4SoN08JT587S676jgtLWrLz0JcTHEOKW7CEh0AhgROFJMqiuLBZFGHllq8i5/snr5lQIRg+5Jd+NHq8hIb8mSGm05ofd/pTE0GsiU7VowDE+ktmM/NuQejx2lBt26RtaK+o7Hs9B3BtzNS6kP3mFoheJy/9Ge/gFtwASIaZWBc3C70Vw1ahuSGzkoxk+w2d4v3YbXPs9vf3v+yRWzLIKLnETK4ZQaixF0R2w6HE2d4z9ab+871xb43duKvCuc8kJtG0t6BiEgBaHcBaMQnhDrIoLxcBRQ9T6TFdHhQk4MqDx8HCHzWuJX7sAIt/AJgKIGp5sAIIippUp9egzEVAK+oqe8jWqlJXLMipaBfocI0Gs3vDw/4ObUaANYATrNDW4LNbWgrUuz4fLyNyoogSx9VIpgbPRqRKJakMGLkzRoxllM7qlFw13M/ll4tixMhlh6uZMiapeRgTxsmYIa0iwWpnSXjcW6BXKkBgLJXpQKYAZgsa3ZJoUQX89SwzW56JX9g/aW6YYKvOf1PX/d3o0YcTsawpWwTNw5ahnGyJaE05HIuy330SwLUMOCsUI0BoJm/MII5T43yhsLag/cnYeR7+7xUH+LzcQoEu7yap+xkDXRHsDaPcElc2t6S7x7qetzfMiCtb+Jv+88FTnej6OVaJqdlS4WyxbhAxiUqE67XEnSAIe0nqEQVAEjX0muegiMfr7k4ZsVA4P6Ti1aoJT3PZtmiCuSPsM7c66ArIC3QkPROTuHf5VZN6AkI9cMiXZ30iPBPsgpGwNmNPvDZm95W48vLPViXNXlplozS48dW1tcUvV4jyFrbigCsmdVNNhQDtUxlEgRGgVY7Y8L0BspSDF5M6bp6/7lc6QHAkalY+wNryCIiAPycC3UUWKR9PKJlqzjJEY0expQoQrpHcX8BEe9I1gvsWRYAeBv1ApDsYKa9b/vnKR9nusXMq+WNzBh24Tq8bjwV5ZlPCY5uHcH9OwrtT2tWNTbue9Qjavv3TpTHzJ7rt9ustK6THVhJYGIDEqyzVsC+OQrUw4iMKCwyOhcHvM6hcmWEdaNXMU7DXNEeLb//QO74g99GKbR+dPcG1S9MIMF5FdJgJa8APwGsYzJZfRG4DozXMIj3bXVKPggZVwJQCppIpgdkB38BemIO/1Tka3ylzxogXHZsvTJGOOWyUS4MrPk8ube49+cuh36fHFvQ9dupFt1K1lZo3HGBVPZit7mAGRHIoY6KRDavexAOkIBdLQhXQWHC0ICetzGMO42SfzEF9j/qkFG6/WZ63ufyWjUyVsSdlC8CGcQI2wjJFLSRkISTNAJcGVRJZK20W0GABoeCWCqyiBVYIBMXgDxkYKwN/qXQgMAZ/YyrYxwzohkFLf5m3sZPg7SVLNiZKpmbQb/jTGj3IFNc023v6t0lJW8sE3K3bhKSZaHkuUUMMx5JM+AMRI+AjULTgyqN6YuBgf98S/jz3iKjTs2ekmHNO7SX9mgefYZz4jKCMgTubMcDXL+UtivMVFy4alaE9EjGFznKhHoTqIPKBl/10U0C984IJ5hHEtAANmo1PQwMRVIkaghlMBeyDEoRllAMOwFeDJAH8noHpkGypdkowI+Qd5oxb3X7q5rjDPquCziiVr7Hv0tTfhr1mIjr2LpFtARepTHZAXAvwHmJtJV6bJAgAzAOCfTES+82WUwn9b/8cXbAj+6I+4iL9tx6OcLpZ6Y/mvW/KAlBVQ6gkTMK3AwI5iLUOxUyoQNmOUklUghl4y2wEHmbUdYmtSa6Y1Wd1lXPiSAtEwwzj+cEvQ4RvxJ1I2cm7VfnrSonKFqgN4UQt3KrkhaPJIMfnK9ojRlCPZR9hzzHCjhjhwDXC2iIAD8hfmFsEcDFKx030wvyDYu+4TSWbs0r2dfvtOc+SlZq6upY8LGqmCsE/DXqF1NQebJqaN+986K4u3wvytz68pxRgRTRSPJLg27g0yKgsKYOiZvPZO5OzdGAWEgCcVXBbAyJgHc7sHpzW1H0bH50eWzpmkEPXQ+cDWHdgWv9n6DQTrge3yPedrGRSw3eBx5RPvz9oLDmMdb0phuJvoHVZve9Do78TPkldnbRz6GnZ9EMzj9D1SCymAVrbsIypxPCb1CPGnpWVeoQHMejL5lOKfjB5V1FTNyx+dIQQqQIIEAtSD33U77292jW2rC6jU2+fRTIaUp7pKAj15KxQ2T4hTGARxIlF8D82Iew5SqNHESwT4SMjEQEjO4xNFOOphCfclBkjbV/ndJsUzJNMzPjkNiGYFmVmvBohEMkCwYFd74+8EHhStPDYF+mVfz4to0HgfSO/BAG6LYbUbaa++cjI5sEhiBOHYErjt2HT+LfysD9XzHKNWeo09ER+zjv0lL5XDKxmhDdsFlaF96+fSKXDpcAfzUIb1YUT/EGBz2ReQLTgjw/WpCdUJZa91+bmhh/HSbj2aeqfw35zc55ngKWExaLFwDDkGxuGTl+A3mhW/5z9Wp541Qa5S0YCP4wpy7swdUpc/ocHynTxeV2fN9HglYbWQ4u9gbKVht07Kj50PbIiYdermagoI+GwlcZiD0AtGsaJD4AsPjCWRd3nQBYjLcrY9JFQRMAA2iBDcjwbSF+TSP61KeOz+YneiQULPdZ6Xw8fRi+gqV/XFE1dkyb2lH1w992rfWKWby2NFknGJdsANSBNHKjliyxL23Q2ZB9gChCctvqjN103kxEq43d8PW860NoXA35BSg9jyvkcPHPDLdPoHUYRlRo6ZBpQfkAxc2AwbGLk8ZPHPkpYP8pnVo8JK9zo1aXkOn/HC1sIFEZyohBNR6Gpev1wvkoBStIDwKFJk8oxUDkWCGtbQLIOz4Yx7zRtMEzkKfD6e18uoLoU6U91+t0nZffJopzz3qX0wjQn4lFmua22gEnICVMMZfY8/+lm7+2aCRX68nnR7w9N//ZItGpCs5m9SnivI2Qze6GgQC0/sTnM3kfP2m+etN9FWLmp35Sv9/1U0Mxmz7jC1EoFfhLelYnYFHjhddaK6GYwe9IbA79cttJP/K4m6+BLNYvzbGj2FLrxF9WzlPHL/lpVcKxfscIGqAFp4kAtOrVZzZ7xdVULmb0dN0jpYdRkP8IzF9tsZs/X8dKQj2e9kbzhD/m9d+c+eNxiZo9AIZ4ThcSWNHvYnbFpexb+Jlprd2rpxP5TglrI7BEwpXDCJKHMnheb2UMUvT5csGShYNWx0qR1vx+cTqcFXr7l0a0dy8UDW4rHl4/kYBqUuC8EZbSG0JMJVOObAoaNmL7wIEauAKXJTSmr0/oT4+/u8IvJ7/ruG1G9fIKsVFbX4GvBxgPcxdAw8plevTiBwt271eNu/H4gc3B3JX+9O7BJ6Mtm/5r62R9B4rVnr+5b+GrRPSuhjz4JhLpOCK40mKAPOAWsqx0FvU+rh974