-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcallback.py
executable file
·185 lines (147 loc) · 6.13 KB
/
callback.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import numpy as np
from matplotlib import pyplot as plt
from keras.callbacks import Callback, ModelCheckpoint, ReduceLROnPlateau, CSVLogger
from keras.utils.vis_utils import plot_model
from misc_utils.eval_utils import get_confusion_matrix, get_precision_recall
from misc_utils.filename_utils import get_weights_filename, get_csv_filename
plt.ion()
class PlotModel(Callback):
def __init__(self, filename):
super(PlotModel, self).__init__()
self.filename = filename
def on_train_begin(self, logs=None):
plot_model(self.model,
to_file=self.filename,
show_shapes=True,
show_layer_names=True)
class ModelSummary(Callback):
def __init__(self, filename):
self.filename = filename
super(ModelSummary, self).__init__()
def on_train_begin(self, logs=None):
with open(self.filename, 'w') as file:
self.model.summary(print_fn=lambda x: file.write(x + '\n'))
class ValidationPrediction(Callback):
def __init__(self, show_confusion_matrix=False, **kwargs):
super(ValidationPrediction, self).__init__()
self.show_confusion_matrix = show_confusion_matrix
self.visualize = kwargs.get('visualize', False)
self.nrows = kwargs.get('nrows', 5)
self.ncols = kwargs.get('ncols', 5)
self.mask_colors = kwargs.get('mask_colors', ['r', 'b', 'g', 'c', 'm', 'y'])
self.n_choices = self.nrows * self.ncols
# for display purposes
self.fig = None
self.ax = None
self.indices = None
self.confusion_fig = None
self.confusion_ax = None
# setup
self.y_true = None
self.y_pred = None
def on_epoch_end(self, epoch, logs=None):
self.make_predictions()
if self.show_confusion_matrix:
self.view_confusion_matrix()
if self.visualize:
self.visualize_validation_prediction()
def make_predictions(self):
self.y_pred = self.model.predict(self.validation_data[0])
self.y_true = self.validation_data[1]
def view_confusion_matrix(self):
_ = get_confusion_matrix(y_true=self.y_true, y_pred=self.y_pred, print_cm=True)
get_precision_recall(y_true=self.y_true, y_pred=self.y_pred)
def visualize_validation_prediction(self):
if self.fig is None:
self.fig, self.ax = plt.subplots(figsize=(5, 5),
nrows=self.nrows,
ncols=self.ncols,
sharex='all',
sharey='all')
n_samples = self.validation_data[0].shape[0]
self.indices = np.random.choice(np.arange(n_samples),
size=self.n_choices,
replace=False)
x = self.validation_data[0][[self.indices]]
for i, ax in enumerate(self.ax.flatten()):
ax.clear()
ax.imshow(x[i])
plt.show()
y_true = self.y_true[self.indices]
y_pred = self.y_pred[self.indices]
# check to see if masks, or labels
try:
n_imgs, img_height, img_width, img_channel = y_true.shape
masks = np.concatenate(y_pred, y_true)
labels = None
except ValueError:
n_imgs, n_classes = y_true.shape
labels = (y_pred, y_true)
masks = None
for i, ax in enumerate(self.ax.flatten()):
if masks is not None:
if len(masks.shape) == 2:
masks = np.expand_dims(masks, axis=2)
for j in range(masks.shape[2]):
mask = masks[:, :, j]
if mask.max() > 0:
ax.contour(mask, [127.5, ],
colors=self.mask_colors[j])
if labels is not None:
y_pred_i = labels[0][i].argmax()
y_true_i = labels[1][i].argmax()
ax.set_title('%s/%s' % (y_pred_i, y_true_i))
if y_pred_i != y_true_i:
color = 'red' if y_true_i == 0 else 'magenta'
else:
color = 'green'
for axis in ['top', 'bottom', 'left', 'right']:
ax.spines[axis].set_linewidth(2.0)
ax.spines[axis].set_color(color)
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_aspect('equal')
# plt.subplots_adjust(wspace=0, hspace=0)
self.fig.canvas.draw()
self.fig.canvas.flush_events()
plt.pause(3)
def config_cls_callbacks(run_name=None):
callbacks = [
ValidationPrediction(show_confusion_matrix=True),
ReduceLROnPlateau(monitor='val_loss',
factor=0.25,
patience=2,
verbose=1,
mode='auto',
min_lr=1e-7)
]
if run_name:
callbacks.extend([
ModelCheckpoint(get_weights_filename(run_name),
monitor='val_loss',
save_best_only=True,
save_weights_only=True,
verbose=True),
CSVLogger(filename=get_csv_filename(run_name))
])
return callbacks
def config_seg_callbacks(run_name=None):
callbacks = [
ValidationPrediction(show_confusion_matrix=False),
ReduceLROnPlateau(monitor='val_loss',
factor=0.5,
patience=2,
verbose=1,
mode='auto',
min_lr=1e-7),
]
if run_name:
callbacks.extend([
ModelCheckpoint(get_weights_filename(run_name),
monitor='val_loss',
save_best_only=True,
save_weights_only=True,
verbose=True),
CSVLogger(filename=get_csv_filename(run_name))
])
return callbacks