-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathmain.rs
234 lines (207 loc) · 7.5 KB
/
main.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
use candle::{DType, Device, Tensor};
use candle_nn::VarBuilder;
use candle_transformers::generation::LogitsProcessor;
use candle_transformers::models::glm4::*;
use clap::Parser;
use hf_hub::{Repo, RepoType};
use tokenizers::Tokenizer;
struct TextGeneration {
model: Model,
device: Device,
tokenizer: Tokenizer,
logits_processor: LogitsProcessor,
args: Args,
dtype: DType,
}
impl TextGeneration {
#[allow(clippy::too_many_arguments)]
fn new(model: Model, tokenizer: Tokenizer, args: Args, device: &Device, dtype: DType) -> Self {
let logits_processor =
LogitsProcessor::new(args.seed, Some(args.temperature), Some(args.top_p));
Self {
model,
tokenizer,
logits_processor,
args,
device: device.clone(),
dtype,
}
}
fn run(&mut self) -> anyhow::Result<()> {
use std::io::Write;
let args = &self.args;
println!("starting the inference loop");
let tokens = self
.tokenizer
.encode(args.prompt.to_string(), true)
.expect("tokens error");
if tokens.is_empty() {
panic!("Empty prompts are not supported in the chatglm model.")
}
if args.verbose {
for (token, id) in tokens.get_tokens().iter().zip(tokens.get_ids().iter()) {
let token = token.replace('▁', " ").replace("<0x0A>", "\n");
println!("{id:7} -> '{token}'");
}
} else {
print!("{}", &args.prompt);
std::io::stdout().flush()?;
}
let eos_token = match self.tokenizer.get_vocab(true).get("<|endoftext|>") {
Some(token) => *token,
None => panic!("cannot find the endoftext token"),
};
let mut tokens = tokens.get_ids().to_vec();
let mut generated_tokens = 0usize;
std::io::stdout().flush().expect("output flush error");
let start_gen = std::time::Instant::now();
for index in 0..args.sample_len {
let context_size = if index > 0 { 1 } else { tokens.len() };
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
let logits = self.model.forward(&input)?;
let logits = logits.squeeze(0)?.to_dtype(self.dtype)?;
let logits = if args.repeat_penalty == 1. {
logits
} else {
let start_at = tokens.len().saturating_sub(args.repeat_last_n);
candle_transformers::utils::apply_repeat_penalty(
&logits,
args.repeat_penalty,
&tokens[start_at..],
)?
};
let next_token = self.logits_processor.sample(&logits)?;
tokens.push(next_token);
generated_tokens += 1;
if next_token == eos_token {
break;
}
let token = self
.tokenizer
.decode(&[next_token], true)
.expect("token decode error");
if args.verbose {
println!(
"[Count: {}] [Raw Token: {}] [Decode Token: {}]",
generated_tokens, next_token, token
);
} else {
print!("{token}");
std::io::stdout().flush()?;
}
}
let dt = start_gen.elapsed();
println!(
"\n{generated_tokens} tokens generated ({:.2} token/s)",
generated_tokens as f64 / dt.as_secs_f64(),
);
Ok(())
}
}
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
#[arg(name = "cache", short)]
cache_path: Option<String>,
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Display the token for the specified prompt.
#[arg(long)]
prompt: String,
/// Display the tokens for the specified prompt and outputs.
#[arg(long)]
verbose: bool,
/// The temperature used to generate samples.
#[arg(long, default_value_t = 0.8)]
temperature: f64,
/// Nucleus sampling probability cutoff.
#[arg(long, default_value_t = 0.8)]
top_p: f64,
/// The seed to use when generating random samples.
#[arg(long, default_value_t = 299792458)]
seed: u64,
/// The length of the sample to generate (in tokens).
#[arg(long, short = 'n', default_value_t = 8192)]
sample_len: usize,
#[arg(long)]
model_id: Option<String>,
#[arg(long)]
revision: Option<String>,
#[arg(long)]
weight_path: Option<String>,
#[arg(long)]
tokenizer: Option<String>,
/// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.2)]
repeat_penalty: f32,
/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 64)]
repeat_last_n: usize,
}
fn main() -> anyhow::Result<()> {
let args = Args::parse();
println!(
"avx: {}, neon: {}, simd128: {}, f16c: {}",
candle::utils::with_avx(),
candle::utils::with_neon(),
candle::utils::with_simd128(),
candle::utils::with_f16c()
);
println!(
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
args.temperature, args.repeat_penalty, args.repeat_last_n
);
let start = std::time::Instant::now();
let api = match args.cache_path.as_ref() {
None => hf_hub::api::sync::Api::new()?,
Some(path) => {
hf_hub::api::sync::ApiBuilder::from_cache(hf_hub::Cache::new(path.to_string().into()))
.build()
.map_err(anyhow::Error::msg)?
}
};
let model_id = match args.model_id.as_ref() {
Some(model_id) => model_id.to_string(),
None => "THUDM/glm-4-9b".to_string(),
};
let revision = match args.revision.as_ref() {
Some(rev) => rev.to_string(),
None => "main".to_string(),
};
let repo = api.repo(Repo::with_revision(model_id, RepoType::Model, revision));
let tokenizer_filename = match args.tokenizer.as_ref() {
Some(file) => std::path::PathBuf::from(file),
None => api
.model("THUDM/codegeex4-all-9b".to_string())
.get("tokenizer.json")
.map_err(anyhow::Error::msg)?,
};
let config_filename = match &args.weight_path {
Some(path) => std::path::Path::new(path).join("config.json"),
_ => repo.get("config.json")?,
};
let filenames = match &args.weight_path {
Some(path) => {
candle_examples::hub_load_local_safetensors(path, "model.safetensors.index.json")?
}
_ => candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?,
};
println!("retrieved the files in {:?}", start.elapsed());
let tokenizer = Tokenizer::from_file(tokenizer_filename).expect("Tokenizer Error");
let start = std::time::Instant::now();
let config: Config = serde_json::from_slice(&std::fs::read(config_filename)?)?;
let device = candle_examples::device(args.cpu)?;
let dtype = if device.is_cuda() {
DType::BF16
} else {
DType::F32
};
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
let model = Model::new(&config, vb)?;
println!("loaded the model in {:?}", start.elapsed());
let mut pipeline = TextGeneration::new(model, tokenizer, args, &device, dtype);
pipeline.run()?;
Ok(())
}