d8aWQB/WJPSaK/quIVtqxSvi4ny7vHnslC2gdxFxQJ/vRkHfttVDbxy2mwO9l0SDZ2LAjAiBHQRuU1MMqHjy8RTH6rPCikuCqOQbvz+2NjXwKVAs8P03pUwMcAUMiG5HMaBdq2eAsQNpDgM8CXVvKKfgN+2j1oUUHlz8s3vMnp0vVAwKc6u1Af5EWeweJvx94AHoTOHv2+rxN872mYO/dzKIT4H817/npCkOFK6O33W0Y2BSsXprgV3x0olWcqD6U+J3+eALEweiTxEpRZID7dk48Ndbe7f5BjsKPpzQaX2JOvk9hvCSzgHCezOEr1odns30X2G5G7oar8TzItuMMLR1Af68EHEPdEZkwpLXKrs9U2RGtGw1mh3bT2HvAMvcDV5FA85V80kedXguHhH35387i5q887dTZhZdPZIXU5aW9vbuFd7v2KZ+xriSwEo+5N6nfl3UmA9+bHzwu7FE1C7iS+GWITePfnAyR9SktnJrfkaYreGMvX5rAgozIzU22O/C92KNA7DPaAx7x38l7MYev5XxhJXII8eBWX4GAobljZHv9K9E3tjhtzKcsAXyziIj5Dv/K5E39vRtEk1Yif/yT4DO8Ya1AI3x7/KvxN/Y07dFMGED+PP9APxnGsPf9V8Jv7Gbb5tYwkoGhB4D4UAEYMBFggH/BwAA//8DAA==
- Contains a cluster of Grasshopper components
- true
@@ -39033,7 +39019,7 @@ Right-click on this parameter to set the matching method.
- Relay
- Pins
- false
- - fc3353e0-43b6-4c69-b2f2-d49cce6c4b71
+ - 745c82c7-2ace-4e81-8f09-d8b0244998fb
- 1
@@ -40020,8 +40006,9 @@ Right-click on this parameter to set the matching method.
-
+
- Contains a collection of generic geometry
+ - true
- 795c9bb8-faee-4f87-8226-91f1e73e3170
- Geometry
- Geo
@@ -40055,8 +40042,9 @@ Right-click on this parameter to set the matching method.
-
+
- Explode a curve into smaller segments.
+ - true
- 8d6d1c28-ba8e-4967-aa6a-e14b261d0761
- Explode
- Explode
@@ -40214,8 +40202,9 @@ Right-click on this parameter to set the matching method.
-
+
- Construct a curve from the sub-domain of a base curve.
+ - true
- 863dfa6d-17c3-4ce1-97b8-e103502c4da4
- Sub Curve
- SubCrv
@@ -40326,8 +40315,9 @@ Right-click on this parameter to set the matching method.
-
+
- Create a numeric domain from two numeric extremes.
+ - true
- bcd781c3-dcc0-45fd-aefa-e0c62b650ff8
- Construct Domain
- Dom
@@ -40478,8 +40468,9 @@ Right-click on this parameter to set the matching method.
-
+
- Measure the length of a curve.
+ - true
- 462b8338-9b2a-492d-9931-85dc85253275
- Length
- Len
@@ -40608,8 +40599,9 @@ Right-click on this parameter to set the matching method.
-
+
- Mathematical subtraction
+ - true
- 1ee4c910-5a94-401a-a24b-929ef9709da3
- Subtraction
- A-B
@@ -40724,6 +40716,668 @@ Right-click on this parameter to set the matching method.
+
+
+ - 501aecbb-c191-4d13-83d6-7ee32445ac50
+ - Cull Index
+
+
+
+
+ - Cull (remove) indexed elements from a list.
+ - true
+ - 37a2fbf5-fe8a-417e-9b2d-6e1d2bfa9fe6
+ - Cull Index
+ - Cull i
+
+
+
+
+ -
+ 9603
+ 879
+ 66
+ 64
+
+ -
+ 9637
+ 911
+
+
+
+
+
+ - 1
+ - List to cull
+ - 5080e376-8247-48f9-b9d0-1eefb1b7ef26
+ - List
+ - L
+ - false
+ - 4ef2047e-43c8-4803-b403-10a90c995df2
+ - 1
+
+
+
+
+ -
+ 9605
+ 881
+ 17
+ 20
+
+ -
+ 9615
+ 891
+
+
+
+
+
+
+
+ - 1
+ - Culling indices
+ - 0637770c-9a20-4bec-a8a6-911515d5f9bb
+ - Indices
+ - I
+ - false
+ - 62e73ff6-73ea-4eef-bed5-b84c535fd52d
+ - 1
+
+
+
+
+ -
+ 9605
+ 901
+ 17
+ 20
+
+ -
+ 9615
+ 911
+
+
+
+
+
+
+
+ - Wrap indices to list range
+ - 13dd374a-3cd3-4ef4-9bf2-0b41b263d541
+ - Wrap
+ - W
+ - false
+ - 0
+
+
+
+
+ -
+ 9605
+ 921
+ 17
+ 20
+
+ -
+ 9615
+ 931
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - true
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Culled list
+ - b6b35389-d50c-49f9-bfe9-d1972a6d7007
+ - List
+ - L
+ - false
+ - 0
+
+
+
+
+ -
+ 9652
+ 881
+ 15
+ 60
+
+ -
+ 9659.5
+ 911
+
+
+
+
+
+
+
+
+
+
+
+ - 99bee19d-588c-41a0-b9b9-1d00fb03ea1a
+ - Tree Statistics
+
+
+
+
+ - Get some statistics regarding a data tree.
