-
Notifications
You must be signed in to change notification settings - Fork 38
/
Mixer.hpp
78 lines (70 loc) · 2.57 KB
/
Mixer.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#pragma once
#include "IPredictor.hpp"
#include "Shared.hpp"
struct ErrorInfo {
uint32_t data[2], sum, mask, collected;
void reset() {
memset(this, 0, sizeof(*this));
}
};
class Mixer : protected IPredictor {
protected:
static constexpr int MAX_LEARNING_RATE = 8 * 65536 - 1;
static constexpr int MIN_LEARNING_RATE_S1 = 2 * 65536 - 1;
static constexpr int MIN_LEARNING_RATE_SN = 6 * 65536 - 1;
const Shared * const shared;
const uint32_t n; /**< max inputs */
const uint32_t m; /**< max contexts */
const uint32_t s; /**< max context sets */
const int lowerLimitOfLearningRate; /**< for linear learning rate decay */
const bool isAdaptiveLearningRate; /**< linked to command line option '-a' */
int scaleFactor; /**< scale factor for dot product */
Array<short, 64> tx; /**< n inputs from add() */
Array<short, 64> wx; /**< n*m weights */
Array<uint32_t> cxt; /**< s contexts */
Array<ErrorInfo> info; /**< stats for the adaptive learning rates */
Array<int> rates; /**< learning rates */
uint32_t numContexts {}; /**< number of contexts (0 to s) */
uint32_t base {}; /**< offset of next context */
uint32_t nx {}; /**< number of inputs in tx, 0 to n */
Array<int> pr; /**< last result (scaled 12 bits) */
public:
/**
* Mixer m(n, m, s) combines models using @ref m neural networks with
* @ref n inputs each, of which up to @ref s may be selected. If s > 1 then
* the outputs of these neural networks are combined using another
* neural network (with arguments s, 1, 1). If s = 1 then the
* output is direct.
* @param n
* @param m
* @param s
*/
Mixer(const Shared* sh, int n, int m, int s);
~Mixer() override = default;
/**
* Returns the output prediction that the next bit is 1 as a 12 bit number (0 to 4095).
* @return the prediction
*/
virtual int p() = 0;
virtual void setScaleFactor(int sf0, int sf1) = 0;
virtual void promote(int x) = 0;
/**
* Input x (call up to n times)
* m.add(stretch(p)) inputs a prediction from one of n models. The
* prediction should be positive to predict a 1 bit, negative for 0,
* nominally +-256 to +-2K. The maximum allowed value is +-32K but
* using such large values may cause overflow if n is large.
* @param x
*/
void add(int x);
/**
* Selects @ref cx as one of @ref range neural networks to
* use. 0 <= cx < range. Should be called up to @ref s times such
* that the total of the ranges is <= @ref m.
* @param cx
* @param range
* @param rate
*/
void set(uint32_t cx, uint32_t range);
void reset();
};