forked from zbyzfw/detect_lay
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolo.cu
740 lines (637 loc) · 27.3 KB
/
yolo.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
#include "infer.hpp"
#include "yolo.hpp"
namespace yolo {
using namespace std;
#define GPU_BLOCK_THREADS 512
#define checkRuntime(call) \
do { \
auto ___call__ret_code__ = (call); \
if (___call__ret_code__ != cudaSuccess) { \
INFO("CUDA Runtime error💥 %s # %s, code = %s [ %d ]", #call, \
cudaGetErrorString(___call__ret_code__), cudaGetErrorName(___call__ret_code__), \
___call__ret_code__); \
abort(); \
} \
} while (0)
#define checkKernel(...) \
do { \
{ (__VA_ARGS__); } \
checkRuntime(cudaPeekAtLastError()); \
} while (0)
enum class NormType : int { None = 0, MeanStd = 1, AlphaBeta = 2 };
enum class ChannelType : int { None = 0, SwapRB = 1 };
/* 归一化操作,可以支持均值标准差,alpha beta,和swap RB */
struct Norm {
float mean[3];
float std[3];
float alpha, beta;
NormType type = NormType::None;
ChannelType channel_type = ChannelType::None;
// out = (x * alpha - mean) / std
static Norm mean_std(const float mean[3], const float std[3], float alpha = 1 / 255.0f,
ChannelType channel_type = ChannelType::None);
// out = x * alpha + beta
static Norm alpha_beta(float alpha, float beta = 0, ChannelType channel_type = ChannelType::None);
// None
static Norm None();
};
Norm Norm::mean_std(const float mean[3], const float std[3], float alpha,
ChannelType channel_type) {
Norm out;
out.type = NormType::MeanStd;
out.alpha = alpha;
out.channel_type = channel_type;
memcpy(out.mean, mean, sizeof(out.mean));
memcpy(out.std, std, sizeof(out.std));
return out;
}
Norm Norm::alpha_beta(float alpha, float beta, ChannelType channel_type) {
Norm out;
out.type = NormType::AlphaBeta;
out.alpha = alpha;
out.beta = beta;
out.channel_type = channel_type;
return out;
}
Norm Norm::None() { return Norm(); }
const int NUM_BOX_ELEMENT = 8; // left, top, right, bottom, confidence, class,
// keepflag, row_index(output)
const int MAX_IMAGE_BOXES = 1024;
inline int upbound(int n, int align = 32) { return (n + align - 1) / align * align; }
static __host__ __device__ void affine_project(float *matrix, float x, float y, float *ox,
float *oy) {
*ox = matrix[0] * x + matrix[1] * y + matrix[2];
*oy = matrix[3] * x + matrix[4] * y + matrix[5];
}
static __global__ void decode_kernel_common(float *predict, int num_bboxes, int num_classes,
int output_cdim, float confidence_threshold,
float *invert_affine_matrix, float *parray,
int MAX_IMAGE_BOXES) {
int position = blockDim.x * blockIdx.x + threadIdx.x;
if (position >= num_bboxes) return;
float *pitem = predict + output_cdim * position;
float objectness = pitem[4];
if (objectness < confidence_threshold) return;
float *class_confidence = pitem + 5;
float confidence = *class_confidence++;
int label = 0;
for (int i = 1; i < num_classes; ++i, ++class_confidence) {
if (*class_confidence > confidence) {
confidence = *class_confidence;
label = i;
}
}
confidence *= objectness;
if (confidence < confidence_threshold) return;
int index = atomicAdd(parray, 1);
if (index >= MAX_IMAGE_BOXES) return;
float cx = *pitem++;
float cy = *pitem++;
float width = *pitem++;
float height = *pitem++;
float left = cx - width * 0.5f;
float top = cy - height * 0.5f;
float right = cx + width * 0.5f;
float bottom = cy + height * 0.5f;
affine_project(invert_affine_matrix, left, top, &left, &top);