+ - true
+ - d2760a5e-0217-40eb-b0b4-b525e09b982b
+ - Tree Statistics
+ - TStat
+
+
+
+
+ -
+ 9489
+ 970
+ 64
+ 64
+
+ -
+ 9519
+ 1002
+
+
+
+
+
+ - 2
+ - Data Tree to analyze
+ - 99b902f1-7d4c-47a2-8db3-0ebaf081b9d1
+ - Tree
+ - T
+ - false
+ - fc3353e0-43b6-4c69-b2f2-d49cce6c4b71
+ - 1
+
+
+
+
+ -
+ 9491
+ 972
+ 13
+ 60
+
+ -
+ 9499
+ 1002
+
+
+
+
+
+
+
+ - 1
+ - All the paths of the tree
+ - 4ef2047e-43c8-4803-b403-10a90c995df2
+ - Paths
+ - P
+ - false
+ - 0
+
+
+
+
+ -
+ 9534
+ 972
+ 17
+ 20
+
+ -
+ 9542.5
+ 982
+
+
+
+
+
+
+
+ - 1
+ - The length of each branch in the tree
+ - 7fc134c6-66d6-4022-895c-7815ddef6606
+ - Length
+ - L
+ - false
+ - 0
+
+
+
+
+ -
+ 9534
+ 992
+ 17
+ 20
+
+ -
+ 9542.5
+ 1002
+
+
+
+
+
+
+
+ - Number of paths and branches in the tree
+ - 56061ba1-e885-4e6f-9b45-f5f6c1a89b77
+ - Count
+ - C
+ - false
+ - 0
+
+
+
+
+ -
+ 9534
+ 1012
+ 17
+ 20
+
+ -
+ 9542.5
+ 1022
+
+
+
+
+
+
+
+
+
+
+
+ - 57da07bd-ecab-415d-9d86-af36d7073abc
+ - Number Slider
+
+
+
+
+ - Numeric slider for single values
+ - 0dc0908f-7b29-4670-8b5f-88a85675dab6
+ - Number Slider
+
+ - false
+ - 0
+
+
+
+
+ -
+ 9270
+ 870
+ 167
+ 20
+
+ -
+ 9270.112
+ 870.79254
+
+
+
+
+
+ - 3
+ - 1
+ - 1
+ - 100
+ - 0
+ - 0
+ - 3
+
+
+
+
+
+
+
+
+ - 3a710c1e-1809-4e19-8c15-82adce31cd62
+ - Tree Branch
+
+
+
+
+ - Retrieve a specific branch from a data tree.
+ - true
+ - 48550dc6-c027-4d33-b8e7-d101c93630dc
+ - true
+ - Tree Branch
+ - Branch
+
+
+
+
+ -
+ 9702
+ 894
+ 63
+ 44
+
+ -
+ 9732
+ 916
+
+
+
+
+
+ - 2
+ - Data Tree
+ - 3ebbbf29-b173-4998-8256-500e4fde554e
+ - Tree
+ - T
+ - false
+ - fc3353e0-43b6-4c69-b2f2-d49cce6c4b71
+ - 1
+
+
+
+
+ -
+ 9704
+ 896
+ 13
+ 20
+
+ -
+ 9712
+ 906
+
+
+
+
+
+
+
+ - Data tree branch path
+ - ad3b1a5c-b821-4fd6-a97f-5ca42d074c94
+ - Path
+ - P
+ - false
+ - b6b35389-d50c-49f9-bfe9-d1972a6d7007
+ - 1
+
+
+
+
+ -
+ 9704
+ 916
+ 13
+ 20
+
+ -
+ 9712
+ 926
+
+
+
+
+
+
+
+ - 2
+ - Branch at {P}
+ - 745c82c7-2ace-4e81-8f09-d8b0244998fb
+ - Branch
+ - B
+ - false
+ - 0
+
+
+
+
+ -
+ 9747
+ 896
+ 16
+ 40
+
+ -
+ 9755
+ 916
+
+
+
+
+
+
+
+
+
+
+
+ - e64c5fb1-845c-4ab1-8911-5f338516ba67
+ - Series
+
+
+
+
+ - Create a series of numbers.
+ - 554655d6-9254-4c00-a34c-d7b1ae8a38a9
+ - Series
+ - Series
+
+
+
+
+ -
+ 9468
+ 848
+ 65
+ 64
+
+ -
+ 9500
+ 880
+
+
+
+
+
+ - First number in the series
+ - 9f900ebc-d298-4c2e-b18b-258105875750
+ - Start
+ - S
+ - false
+ - 0
+
+
+
+
+ -
+ 9470
+ 850
+ 15
+ 20
+
+ -
+ 9479
+ 860
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 0
+
+
+
+
+
+
+
+
+
+
+ - Step size for each successive number
+ - 061156b3-ce49-4758-9a5f-7befc5ff4ca8
+ - Step
+ - N
+ - false
+ - 0
+
+
+
+
+ -
+ 9470
+ 870
+ 15
+ 20
+
+ -
+ 9479
+ 880
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 1
+
+
+
+
+
+
+
+
+
+
+ - Number of values in the series
+ - 2c190940-dfb5-4da5-9489-b79451c45490
+ - Count
+ - C
+ - false
+ - 0dc0908f-7b29-4670-8b5f-88a85675dab6
+ - 1
+
+
+
+
+ -
+ 9470
+ 890
+ 15
+ 20
+
+ -
+ 9479
+ 900
+
+
+
+
+
+ - 1
+
+
+
+
+ - 1
+ - {0}
+
+
+
+
+ - 10
+
+
+
+
+
+
+
+
+
+
+ - 1
+ - Series of numbers
+ - 62e73ff6-73ea-4eef-bed5-b84c535fd52d
+ - Series
+ - S
+ - false
+ - 0
+
+
+
+
+ -
+ 9515
+ 850
+ 16
+ 60
+
+ -
+ 9523
+ 880
+
+
+
+
+
+
+
+
+
@@ -40731,7 +41385,7 @@ Right-click on this parameter to set the matching method.
