-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
39 lines (27 loc) · 1.39 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# main program of VVSec
from adv_attack import *
def test_dataset(ref, user):
file1 = ref # reference input depth file name
inp1 = create_input_rgbd(file1)
file2 = user # user input depth file name
inp2 = create_input_rgbd(file2)
inp2_adv, similarity, time_cost, is_converged = cw_mask(steps=2000, lr=0.1, eps=0.00, strength=0, Img1=inp1,
Img2=inp2, depth=False, clip=32)
noise = abs(inp2_adv - inp2)
original_similarity = model_recover.predict([inp1, inp2])[0][0]
new_similarity = model_recover.predict([inp1, inp2_adv])[0][0]
l2_norm = np.linalg.norm(noise) / np.linalg.norm(inp2)
print("original similarity", original_similarity)
print("new similarity", new_similarity)
print("l2 norm", l2_norm)
print("time cost", time_cost)
plot_test(inp1, inp2, inp2_adv, original_similarity, new_similarity, l2_norm, time_cost)
if __name__ == '__main__':
model_recover = get_model()
# please use the depth file name, which ends in ".dat", as the input
dataset1_reference_input = 'dataset/ds1/0.jpg_d.dat'
dataset1_user_input = 'dataset/ds1/1.jpg_d.dat'
test_dataset(dataset1_reference_input, dataset1_user_input)
dataset1_reference_input = 'dataset/ds1/0.jpg_d.dat'
dataset1_user_input = 'dataset/ds1/9.jpg_d.dat'
test_dataset(dataset1_reference_input, dataset1_user_input)