affine_project(invert_affine_matrix, right, bottom, &right, &bottom);
float *pout_item = parray + 1 + index * NUM_BOX_ELEMENT;
*pout_item++ = left;
*pout_item++ = top;
*pout_item++ = right;
*pout_item++ = bottom;
*pout_item++ = confidence;
*pout_item++ = label;
*pout_item++ = 1; // 1 = keep, 0 = ignore
}
static __global__ void decode_kernel_v8(float *predict, int num_bboxes, int num_classes,
int output_cdim, float confidence_threshold,
float *invert_affine_matrix, float *parray,
int MAX_IMAGE_BOXES) {
int position = blockDim.x * blockIdx.x + threadIdx.x;
if (position >= num_bboxes) return;
float *pitem = predict + output_cdim * position;
float *class_confidence = pitem + 4;
float confidence = *class_confidence++;
int label = 0;
for (int i = 1; i < num_classes; ++i, ++class_confidence) {
if (*class_confidence > confidence) {
confidence = *class_confidence;
label = i;
}
}
if (confidence < confidence_threshold) return;
int index = atomicAdd(parray, 1);
if (index >= MAX_IMAGE_BOXES) return;
float cx = *pitem++;
float cy = *pitem++;
float width = *pitem++;
float height = *pitem++;
float left = cx - width * 0.5f;
float top = cy - height * 0.5f;
float right = cx + width * 0.5f;
float bottom = cy + height * 0.5f;
affine_project(invert_affine_matrix, left, top, &left, &top);
affine_project(invert_affine_matrix, right, bottom, &right, &bottom);
float *pout_item = parray + 1 + index * NUM_BOX_ELEMENT;
*pout_item++ = left;
*pout_item++ = top;
*pout_item++ = right;
*pout_item++ = bottom;
*pout_item++ = confidence;
*pout_item++ = label;
*pout_item++ = 1; // 1 = keep, 0 = ignore
*pout_item++ = position;
}
static __device__ float box_iou(float aleft, float atop, float aright, float abottom, float bleft,
float btop, float bright, float bbottom) {
float cleft = max(aleft, bleft);
float ctop = max(atop, btop);
float cright = min(aright, bright);
float cbottom = min(abottom, bbottom);
float c_area = max(cright - cleft, 0.0f) * max(cbottom - ctop, 0.0f);
if (c_area == 0.0f) return 0.0f;
float a_area = max(0.0f, aright - aleft) * max(0.0f, abottom - atop);
float b_area = max(0.0f, bright - bleft) * max(0.0f, bbottom - btop);
return c_area / (a_area + b_area - c_area);
}
static __global__ void fast_nms_kernel(float *bboxes, int MAX_IMAGE_BOXES, float threshold) {
int position = (blockDim.x * blockIdx.x + threadIdx.x);
int count = min((int)*bboxes, MAX_IMAGE_BOXES);
if (position >= count) return;
// left, top, right, bottom, confidence, class, keepflag
float *pcurrent = bboxes + 1 + position * NUM_BOX_ELEMENT;
for (int i = 0; i < count; ++i) {
float *pitem = bboxes + 1 + i * NUM_BOX_ELEMENT;
if (i == position || pcurrent[5] != pitem[5]) continue;
if (pitem[4] >= pcurrent[4]) {
if (pitem[4] == pcurrent[4] && i < position) continue;
float iou = box_iou(pcurrent[0], pcurrent[1], pcurrent[2], pcurrent[3], pitem[0], pitem[1],
pitem[2], pitem[3]);
if (iou > threshold) {
pcurrent[6] = 0; // 1=keep, 0=ignore
return;
}
}
}
}
static dim3 grid_dims(int numJobs) {
int numBlockThreads = numJobs < GPU_BLOCK_THREADS ? numJobs : GPU_BLOCK_THREADS;
return dim3(((numJobs + numBlockThreads - 1) / (float)numBlockThreads));
}
static dim3 block_dims(int numJobs) {
return numJobs < GPU_BLOCK_THREADS ? numJobs : GPU_BLOCK_THREADS;
}
static void decode_kernel_invoker(float *predict, int num_bboxes, int num_classes, int output_cdim,