-
- iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABfwSURBVHhe7ZznW1RZtsbnr7n30/16e+6M9u0ec0IEARFQwZwjSZCoiEgSAQMgSbJkkCAgRY5FzrkoiqJERVu7ezrcvr86u7oGFUds7Rmqn/M+5ylP7dpn77XWu9Iu6vFPMv4I+EWGyeIfFE7LMEHIFJo8ZApNHjKFJg+ZQpOHTKHJQ6bQ5CFTaPKQKTR5yBSaPGQKTR4yhSYPmUKTh0yhyUOm0OQhU2jykCk0ecgUmjxkCk0eMoUmD5lCk4dMocnjDQpVKpVWq11YWJiXoFarDbNkrGC8QeGTJ0/Ky8svXrwYHBwcFhY2ODio0WjEPBkrFm9QqNPpqqurQ0NDIyMjY2NjoXBmZsYwUcZKxRsUGhPps2fPnj59KvNnEniDQsOYDJOCTKHJQ6bQ5CFTaPKQKTR5yBSaPGQKTQOa2enZOS71rHZa8+b1cRRyapydneW8+AeGZiVipq9T1d0yo2wa72qZ6mlTc3W3ck1zLZdCdJuammpqalIqlSMjI0O/FYO/PwY+Df2fCX2fCazU29ddmDx807cqKawzN2aqLPlZWdLz0qRn3JQk6pZFIfwNDw93dXWVlpYqFDXI1/Nb0fv7w6D6J0Bw8IkweMQnA5/s7+8tzRhLCGstTJgqT31y2S3Rxy0i0Ccm2Df9wZ3h5VLY3t5OFD558mRubm6lZpuVBaz0KTCsotHMzrLUdF3RfFPeL/V5f28q+PnY/kv7Dxxwc3X3cA6MC2peFoVqtZr8CYWG9zLeBPYxwsDAe7zc8JkEMV+soFoKGBzw7+TkuCJ/tjzlaVXm84a8H696pHq5hVz1jQzyvXc3sG65UdjR0TE5OWl4/1vBOgSxQZv3+ymKEe46nc7w2OcG67O7yChCkn8Og1i/Gh2wiNHKmGViYmJsbGx0dJQugYoj6jG5lKxO7eiWQBnqlIAlASEhbv45mM+zSmV76p36S+fuJoQ1Jt5oDr+SnxE9cOH49VBfbvqXoBARjRLTfz59Os9rW1sbknNPU8q4aE3F/OWA1VAY3WpqapCJeoN66InOaI7ahm5HAiMlJaWPHlVgICGGYZXPARbE6Fg2OzunpKQESTDuuxDmBgZbLgLWFxD3vIqZPIVqot6Lgoq+qIN2Qk1oHh8fh28EkAKMCNPDINmb0QzwHgZZEHHuhhUFeqRn3Oq5E1J66oxrenT3vdD6u0GKjFt9S0ch67IBJLW0tCYmJre2trAx29+5E1tTU4tVUa2vv3dWq8/U77OwQRDJD1BA2CUvLx+1Eau1tZX+VrS4cIl6RrD7/fv309LScGWe4i2LGBZdNtCffd+C8D8MjS6sjKFRE9WMZuXVaF8BlmLEOAEYjS4pZ3B3KVzfgBgXEDONEI9/EMzEYsT2tHqqofhZfc5P9bnfP0p7UpAwUZw4XZKsKbs/R3fzNoXSH+4fHT164tq1azdv3iQawsLCHz9+jMWDg8NKS8vxtqKih1GRd1JTMkeGxvv7htDIKBbqAfQUagtKYKi+vh5nhEg+jYmJ8fPzDQgI8Pf39/b2cXNzc3a+4OHh4eXl5e3j4+Pre8nLKzg4PCkpFeflcSzOysvXHDCZvRa3heKsgQwteGVrK5+yOBCBArhZEjyFLh+1+2cBxCMtvo7bqVSTj3PmKlO+rc74tiLlRV7MdHG8tir9lSLzO0bepvDp06d5eQVmZhYuLs7YtKqqqrKysqioKDU1LTExqbr6cWbmg/On/T3PRycnZF2+dOvkca+yksqe3h59ZvkVUr7RAydCiAYJ2AKbYrVjx45//fUaM7PtNjY2lpaW5ubmFhb6163btm5cv/7rVau+/vLLzZvNjh8/TUYSNLAIKgndloP5+fnw8HArK6u9e/c6OjoePHjI0XGfk5PjoUOH9uzZw+DBgwcPHDggvdLc7Rdvl4SdnV1xcTELipWhUjOrXnTpvzdZzvWxfz4njlEf3+KG0FA2TrbXaurKRx4VdrYoppR1mraaaXG9S+E8oYYFz5075+7uXl5enpub29zcTBiR9EpKHpaVllcUdT/M7nhYWJGe/PBO9P2ern7SBuEl9sZhgZQ/9OmFlkG4vyifRPnp0+c2bdp+7Nix8+fPw+KOHTsdHA5u3bp13/5j1hs2XbXZbbF6tf2+w56e/qReUWB4ZQVJmWUBiwcHB+/YsQMCwM6dlvv3H3V0PLxrl421tfXOnTsZ3L17N+N2dntsbe0RQ4y8C3wrPz8fz2ZZ+JsYn+rpGBNXb+d4X9dk/5sXI4M900O96sEe9UDPNG+5ejsnR4cJZSHdsoCyKI7HiwQwp5sZGx/sG+ia1U5L37GpjNfbFGJ3mCd/0ncAUYRZBSZEIWHCnG5Wq9NXmjmddn7+CSPSpksDUSg5sMg0HmcRPz8/7IXj79+/38nJ6dfXA4ePnnDYYeFpa3fY1nav4/6AgECYwDMIa06lsEhmZjUgJDFsIMn81u/tFhYWrl+/vmnT5u3bzSHSwmIHDnPo0MkdO8xha9euXQ4ODhC5efPms2c9T5xw3r7djJElQZ4oKCgQFBJ2fZ0TeTGqgnvqgnvTRfEzlWkLlekvKtN5XajKeMn1OONlXtz4g5iB/PiRh0kztQ++r858pUj/UVmn1mg/4lSGmuQwYXzuSekiFS1WU+BtCjEZ816/fvXNN9+8fPkS0YkbyW76+rz4eak/+HBTyoOLKaSu8JYUgUz4CrFlBDU0LT3dbo+Ts4vblSuXYZoaDHMsQk6mJeaeR+hE0I1yC5EcPfAhkm1KShrj3DOCt7EaIb5mzbotW7aZmZnZ2zvY2FhzkUW3b99ObMEiXNra2pJs8SdCk0EHB3smGKiTwFuYpo7gEygyp9MM9U5XZ73ifM3VkPf3upzvanO+rcl+zVWd9U115sum/J9jQ2rCAzITIstD/DLuhTYUJ6pjQ+