-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
169 lines (129 loc) · 5.6 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
import warnings
warnings.filterwarnings("ignore")
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.optim import Adam
from torch.utils.data import DataLoader
from torchvision import datasets
import torchvision.transforms as transforms
import pandas as pd
from model import *
from utils.eval_utils import compute_metrics_anomaly, compute_accuracy_anomaly
from utils.visualize_utils import visualize
from config import options
from dataset.dataset_Crescent import Crescent as data
#np.random.seed(42)
os.environ['CUDA_VISIBLE_DEVICES'] = '3,4'
options.load_model_path = './save/20230922_105540/models/best_model.ckpt'
def log_string(out_str):
LOG_FOUT.write(out_str + '\n')
LOG_FOUT.flush()
print(out_str)
@torch.no_grad()
def evaluate(n):
print(n)
net.eval()
"""def set_bn_eval(module):
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
module.eval()
net.apply(set_bn_eval)"""
test_loss = 0
targets, outputs = [], []
test_dataset = data(dataframe='val_fold4.csv', num=np.random.randint(low=3, high=n), mode='test', #'val_fold0.csv'
transform=transforms.Compose(augmentation2))
test_loader = DataLoader(test_dataset, batch_size=options.batch_size,
shuffle=False, num_workers=options.workers, drop_last=False)
with torch.no_grad():
for batch_id, (img, target) in enumerate(test_loader):
img, target = img.cuda(), target.cuda()
img = img.to(dtype=torch.float)
target = target.view(target.size()[0], -1).float()
output = net(img)
batch_loss = criterion(output, target)
targets += [target]
outputs += [output]
test_loss += batch_loss
test_loss /= (batch_id + 1)
test_aupr, test_auc = compute_metrics_anomaly(torch.cat(outputs), torch.cat(targets))
test_acc = compute_accuracy_anomaly(torch.cat(outputs), torch.cat(targets))
# display
log_string("validation_loss: {0:.4f}, validation_auc: {1:.02%}, validation_aupr: {2:.02%}, validation_acc: {3: .02%}"
.format(test_loss, test_auc, test_aupr, test_acc))
output_all = torch.cat(outputs)
target_all = torch.cat(targets)
prediction_scores = torch.max(torch.sigmoid(output_all), dim=1)[0] # .detach().cpu().numpy()
true_labels = prediction_scores[torch.argmax(target_all, dim=1) == torch.argmax(output_all, dim=1)]
true_labels = true_labels.detach().cpu().numpy()
scores = pd.DataFrame({'fold_4': true_labels})
scores.to_csv('scores4.csv')
return test_aupr, test_auc, test_acc
#################################
# Grad Cam visualizer
#################################
# if options.gradcam:
# log_string('Generating Gradcam visualizations')
# iter_num = options.load_model_path.split('/')[-1].split('.')[0]
# img_dir = os.path.join(save_dir, 'imgs')
# if not os.path.exists(img_dir):
# os.makedirs(img_dir)
# viz_dir = os.path.join(img_dir, iter_num)
# if not os.path.exists(viz_dir):
# os.makedirs(viz_dir)
# visualize(net, test_loader, grad_cam_hooks, viz_dir)
# log_string('Images saved in: {}'.format(viz_dir))
if __name__ == '__main__':
##################################
# Initialize saving directory
##################################
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
save_dir = os.path.dirname(os.path.dirname(options.load_model_path))
LOG_FOUT = open(os.path.join(save_dir, 'log_inference.txt'), 'w')
LOG_FOUT.write(str(options) + '\n')
# bkp of inference
os.system('cp {}/inference_C_picaso.py {}'.format(BASE_DIR, save_dir))
##################################
# Create the model
##################################
net = net(512, 512, 8)
#net = DeepSet('max', 512, 512)
log_string('{} model Generated.'.format(options.model))
log_string("Number of trainable parameters: {}".format(sum(param.numel() for param in net.parameters())))
##################################
# Use cuda
##################################
cudnn.benchmark = True
net.cuda()
net = nn.DataParallel(net)
##################################
# Load the trained model
##################################
ckpt = options.load_model_path
checkpoint = torch.load(ckpt)
state_dict = checkpoint['state_dict']
# Load weights
net.load_state_dict(state_dict)
log_string('Model successfully loaded from {}'.format(ckpt))
##################################
# Loss and Optimizer
##################################
criterion = nn.BCEWithLogitsLoss() #nn.CrossEntropyLoss()
optimizer = Adam(net.parameters(), lr=options.lr)
# scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=2, gamma=0.9)
##################################
# Load dataset
##################################
os.system('cp {}/dataset/dataset_Crescent.py {}'.format(BASE_DIR, save_dir))
mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
augmentation2 = [
transforms.Resize(size=(256, 256)),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std)
]
##################################
# TRAINING
##################################
log_string('')
log_string('Start Testing')
evaluate(n=8)