float confidence_threshold, float nms_threshold,
float *invert_affine_matrix, float *parray, int MAX_IMAGE_BOXES,
Type type, cudaStream_t stream) {
auto grid = grid_dims(num_bboxes);
auto block = block_dims(num_bboxes);
if (type == Type::V8 || type == Type::V8Seg) {
checkKernel(decode_kernel_v8<<<grid, block, 0, stream>>>(
predict, num_bboxes, num_classes, output_cdim, confidence_threshold, invert_affine_matrix,
parray, MAX_IMAGE_BOXES));
} else {
checkKernel(decode_kernel_common<<<grid, block, 0, stream>>>(
predict, num_bboxes, num_classes, output_cdim, confidence_threshold, invert_affine_matrix,
parray, MAX_IMAGE_BOXES));
}
grid = grid_dims(MAX_IMAGE_BOXES);
block = block_dims(MAX_IMAGE_BOXES);
checkKernel(fast_nms_kernel<<<grid, block, 0, stream>>>(parray, MAX_IMAGE_BOXES, nms_threshold));
}
static __global__ void warp_affine_bilinear_and_normalize_plane_kernel(
uint8_t *src, int src_line_size, int src_width, int src_height, float *dst, int dst_width,
int dst_height, uint8_t const_value_st, float *warp_affine_matrix_2_3, Norm norm) {
int dx = blockDim.x * blockIdx.x + threadIdx.x;
int dy = blockDim.y * blockIdx.y + threadIdx.y;
if (dx >= dst_width || dy >= dst_height) return;
float m_x1 = warp_affine_matrix_2_3[0];
float m_y1 = warp_affine_matrix_2_3[1];
float m_z1 = warp_affine_matrix_2_3[2];
float m_x2 = warp_affine_matrix_2_3[3];
float m_y2 = warp_affine_matrix_2_3[4];
float m_z2 = warp_affine_matrix_2_3[5];
float src_x = m_x1 * dx + m_y1 * dy + m_z1;
float src_y = m_x2 * dx + m_y2 * dy + m_z2;
float c0, c1, c2;
if (src_x <= -1 || src_x >= src_width || src_y <= -1 || src_y >= src_height) {
// out of range
c0 = const_value_st;
c1 = const_value_st;
c2 = const_value_st;
} else {
int y_low = floorf(src_y);
int x_low = floorf(src_x);
int y_high = y_low + 1;
int x_high = x_low + 1;
uint8_t const_value[] = {const_value_st, const_value_st, const_value_st};
float ly = src_y - y_low;
float lx = src_x - x_low;
float hy = 1 - ly;
float hx = 1 - lx;
float w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
uint8_t *v1 = const_value;
uint8_t *v2 = const_value;
uint8_t *v3 = const_value;
uint8_t *v4 = const_value;
if (y_low >= 0) {
if (x_low >= 0) v1 = src + y_low * src_line_size + x_low * 3;
if (x_high < src_width) v2 = src + y_low * src_line_size + x_high * 3;
}
if (y_high < src_height) {
if (x_low >= 0) v3 = src + y_high * src_line_size + x_low * 3;
if (x_high < src_width) v4 = src + y_high * src_line_size + x_high * 3;
}
// same to opencv
c0 = floorf(w1 * v1[0] + w2 * v2[0] + w3 * v3[0] + w4 * v4[0] + 0.5f);
c1 = floorf(w1 * v1[1] + w2 * v2[1] + w3 * v3[1] + w4 * v4[1] + 0.5f);
c2 = floorf(w1 * v1[2] + w2 * v2[2] + w3 * v3[2] + w4 * v4[2] + 0.5f);
}
if (norm.channel_type == ChannelType::SwapRB) {
float t = c2;
c2 = c0;
c0 = t;
}
if (norm.type == NormType::MeanStd) {
c0 = (c0 * norm.alpha - norm.mean[0]) / norm.std[0];
c1 = (c1 * norm.alpha - norm.mean[1]) / norm.std[1];
c2 = (c2 * norm.alpha - norm.mean[2]) / norm.std[2];
} else if (norm.type == NormType::AlphaBeta) {
c0 = c0 * norm.alpha + norm.beta;
c1 = c1 * norm.alpha + norm.beta;
c2 = c2 * norm.alpha + norm.beta;
}
int area = dst_width * dst_height;
float *pdst_c0 = dst + dy * dst_width + dx;
float *pdst_c1 = pdst_c0 + area;
float *pdst_c2 = pdst_c1 + area;
*pdst_c0 = c0;
*pdst_c1 = c1;
*pdst_c2 = c2;
}