oU5V26+Y/r4fFdQYew2Fv2N+JtCpmEaZKSkiIiIu7evRsZGZmVlYW5WYVXghLbMY3lCHOAYtI6ekalQNViQTEiwLgxIeh7m7ExnmXw2bNn2GUxfv7554SExC+/XEOROnvu7JGjR6OiohGDIGB39CGT19bWXrsWdP68s0JRXVdXFx9/v6CgGPKqqxXj42NpaVkpKRl8pFAoPDwuQuHWrdu2bdu6YcN6J6cjhw6dgE6CkvwJc+bm27duNTtz5uLOnVYQyqutLUzvsre3s7XdRb20t7cnBDds2JicnIzr4EB9/d2NtV2F8eqkiJb40Mbc2LGSJG1J0mxxgqbg3pS3W/QVr7hrXvdjQqqiAsrjghuu+6Z4uUZEXy0/dsw59m4yTR66z2jeqJHGsjqrndHp5nBByYY67IzdSDy4rwgAjDmjURmv6ZlJtWZKo1UvQaFUrs6Sfo4cOYIaQUFBLIenE8i4PzkNUB1zcnKys7MxLlsuLDyvrKzKyMiilWlubtHHrJTu2Bj7IgSiCPpZH/ApxbW0tJReqaKisqysrLS0pLq6mmaVljQkJNjPyysiLKy+voGjGzMpyTRW9ES8Hjt20tnZlQBNSUlxdva/cSNGo1GTSOkxL1++cfHilczMDNpOWty1a9dv2aLn789//sLFxe/SpaAvvvjvL79c/be/rd2wYdP69ettbXcfOHCUKCQioXD37r3EqIOD4+HDp+DYysqaYKXtQlOdTqevKePDbY39xYmajNu9yRFtMUG1V72SQv0fBPkl3r/ZXpg4mR8/Ssdflqp9mKS+7p2aGFWRFP34YbI6L2aqWTHW3aucmJwYG54Z7tMM9U1zDffPDPWouaF8UlwVitramoa2Vr15Hz16hN0IG8xFVOgPb9Pq+jKVolBdlT+mKJpqqXha91D9MLNnaQpdXd1II6dOnaIl43SBAzY2NrJuS3t7Y0sLtqbCp6enk2EqKira2jg7psbGxjc3NwUHR7q7+3NqxIhpaemEjnSy0Z8loJPFYZFcikCnTp1et2495jMz22ZltdvObv+WLVs4aQQEBlpt2eJhZn7edndtQwNbi69pOAmgFdt5efm4urojQ2Zmprd3cEREDNvhsOx+7VqUv39odvaDxsYmT0/PtWvXbd68BVa++up/odDDI3D16lW83bbNTKJ2AyyRS3HTPXv0HQ0U0lU5OR1jJszxCc2Oo+MxcgOOiPzauZnBHhXVriHvh+bC/yu9P+ftEeHpcsP1QkBMcHV27EDJfXVb8S+NeT+SY1uLfqnP/aEh70d9ps38obNRMzU91tGpzE1Spkb15MSM5sVORgaU+nnejrpSedUj1c8t7rrXg/NHw27fTMrJfYB2uA7OjdkJnt6+no6Orsirxdcu5mREDVGPs2+PP7g19ijl+dIUXrjgYm1tc/zEcTpyb29v6hAeQbwEXnCO8PahgsENzQ7k5ebm+ftf9fDwDQ+P1mo1ubkFKSmZEllqkg/kkULFqYAVAJRwj3PhJWQ5Uhbt/vHjp86ccTly5PDly5f9Ll/et2vXOTNz1/0HsrKzyZaUARgiDeANeMbt23dcXNzIlqmpqefP+9y4cZcyTWYeGxv19w93d78MhagtopBUSUtJF7Nnj5O9vSOJVGozbSl7FhYW27aZe3pes7dz3OdweLftXjhjgpWVjYPDPnhlDiDxkslxO8SgiaPnpHNRPHilePBNbc7rqgz9PaTm35vwcA6NC1PcvFoYE1qVHz+eHTNYk/2qMv0ZZbLuwc+djbMzs1MknmveCT4u8Td8S3NuT0RcLjl16mL0lcdhvkUBHimJoR2nnEIepJUODun/VoXKJDwyEClncGhwZGQ0P2kwN3a0MuNZftxEQlhLQnhjevRSUYjXX7kSYLPL7py7q7O7KwdwUllHZ8edqKhTa9a77bTOyMwsKS2V+OgkuZWVlUdE3I6JScDEElVK7E7Usj1zGER5+gtyKSE4PKz/qgmnFqxQ3hL0iI+Pv5eYmBgXFxcbGxMbG3s18HpqWjrCMBO+WRanYU38xt3d48SJ00RkTY0iKyu3tPSRMb7z8grxIdZk60uXLkntzFb6EbqVw4cPnTlz2tJyJ7Vxz54De/fulzpVSyvOGBa7jxxws7JwsN3twEwaGok/AyicUPj8+XMEoAItppBLamRe6UnK/a42+7uaB6+z7vaWpWgL41XFiTP3wmt93WOKElXJEcr6yv7Gpjr6ktF+XV/bXJ9S26ecVTaOKyrbu1pVAx26rubp6kdt+TmlrS3K4eEhVMbdsRveiQGJltGR0fqChfqcH0QDVXBv0sMlLCZY8TaFAirdbG1CfuF/HVWciB6eHIu+FRMUdONxZaX74SNBnpd6+/paWluJLRFSHNlpeQh5TEy7gcuQ7jAxIBrgAOMK/lDA09MHDsLDw6KiotiovPzRqlVfWVpac0yk/Vu7bu1uO2KFjsMuMvIWEcwWbERAwwrukpeXz7GSXEpeRTdOsbQAQmYgGlTG8RJXV9d16zZu20bi3E6K5pjr4+MDnXQoTk6H7ez2btq0kbck0l27bC0t9CdFGhkDb4sgDhV0W/gctXCgR1WR+lKR9a0i67Ui83X1oovB2uzvK9IWQv1y74QWx90oS4lquxmUGe6ff/SIa2J8Zm9vD4KRjQ2/mZhVzc6pdU+0s1rOGypedU/o8ua1c/oegnaB6oOXEwaSx3c1NTZVZekqU7+pSn9ZkboQ5ldw40rWnZCipSmcndNODoz2FFSP1HXQHrW1EVCdddXVruYWLtY29Y2N8EG3wjb6jCl1uuJG7C2ABBAMi4QRFJKLJicn8vMLs7NzSQ6Ap4hRDw8vDoVnz545e/YsBrW2tt1lS2ncHRsTg+FICTwGkXAGoyyj7yqkyiT2XRIEDTl53bp1nAtJmNQ8MiR1Ds4AeZVBRr766quDB8+Ym+8032EOVYDxt7Bx40ZqEgti/e6ezpGB6YbiZ82