-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmetrics.py
executable file
·181 lines (137 loc) · 6.44 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from keras import backend as K
def pixelwise_precision(num_classes=1):
def binary_pixelwise_precision(y_true, y_pred):
true_pos = K.sum(K.abs(y_true * y_pred), axis=[1, 2, 3])
total_pos = K.sum(K.abs(y_pred), axis=[1, 2, 3])
return true_pos / K.clip(total_pos, K.epsilon(), None)
def categorical_pixelwise_precision(y_true, y_pred):
true_pos = K.sum(K.abs(y_true * y_pred), axis=[1, 2])
total_pos = K.sum(K.abs(y_pred), axis=[1, 2])
return true_pos / K.clip(total_pos, K.epsilon(), None)
if num_classes == 1:
return binary_pixelwise_precision
else:
return categorical_pixelwise_precision
def pixelwise_recall(num_classes=1):
return pixelwise_sensitivity(num_classes)
def pixelwise_sensitivity(num_classes=1):
def binary_pixelwise_sensitivity(y_true, y_pred):
"""
true positive rate, probability of detection
sensitivity = # of true positives / (# of true positives + # of false negatives)
Reference: https://en.wikipedia.org/wiki/Sensitivity_and_specificity
:param y_true:
:param y_pred:
:return:
"""
# indices = tf.where(K.greater_equal(y_true, 0.5))
# y_pred = tf.gather_nd(y_pred, indices)
y_true = K.round(y_true)
true_pos = K.sum(K.abs(y_true * y_pred), axis=[1, 2, 3])
total_pos = K.sum(K.abs(y_true), axis=[1, 2, 3])
return true_pos / K.clip(total_pos, K.epsilon(), None)
def categorical_pixelwise_sensitivity(y_true, y_pred):
true_pos = K.sum(K.abs(y_true * y_pred), axis=[1, 2])
total_pos = K.sum(K.abs(y_true), axis=[1, 2])
return K.mean(true_pos / K.clip(total_pos, K.epsilon(), None), axis=-1)
if num_classes == 1:
return binary_pixelwise_sensitivity
else:
return categorical_pixelwise_sensitivity
def pixelwise_specificity(num_classes=1):
"""
true negative rate
the proportion of negatives that are correctly identified as such
specificity = # of true negatives / (# of true negatives + # of false positives)
:param y_true: ground truth
:param y_pred: prediction
:return:
"""
def binary_pixelwise_specificity(y_true, y_pred):
true_neg = K.sum(K.abs((1. - y_true) * (1. - y_pred)), axis=[1, 2, 3])
total_neg = K.sum(K.abs(1. - y_true), axis=[1, 2, 3])
return true_neg / K.clip(total_neg, K.epsilon(), None)
def categorical_pixelwise_specificity(y_true, y_pred):
y_true, y_pred = y_true[..., 1:], y_pred[..., 1:]
true_neg = K.sum(K.abs((1. - y_true) * (1. - y_pred)), axis=[1, 2])
total_neg = K.sum(K.abs(1. - y_true), axis=[1, 2])
return true_neg / K.clip(total_neg, K.epsilon(), None)
if num_classes == 1:
return binary_pixelwise_specificity
else:
return categorical_pixelwise_specificity
def dice_coeff(num_classes=1):
def binary_dice_coeff(y_true, y_pred):
"""
DSC = (2 * |X & Y|)/ (|X|+ |Y|)
= 2 * sum(|A*B|)/(sum(|A|)+sum(|B|))
:param y_true: ground truth
:param y_pred: prediction
:return:
"""
intersection = K.sum(K.abs(y_true * y_pred), axis=[1, 2, 3])
union = K.sum(K.abs(y_true) + K.abs(y_pred), axis=[1, 2, 3])
dice = 2 * intersection / K.clip(union, K.epsilon(), None)
return dice
def categorical_dice_coeff(y_true, y_pred):
intersection = K.sum(K.abs(y_true * y_pred), axis=[1, 2])
union = K.sum(K.abs(y_true) + K.abs(y_pred), axis=[1, 2])
dice = 2 * intersection / K.clip(union, K.epsilon(), None)
return K.mean(dice, axis=-1)
if num_classes == 1:
return binary_dice_coeff
else:
return categorical_dice_coeff
def class_jaccard_index(idx):
def jaccard_index(y_true, y_pred):
y_true, y_pred = y_true[..., idx], y_pred[..., idx]
y_true = K.round(y_true)
y_pred = K.round(y_pred)
# Adding all three axis to average across images before dividing
# See https://forum.isic-archive.com/t/task-2-evaluation-and-superpixel-generation/417/2
intersection = K.sum(K.abs(y_true * y_pred), axis=[0, 1, 2])
sum_ = K.sum(K.abs(y_true) + K.abs(y_pred), axis=[0, 1, 2])
jac = intersection / K.clip(sum_ - intersection, K.epsilon(), None)
return jac
return jaccard_index
def jaccard_index(num_classes):
"""
Jaccard index for semantic segmentation, also known as the intersection-over-union.
This loss is useful when you have unbalanced numbers of pixels within an image
because it gives all classes equal weight. However, it is not the defacto
standard for image segmentation.
For example, assume you are trying to predict if each pixel is cat, dog, or background.
You have 80% background pixels, 10% dog, and 10% cat. If the model predicts 100% background
should it be be 80% right (as with categorical cross entropy) or 30% (with this loss)?
The loss has been modified to have a smooth gradient as it converges on zero.
This has been shifted so it converges on 0 and is smoothed to avoid exploding
or disappearing gradient.
Jaccard = (|X & Y|)/ (|X|+ |Y| - |X & Y|)
= sum(|A*B|)/(sum(|A|)+sum(|B|)-sum(|A*B|))
# References
Csurka, Gabriela & Larlus, Diane & Perronnin, Florent. (2013).
What is a good evaluation measure for semantic segmentation?.
IEEE Trans. Pattern Anal. Mach. Intell.. 26. . 10.5244/C.27.32.
https://en.wikipedia.org/wiki/Jaccard_index
"""
def binary_jaccard_index(y_true, y_pred):
y_true = K.round(y_true)
y_pred = K.round(y_pred)
intersection = K.sum(K.abs(y_true * y_pred), axis=[1, 2, 3])
union = K.sum(K.abs(y_true) + K.abs(y_pred), axis=[1, 2, 3])
iou = intersection / K.clip(union - intersection, K.epsilon(), None)
return iou
def categorical_jaccard_index(y_true, y_pred):
y_true = K.round(y_true)
y_pred = K.round(y_pred)
intersection = K.abs(y_true * y_pred)
union = K.abs(y_true) + K.abs(y_pred)
intersection = K.sum(intersection, axis=[0, 1, 2])
union = K.sum(union, axis=[0, 1, 2])
iou = intersection / K.clip(union - intersection, K.epsilon(), None)
# iou = K.mean(iou, axis=-1)
return iou
if num_classes == 1:
return binary_jaccard_index
else:
return categorical_jaccard_index