static void warp_affine_bilinear_and_normalize_plane(uint8_t *src, int src_line_size, int src_width,
int src_height, float *dst, int dst_width,
int dst_height, float *matrix_2_3,
uint8_t const_value, const Norm &norm,
cudaStream_t stream) {
dim3 grid((dst_width + 31) / 32, (dst_height + 31) / 32);
dim3 block(32, 32);
checkKernel(warp_affine_bilinear_and_normalize_plane_kernel<<<grid, block, 0, stream>>>(
src, src_line_size, src_width, src_height, dst, dst_width, dst_height, const_value,
matrix_2_3, norm));
}
static __global__ void decode_single_mask_kernel(int left, int top, float *mask_weights,
float *mask_predict, int mask_width,
int mask_height, unsigned char *mask_out,
int mask_dim, int out_width, int out_height) {
// mask_predict to mask_out
// mask_weights @ mask_predict
int dx = blockDim.x * blockIdx.x + threadIdx.x;
int dy = blockDim.y * blockIdx.y + threadIdx.y;
if (dx >= out_width || dy >= out_height) return;
int sx = left + dx;
int sy = top + dy;
if (sx < 0 || sx >= mask_width || sy < 0 || sy >= mask_height) {
mask_out[dy * out_width + dx] = 0;
return;
}
float cumprod = 0;
for (int ic = 0; ic < mask_dim; ++ic) {
float cval = mask_predict[(ic * mask_height + sy) * mask_width + sx];
float wval = mask_weights[ic];
cumprod += cval * wval;
}
float alpha = 1.0f / (1.0f + exp(-cumprod));
mask_out[dy * out_width + dx] = alpha * 255;
}
static void decode_single_mask(float left, float top, float *mask_weights, float *mask_predict,
int mask_width, int mask_height, unsigned char *mask_out,
int mask_dim, int out_width, int out_height, cudaStream_t stream) {
// mask_weights is mask_dim(32 element) gpu pointer
dim3 grid((out_width + 31) / 32, (out_height + 31) / 32);
dim3 block(32, 32);
checkKernel(decode_single_mask_kernel<<<grid, block, 0, stream>>>(
left, top, mask_weights, mask_predict, mask_width, mask_height, mask_out, mask_dim, out_width,
out_height));
}
const char *type_name(Type type) {
switch (type) {
case Type::V5:
return "YoloV5";
case Type::V3:
return "YoloV3";
case Type::V7:
return "YoloV7";
case Type::X:
return "YoloX";
case Type::V8:
return "YoloV8";
default:
return "Unknow";
}
}
struct AffineMatrix {
float i2d[6]; // image to dst(network), 2x3 matrix
float d2i[6]; // dst to image, 2x3 matrix
void compute(const std::tuple<int, int> &from, const std::tuple<int, int> &to) {
float scale_x = get<0>(to) / (float)get<0>(from);
float scale_y = get<1>(to) / (float)get<1>(from);
float scale = std::min(scale_x, scale_y);
i2d[0] = scale;
i2d[1] = 0;
i2d[2] = -scale * get<0>(from) * 0.5 + get<0>(to) * 0.5 + scale * 0.5 - 0.5;
i2d[3] = 0;
i2d[4] = scale;
i2d[5] = -scale * get<1>(from) * 0.5 + get<1>(to) * 0.5 + scale * 0.5 - 0.5;
double D = i2d[0] * i2d[4] - i2d[1] * i2d[3];
D = D != 0. ? double(1.) / D : double(0.);
double A11 = i2d[4] * D, A22 = i2d[0] * D, A12 = -i2d[1] * D, A21 = -i2d[3] * D;
double b1 = -A11 * i2d[2] - A12 * i2d[5];
double b2 = -A21 * i2d[2] - A22 * i2d[5];
d2i[0] = A11;
d2i[1] = A12;
d2i[2] = b1;
d2i[3] = A21;
d2i[4] = A22;
d2i[5] = b2;
}
};
InstanceSegmentMap::InstanceSegmentMap(int width, int height) {
this->width = width;
this->height = height;
checkRuntime(cudaMallocHost(&this->data, width * height));
}
InstanceSegmentMap::~InstanceSegmentMap() {
if (this->data) {
checkRuntime(cudaFreeHost(this->data));
this->data = nullptr;
}
this->width = 0;
this->height = 0;
}
class InferImpl : public Infer {
public:
shared_ptr<trt::Infer> trt_;