lL1rKXzSVLtQVzi++6oue1RboMuKaPC8GXAsMibqRkHSr/GHacEFyf0+7amBQ/20LkhukXAaMZiSvktvaGgf6OlS9yqnu9onqqvq62qa62salKZymZaXCzM9NaKfHpyZmtbMLL14019dfsLIJPHuOWoinG2a+H5iYaZANT4jOjThRIJYgG16ZQDPi6Hhg375D2HX7unXea9Za/3XVDktLd/eLTEB6UQtFSuFBHv+gFZgpWlaagoz34NePstLTpX/fAxYhhbIgmw4NDba3tUdF3gsJuhsRnJwYl0OXof9r0q9XV3cn4UIVw+Y93b1SltL/Qaa0pIz+i6kG+T4GwlYsQveODxGp4jSi02nnuOa076FwESZVk2NTE1yT01NjRIT4A5Dhww8DCQAc4MUYghHcCjr1ITkxwVKkRxpDGxs7i507LTZvPvqXVZZ/+avD3sM+voGYg8jjEZIJi0jrLQtsQfgSOpw+P4Snhn/fD8RmQZbFe0gDpMSIsPjI0NTCnOqJyXE6NlwT7QYHSfiD0jU0MjIsLsCHpBDoFKYQEn4syHkUKSqU6M8X48MUchxhW9W0alI1BYsT05PEJfdTjBk+/YBcQnRYhA+ssHgQgWh37e33WlpanT59+uTJE3Z7Dhw6cnLP3n1XAq6Kr1pEb2Z88N8LZKYA436KmmpaDDpkkgQMkWlEpL4LHhFFx7DEbwKL4PG5ubl4P2saRiV8mEIjBFvcTKmmJlR6IsXFPYzCsTTnH9MWQ0+XWk0mWcwiYBCZKJbkGRoQZ2fn27dvHTlyhNbG1c2Nmbg/ecwwe2UAmXml7yUV0zwTHBxvSkpKflcnY1NMQc9IWyfeinHwERQuhpEnEZ2LGR1XEaOT0CxINU4GM2r913LklrdYxK0YvHjR3clpf0hEpOXq1Xb/8Z8nzczbO5TkH1LuYonfhUjLAriqEbzlI8OkzwREJTGQPChOsIhgVLuKikrs+8+F/ESwOE0cpztyEjbkrXG730jhYrDSYkYhDwrfIHVxpKr1vyQYHBiARaMQIjN4eFzkrG2/75DV2jUH//w/J62sSaAiEYlp7wO6CcJevNB/14p9xXf00hf0+p9ZfHCFZQKZSemEHaFw586d6Ojo1taW4OCIkJAIvf6faZclgR3IVSQkBJDOGP9g8TNQ+C4MYSfdS6QuilRidHqqs6dL2dUxQW2dUVNTAdbBrzFNe1ubUtnR0NjEQWY5/Ina8P3330NYRkaOUtnJfVNTy8DA4OPHNYGBoW8F/aeAkkbl5hBcXFzMoSg7OzsuLo4RPvqgnJ8IVMD10YXOjnvqEdUX7+T+d6HwXaCfMVLBjGZmaHiotb2N3htep9QqeJ3WqGe0mlmdllOpVjfHCVdMlrxtEX5dRAAKsSzC01a4uHjn5RXhMB4eV4ODo9LS0s+dc6c/nJ39PBTiavQs8/PzBLoU4hpsikQii/yuYAvI40Z0hYhBLDJCUP6LKHwXQu3+vr4OpRKxSK1INjY+1t3bMzA0ODI+Ojw2MjRGSz6iv8ZHGRkdHxubGB+n3hl/iSTl5v7+gdoa/Y8KoC0xMZWjRHx8al5ecXJy2sGDp8g/4jDz2QF5nyu+PwiUJYsKp8Fc3EjurP53UiggRIE8fZXW/8SimzO3olpB0iBRABwNKDuU7cr2NmV7q7KN2DW8trc1t7e0dyqLHj68EhBSVl4eGBiRlpb9008/0dZw+KyvbywpeSS+TzDsZ5oQJjIyB5fkA/ERI/9mCgUQC1EAtpb+NqY/YBlHlgSPAHKq/qsGzcyPP/0wPDJ84YJHWlomnOXl5T1+/JgWnO4G/9XPNGVgB8oE6QTFuadpwOO5EZ+uCAo/EVR1vJLXuroGwpd7wpcug1c6VaPDmi5gi1RE8RO+CJGoxltuePtHoFAA9egyhG8Sx/Q4v1MJ/NcDLyR5GnMJN6QWwSI6/nEo/KMCwkal38IbMycwskiBlClc6YA52k6wmEIAiyRSGlSZwpUOmCME6UiNiXQxYFGmcKUDkuhl6MsM79+BTKEJYPFB8F3IFK50iHbU8GYpyBSudMgUmjzoYqCQI4Th/TuQKVzpMHak4ruYdyFTuNIBcxztOcW/78smmUITACz2Sv+7BCy+ezqUKTQNCBbJqOLLbrIrYFD8uVum0DQAYVREMionfbgUf35qbGySKTQlwCLBR3cq/fJY/5vjxsb3/SBfxsqG+I4byIn0jwCZQpOHTKHJQ6bQ5CFTaPKQKTR5yBSaPGQKTR4yhSYPmUKTh0yhyUOm0OQhU2jykCk0ecgUmjzeoFCGicJAoQwTxp/+9P+tIopA2VUaSAAAAABJRU5ErkJggg==
+ iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABLzSURBVHhe7ZzpUxtnnsfzP2zVvtj9N/bF7G7ti63s1OwkOzPJbMVxPD4yk4mT2DWpEMcXNqfu++5WH1Lrvu8TISFAgCQOA8YHtjEGYm4wBhuMjQ/2JwkTBHHWk7IxHfe3vqVSi0ct6fk8v+NpqXiH0S9B64xoqx8Q3mZEQzEIaS8GIe3FIKS9GIS0F4OQ9mIQ0l4MQtqLQUh7MQhpLwYh7cUgpL0YhLQXg5D2YhDSXgxC2otBSHsxCGkvBiHtxSCkvRiEtBeDkPZiENJeDELai0FIezEIaS8GIe3FIKS9yhCOT4wzfuWegNvxjel+HSpDeGt4hPHr8Ojo2MZ8vwaVIWzxzjF+5W5yzne1jk1Obcz4K1cZwlb3CuNX7rT9QVd6YnLq+40pf9UqR+i5z/iVO+1Y7moeZxDS2AxC2ptBSHu/vQjbvCsd/kfgbHCtdCfjXdk2hhZ+SxG2+VbSzoUANRQy3vLggxHTSEA/1OK+B1xLAzLe5Xbf6ja3+R5snmHv+G1EmPEsZzwPEHEQwy0nTpx9//33v/76NKmzY5KGjGc1F1xr968CzrhlMm6ejJkmYuaiTeON1llAu+1sb9xvI0IIwYRlrvI0H8GM7/3Pe/v2f/C7339oMLlPfsPRcluM8u6EZZZSpWUyEkPtBBnU64Mk7tGRHlTlStrmNyN1j/itQwhhBM4Fn5jVnRKB6W9f1vz23Y9Z1VoR1+DGL+cCa37ypobddP4MX6nS6Q1+t8EsF6t1lMdk9qOILW6e6gw/zQb2UOF8uxAW0qB7Oe1YSjsWm533U9bFDt+jfPBp2r4E99t9D2EMJNK++DouS2hJuw539wr+Cf36vzgik0RCCEWamhOEWdFr1wwkrDMwci/k1bcIIZRA4IfJQ4jSQSABPRbWqjxinkEhtlJ4BJJk0DDUFVmPW6b04s7KU4LaOrFURpmktbhcjWgdGO4QCnC3drDBMu1Er2D8FkraCQjfeI/zFiHMBR9Tslw9i2UwUTI5JpFqwb/613+vruETOgdGmGvOKnFBGylq9+NDwjpzTZ2Aw1WwBSRXgPJ4Kh5fyapTQy3sCDzMBh9BLgWQGk5qax/7RvwWIYRJdyCXqqtZMqVCLEFEYpTLVxz59Gg9WyKSoHyRgldNNVrnYVg+9CRpn3doL7qwS05soGQ49JHXt54QhvmImygvDU/Z+vgu++2qhW2+VULWpBR41eKARhwE44p48U5AwXdHTd9DeSuOvAfpMRt4nA2sbfFj2P5vPRsYKEI6dSKXsxtPfAOmK0JoCDv8D9t3uPCgb3Xb4C1e7vCvdfh2+lHWv1Z84r0dT/kpQy2ERIpwUsUnvpnWhpYIgV+zeylkHA4ZfnDYOBKkbgaooZh5fCtFGAzBB1G1xauvcEuQCz22KHuhLr6pdLrbCH8sCB7DnL788ofeAbYBhLxRpsAwzK4nAkaDnySdSiWl13koyq2QwfFNiMjCYN9Ks2sxZpqImwuXWkqGw5TjzqvaD8BqaLTNQoMKbc62P+2OdxUh5BwnccGKddjwbMkOIm/WZhqsE9DNFzq9wCO4Lbndv9peiJgVmKOiCzNeiCHviqK24WQFS6nSa3HrOcfndRyRXKaTK/RWa8Rmj4vEajU32h1Zh/jIuFdwRQTHHIXLK4S3ZJJwE+pIi6uQBrfOxc82FEJC1BYzT8K73fanXfCuIoybp1CN1WLzmSxgv9niV6pJg9nJrkZ0orxfN+xErjjRyx7shhe7GdSNRQwTDeaZpHU+ZVtocixCnYN2Q1EXtyoHDKoMilq0hLUi+G+fHj0qEZMU5dNq7RhuEQuJmGkSdm86ca72W1N9ndhg9Oopj9PR4LI12ewRuzNCIH7Y3f80wjbvaotreatb3Q+2ZWA4Q5v3AWxXvMSQRdnXGX4KK6y4x/j7FkeL+36TYwlcvOxQ5tLjP/rXwoP2xSb7/d1DmLDO4lqP3R41msImQ8hsjetIl9UWqj+vqvhMdvoYYpB2GqRd/Cprfa1cLCClIkols2pVbkztQZVuUZWn4q+yis9lGnbT6W+5dfVisUQroTinztSKRFhtnUSh1LvdDjaHe+qYQs1OWVX9jZZ5VOE3GD3wcoTFWmepN5rg1X1ala/N8zAXgj6zsMPbacjVVm2WRIJ6NFYypY0S6tDWQgv8Wlz3EpbZpGMubp9SchON1rlG2xzcbrIBA9GMZ3XbD15aXUD6ecF2L7f65we7l65fWBnsvr/V13qWB3uWL3cugkuHMGbk0pOh/odwCPevdC9m/Av5pt367YwbGxQJMQR3G+pOo8ffJVmVCO7FCSsmi0He00tyGnayM7Tu0nWbLB67I+rxNlqsIVLnkEgxQm87/vk5lNOSdt5tst9V8UM1tSIuRyNgk2IRweMibJaKy1HzefLqcyIfcQMiA5JzgByuq5bqdG4UcVWcOXb+6D8i33IIY4BVLxNX+U3yHkqS32mjrEdWE2HVS1zeuM0Zt7kSNnvY7gzjOquXvFLaWkCeh7dq0DRDPcakLv0pn6rSrEVdJOZF1BYnfgE+UTb4COIy5ZgnVFEKjVNoA1iPxg3ahA6JOIneQhvsX+3wP+5Pr41cv+txNfi9Sb83tWmXIz54cXp5fv3e3PrItSWvK2G3hKrOsTDU7PMkW5v6F2fWs7G7udRuRSHrlKG6mscXkTbWefS7I/JvjgmlFIpZq86KYU/dFX4GccM97T5/GsILlcup/fv/fODAX5RKg17vhcpn0XT1RNahHBa/DFoK6oeD1K2gvmjqVoiCjvSWnxyOmSdgAMwyJL2U7Y6Ya8AJhxZ18iUivvxzlZDUEg4BF3ehVyHfRgy3dzpqHA+QI0qx1WwJkmqMkKuMBq/VFkW11ohppCdW6MtC+lGE01RTJZShhLHa16noDVQnFTKKzZXjpA0+ES5oN8i6TPLe2tOYVIGo1DpI4EVHYVEazS611BmhJgK6WzDGoMzwOXL4jGqNCbKUxRIGW20RUueyUKG21KVs8xWpCNMg5q+OffPZZ0cOHDiIE866OuHF7rHuxuXdQ5iwzEBuxHUuFV8jOX5CrTIjqE2uJDFJPOt/DPMCpQ5SvJhlkSlIhcJw8mRtba0EwxxCYeFimIzthmVbyDxFPFAaf9SbiQ5gx02T7DqkqpoPmVardWo0Lg1iVWkMCrG9zbPa7t/cZmx6pZBFQ0/c2mt8Dg79bVJyuIX9a1IhkyrMao2Bd94MsUuKOozybhcyyKpWC2QqQaVG+hkmOK4RiDRCMSKSang1+qhhAlZD3DxNSpoRxERRXos1qkYclD6gkOugha6pEtVWGAWVXvZJh5zlRdUmAGYyBaEpK9lmi0L+CHkzg73TNwbmPPYkiyU/fvzEb37z6/fe+0AgQEUCZPT6Ur7h3u4hbDBPiQSEWmNUI1YN4UZQaz1LJpZiZ0/yoX7ADMK8Q3Yi5SkWVwRzIZOTEhnOF6jZHFlNPV/O9mUDBdIvaYjFMPX9mVOcczUcNlcmkqBwTjBfpOSziWbnvZ3tDHTCSfscxm9Vs5KsOg2OWzOav+blf1TzWHKVTa4gz3+r5pxyerBrEIv50FMXfgkVR3FFQskKoeKYTtVUX0mK6+0N1knI5PCJOkPPdLJmkUijQSwSsfbEkd+72f9LGuKk3qmVh3KBp7Bc8sFnl1vXw/4WuUJHEC4gbbFEzeaw2RyCLN2aHFicWp8ZW5+89bg9fTWTvBT2trc1XW5pHLjSOz0/8Swb3cVE2midZdciHLaKw1GDoZJx2OpCG8LzFb/oKUwoxFDYMELK0pQis2FlxqBs0ytaoQpC+7d1xne6GIiFH8KA4Zz5wDMXdhmTJnBZCpM0YtIkGBXHLZpu2JK2eR+WXGhMPPcg/qCPVdY3pOzzEKNirkmjMcoEMglXpJARWswhEmkjplFI+Gp2Y9gwVnqtXOAJpJBc8Aksr3zoWdK2oOW1wtLZaItCz9S8ME+glCg9HtFHDex/0XErEMyHak2YPALvAd4z9LrdjSsWo18mI3Dcges8COEg9B5ACF13a+rS/Pj6xPAaILwzsb40vX5/dn1pZn1xev3O+PrU6NquIoSZgkIFpQvq1oYNI3AIu+9iI15gAFMJFGFGYGrKHHxSHPNTVwBg31m4ZGMcChlvBqgbfv21lHu8yT3d7JlNu2caHZPJ5250TEQtwyWHzTchLXdFnkEJBH5p54KfuMk/6z75XY1KY5SrTAq1WaGkoN3l8hQu7BIEVpPjjoqdgI9TimN4+mYqhuCDt0GI2glhm0t7FWqHRdXN46mkMr1WRajluBr1QT6EgDt3VhDUjbT7HwLCnsaVdKJHJtepUE9M/Kss9x+c4o/kGr9KZfA5m4Dc3O31qZEnAPJa/9zNy4tDl+6CbwzcmR57sqsI4dMCns2iteltm62fZzhz3DLJ40JYC9lsqVCIWm0ul8sRDAU8XjfcXhzo7+vr7e270Nffu+G+3v7+vgu9nWqRWy/qRHlpWCKQJAEAhBckRh6bEHENJQu5FK+eDBtHIT9DzXaiV3TiDmg4230P0s7CBSDoPJP2+YR1Ommbh/QYN09CdwbN7dkK2flqdnWNUIVYoDGCpQC1QyrH2DVo0nYH1mUpCrUaI4+v5klN2dP/PPrlO8HK/2BLHUqVob5GFPNn863Xx28uh30ZKKL1daKP931SWysgcEdLsrcn+WBXEb4+w8zGzLdraySV51inTteereQQJEWQqC/gCYZ80Viosyub6+woc74j35XtyDVLOCYfDgFRuJSKcgFk4cocJO20cwlK5nMvFS/obKw2SJI6cRZ6TtjhYIowSbhPnqg5eODPhV2T2h7QDRW+6AiuwcYmYvyeW0eIeQYBRy8smUtx6lFSns4VS3shCpMP2poGpFICxd3Gqi/sFR/itae0pF8qI1OxC9OjD3Mt1wLO9NkztaTOe/jIX7766vOP9h3QoBY+T5aPLe3evrD04V+TM57ClwbQXzjxfhd+0a7tc2K9Dc7hqPUGOGK5HjRe/VH7qUvFQrgG8RSmxihp5/OvnAp5cpt/eDnvMuQPl3aQd8ZZXc3FCPuhwwePfvHp0S/+ptFS3POGfPBpaSQsC2CfdiwWLqk4n9uxmPE8rx3FKETVBohUNkuuIUNyPKTSelDEIhJjTfELC8VEujC5Dk2pUKA9c7r+vd/+7vixk9Bmp+JdF1Krv5AoLBnWNcxdybng0y0X019s/+Nil3Sv8J2Dqg8SKfSl2077IgNsICHmWPk89MujFe/+539/d6Key0Y8xCCk4s1hWxfBpjcvwpWiMBXv5vMRtdqsUplKhvsCIZqM9UDbUmpn4Pb6xTtQC4ev3rs1eO/GwMLM97teC1+rYV6KFxsXwCn7AlSaouFO4TBhmWswzyXMhdtNw2HcNNviXi5dW0e4TfDc4vxuP/mLDEEGrXLUeDtumWq0zTZYp2DvBA9uG/YTLrYzD4x6z7lzvJoaiVptgT0xWKk08niaxmh3CWGJ4vTosy1+Oj32+BeFsM27qlM1igS4UmrWKBxajSMSTEVD6XAg5XfHW1L5tuaeTLqrrbm75Aw43d2e6fKaOyLUJC7MODSXoMhtO+3/ayiQ0EwVXPh25e/+0XcpCu3m8Hcna6qqhByOisVWgNkc5dlKbkM4Dym0hHCnd3tTse2tv3Jn3A+kAtOZqurK8/Vnz9djBGWyEkYLkUiF/SHnwOWea0MDV6/3D16/uGk4HBu/jmEY/4wvoLv18in0FRoQZmN3bw8vJ+OdjbHORDSXiOaLzsXDHTcuz83efgKoftQzt9eysYXdQ9jsXHmtzrgf6eUdCr5XJQwqeH451+M2tgbt+ZCjM+TsCthyfmt2p33WNjfZ1+552u5d23bCXbLjAeyMOxuWLjY/6i/3xea1rsT9XOxuLr74o8433G1yLOVTu9WRdsQnX7c7G+fziR/cEZ1tj860RabbI9Nw+yLnGuayDVPbTrW7nmqLTP48Z8JTffnRycmNGX/lKkM4PjH6+j32c73tPPTy6wpBUBnCjccY0UoMQtqrDOHc+NzLeH58fnZ8duMEjN60yhA2Dze/jJuGm7LD2fHbr/O/UjF6aZUh3Dex72X8h8k/VNyqmBidYCjuBZUhPDRz6GX80exHp0ZPMQj3iMoRTh96Ge+b2ccg3DtiENJeDELai0FIezEIaS8GIe3FIKS9GIS0VznCuUMFzx86NLsd21YzCPeUyhDuH9pf8PWPPxn7pHAhZge8khmEe0plCBGjSWMw4Hp7pb1u/+zHL6LIINxTKkNIat163Echfr5S+ceLHx6+c3gbvJIZhHtKZQiFAlStMiulxjqW6MO2Dw4vMghpoDKECqFBytOpOZbvpFUfz+xjEiktVIbwYMvhgy1HDqWP/Kn74KHZg9vIbZpBuKdUjnDxYNF/OrTwQn5gBuGeUhnCbaheZAbhnhKDkPZiENJeDELai0FIe5UhPHjnYMmFi907yG2aQbinVIaQEU21gZARjfXOO/8Hx5g9w+7zDbQAAAAASUVORK5CYII=