string engine_file_;
Type type_;
float confidence_threshold_;
float nms_threshold_;
vector<shared_ptr<trt::Memory<unsigned char>>> preprocess_buffers_;
trt::Memory<float> input_buffer_, bbox_predict_, output_boxarray_;
trt::Memory<float> segment_predict_;
int network_input_width_, network_input_height_;
Norm normalize_;
vector<int> bbox_head_dims_;
vector<int> segment_head_dims_;
int num_classes_ = 0;
bool has_segment_ = false;
bool isdynamic_model_ = false;
vector<shared_ptr<trt::Memory<unsigned char>>> box_segment_cache_;
virtual ~InferImpl() = default;
void adjust_memory(int batch_size) {
// the inference batch_size
size_t input_numel = network_input_width_ * network_input_height_ * 3;
input_buffer_.gpu(batch_size * input_numel);
bbox_predict_.gpu(batch_size * bbox_head_dims_[1] * bbox_head_dims_[2]);
output_boxarray_.gpu(batch_size * (32 + MAX_IMAGE_BOXES * NUM_BOX_ELEMENT));
output_boxarray_.cpu(batch_size * (32 + MAX_IMAGE_BOXES * NUM_BOX_ELEMENT));
if (has_segment_)
segment_predict_.gpu(batch_size * segment_head_dims_[1] * segment_head_dims_[2] *
segment_head_dims_[3]);
if ((int)preprocess_buffers_.size() < batch_size) {
for (int i = preprocess_buffers_.size(); i < batch_size; ++i)
preprocess_buffers_.push_back(make_shared<trt::Memory<unsigned char>>());
}
}
void preprocess(int ibatch, const Image &image,
shared_ptr<trt::Memory<unsigned char>> preprocess_buffer, AffineMatrix &affine,
void *stream = nullptr) {
affine.compute(make_tuple(image.width, image.height),
make_tuple(network_input_width_, network_input_height_));
size_t input_numel = network_input_width_ * network_input_height_ * 3;
float *input_device = input_buffer_.gpu() + ibatch * input_numel;
size_t size_image = image.width * image.height * 3;
size_t size_matrix = upbound(sizeof(affine.d2i), 32);
uint8_t *gpu_workspace = preprocess_buffer->gpu(size_matrix + size_image);
float *affine_matrix_device = (float *)gpu_workspace;
uint8_t *image_device = gpu_workspace + size_matrix;
uint8_t *cpu_workspace = preprocess_buffer->cpu(size_matrix + size_image);
float *affine_matrix_host = (float *)cpu_workspace;
uint8_t *image_host = cpu_workspace + size_matrix;
// speed up
cudaStream_t stream_ = (cudaStream_t)stream;
memcpy(image_host, image.bgrptr, size_image);
memcpy(affine_matrix_host, affine.d2i, sizeof(affine.d2i));
checkRuntime(
cudaMemcpyAsync(image_device, image_host, size_image, cudaMemcpyHostToDevice, stream_));
checkRuntime(cudaMemcpyAsync(affine_matrix_device, affine_matrix_host, sizeof(affine.d2i),
cudaMemcpyHostToDevice, stream_));
warp_affine_bilinear_and_normalize_plane(image_device, image.width * 3, image.width,
image.height, input_device, network_input_width_,
network_input_height_, affine_matrix_device, 114,
normalize_, stream_);
}
bool load(const string &engine_file, Type type, float confidence_threshold, float nms_threshold) {
trt_ = trt::load(engine_file);
if (trt_ == nullptr) return false;
trt_->print();
this->type_ = type;
this->confidence_threshold_ = confidence_threshold;
this->nms_threshold_ = nms_threshold;
auto input_dim = trt_->static_dims(0);
bbox_head_dims_ = trt_->static_dims(1);
has_segment_ = type == Type::V8Seg;
if (has_segment_) {
bbox_head_dims_ = trt_->static_dims(2);
segment_head_dims_ = trt_->static_dims(1);
}
network_input_width_ = input_dim[3];
network_input_height_ = input_dim[2];
isdynamic_model_ = trt_->has_dynamic_dim();
if (type == Type::V5 || type == Type::V3 || type == Type::V7) {
normalize_ = Norm::alpha_beta(1 / 255.0f, 0.0f, ChannelType::SwapRB);
num_classes_ = bbox_head_dims_[2] - 5;
} else if (type == Type::V8) {
normalize_ = Norm::alpha_beta(1 / 255.0f, 0.0f, ChannelType::SwapRB);
num_classes_ = bbox_head_dims_[2] - 4;
} else if (type == Type::V8Seg) {
normalize_ = Norm::alpha_beta(1 / 255.0f, 0.0f, ChannelType::SwapRB);
num_classes_ = bbox_head_dims_[2] - 4 - segment_head_dims_[1];
} else if (type == Type::X) {
// float mean[] = {0.485, 0.456, 0.406};
// float std[] = {0.229, 0.224, 0.225};
// normalize_ = Norm::mean_std(mean, std, 1/255.0f, ChannelType::SwapRB);
normalize_ = Norm::None();
num_classes_ = bbox_head_dims_[2] - 5;
} else {
INFO("Unsupport type %d", type);
}
return true;
}
virtual BoxArray forward(const Image &image, void *stream = nullptr) override {
auto output = forwards({image}, stream);
if (output.empty()) return {};
return output[0];
}
virtual vector<BoxArray> forwards(const vector<Image> &images, void *stream = nullptr) override {
int num_image = images.size();
if (num_image == 0) return {};
auto input_dims = trt_->static_dims(0);
int infer_batch_size = input_dims[0];
if (infer_batch_size != num_image) {
if (isdynamic_model_) {
infer_batch_size = num_image;
input_dims[0] = num_image;
if (!trt_->set_run_dims(0, input_dims)) return {};
} else {
if (infer_batch_size < num_image) {
INFO(
"When using static shape model, number of images[%d] must be "
"less than or equal to the maximum batch[%d].",
num_image, infer_batch_size);
return {};
}
}
}
adjust_memory(infer_batch_size);
vector<AffineMatrix> affine_matrixs(num_image);
cudaStream_t stream_ = (cudaStream_t)stream;
for (int i = 0; i < num_image; ++i)
preprocess(i, images[i], preprocess_buffers_[i], affine_matrixs[i], stream);
float *bbox_output_device = bbox_predict_.gpu();
vector<void *> bindings{input_buffer_.gpu(), bbox_output_device};
if (has_segment_) {
bindings = {input_buffer_.gpu(), segment_predict_.gpu(), bbox_output_device};
}
if (!trt_->forward(bindings, stream)) {
INFO("Failed to tensorRT forward.");
return {};
}
for (int ib = 0; ib < num_image; ++ib) {
float *boxarray_device =
output_boxarray_.gpu() + ib * (32 + MAX_IMAGE_BOXES * NUM_BOX_ELEMENT);
float *affine_matrix_device = (float *)preprocess_buffers_[ib]->gpu();
float *image_based_bbox_output =
bbox_output_device + ib * (bbox_head_dims_[1] * bbox_head_dims_[2]);
checkRuntime(cudaMemsetAsync(boxarray_device, 0, sizeof(int), stream_));
decode_kernel_invoker(image_based_bbox_output, bbox_head_dims_[1], num_classes_,
bbox_head_dims_[2], confidence_threshold_, nms_threshold_,
affine_matrix_device, boxarray_device, MAX_IMAGE_BOXES, type_, stream_);
}
checkRuntime(cudaMemcpyAsync(output_boxarray_.cpu(), output_boxarray_.gpu(),
output_boxarray_.gpu_bytes(), cudaMemcpyDeviceToHost, stream_));
checkRuntime(cudaStreamSynchronize(stream_));
vector<BoxArray> arrout(num_image);
int imemory = 0;
for (int ib = 0; ib < num_image; ++ib) {
float *parray = output_boxarray_.cpu() + ib * (32 + MAX_IMAGE_BOXES * NUM_BOX_ELEMENT);
int count = min(MAX_IMAGE_BOXES, (int)*parray);
BoxArray &output = arrout[ib];
output.reserve(count);
for (int i = 0; i < count; ++i) {
float *pbox = parray + 1 + i * NUM_BOX_ELEMENT;
int label = pbox[5];
int keepflag = pbox[6];
if (keepflag == 1) {
Box result_object_box(pbox[0], pbox[1], pbox[2], pbox[3], pbox[4], label);
if (has_segment_) {
int row_index = pbox[7];
int mask_dim = segment_head_dims_[1];
float *mask_weights = bbox_output_device +
(ib * bbox_head_dims_[1] + row_index) * bbox_head_dims_[2] +
num_classes_ + 4;
float *mask_head_predict = segment_predict_.gpu();
float left, top, right, bottom;
float *i2d = affine_matrixs[ib].i2d;
affine_project(i2d, pbox[0], pbox[1], &left, &top);
affine_project(i2d, pbox[2], pbox[3], &right, &bottom);
float box_width = right - left;
float box_height = bottom - top;
float scale_to_predict_x = segment_head_dims_[3] / (float)network_input_width_;
float scale_to_predict_y = segment_head_dims_[2] / (float)network_input_height_;
int mask_out_width = box_width * scale_to_predict_x + 0.5f;
int mask_out_height = box_height * scale_to_predict_y + 0.5f;
if (mask_out_width > 0 && mask_out_height > 0) {
if (imemory >= (int)box_segment_cache_.size()) {
box_segment_cache_.push_back(std::make_shared<trt::Memory<unsigned char>>());
}
int bytes_of_mask_out = mask_out_width * mask_out_height;
auto box_segment_output_memory = box_segment_cache_[imemory];
result_object_box.seg =
make_shared<InstanceSegmentMap>(mask_out_width, mask_out_height);
unsigned char *mask_out_device = box_segment_output_memory->gpu(bytes_of_mask_out);
unsigned char *mask_out_host = result_object_box.seg->data;
decode_single_mask(left * scale_to_predict_x, top * scale_to_predict_y, mask_weights,
mask_head_predict + ib * segment_head_dims_[1] *
segment_head_dims_[2] *
segment_head_dims_[3],
segment_head_dims_[3], segment_head_dims_[2], mask_out_device,
mask_dim, mask_out_width, mask_out_height, stream_);
checkRuntime(cudaMemcpyAsync(mask_out_host, mask_out_device,
box_segment_output_memory->gpu_bytes(),
cudaMemcpyDeviceToHost, stream_));
}
}
output.emplace_back(result_object_box);
}
}
}
if (has_segment_) checkRuntime(cudaStreamSynchronize(stream_));
return arrout;
}
};
Infer *loadraw(const std::string &engine_file, Type type, float confidence_threshold,
float nms_threshold) {
InferImpl *impl = new InferImpl();
if (!impl->load(engine_file, type, confidence_threshold, nms_threshold)) {
delete impl;
impl = nullptr;
}
return impl;
}
shared_ptr<Infer> load(const string &engine_file, Type type, float confidence_threshold,
float nms_threshold) {
return std::shared_ptr<InferImpl>(
(InferImpl *)loadraw(engine_file, type, confidence_threshold, nms_threshold));
}
std::tuple<uint8_t, uint8_t, uint8_t> hsv2bgr(float h, float s, float v) {
const int h_i = static_cast<int>(h * 6);
const float f = h * 6 - h_i;
const float p = v * (1 - s);
const float q = v * (1 - f * s);
const float t = v * (1 - (1 - f) * s);
float r, g, b;
switch (h_i) {
case 0:
r = v, g = t, b = p;
break;
case 1:
r = q, g = v, b = p;
break;
case 2:
r = p, g = v, b = t;
break;
case 3:
r = p, g = q, b = v;
break;
case 4:
r = t, g = p, b = v;
break;
case 5:
r = v, g = p, b = q;
break;
default:
r = 1, g = 1, b = 1;
break;
}
return make_tuple(static_cast<uint8_t>(b * 255), static_cast<uint8_t>(g * 255),
static_cast<uint8_t>(r * 255));
}
std::tuple<uint8_t, uint8_t, uint8_t> random_color(int id) {
float h_plane = ((((unsigned int)id << 2) ^ 0x937151) % 100) / 100.0f;
float s_plane = ((((unsigned int)id << 3) ^ 0x315793) % 100) / 100.0f;
return hsv2bgr(h_plane, s_plane, 1);
}
}; // namespace yolo