-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·223 lines (192 loc) · 8.18 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
"""Train a model on SQuAD.
Author:
Chris Chute ([email protected])
"""
from qanet import QANet
import numpy as np
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.optim.lr_scheduler as sched
import torch.utils.data as data
import util
from args import get_train_args
from collections import OrderedDict
from json import dumps
from models import BiDAF
from tensorboardX import SummaryWriter
from tqdm import tqdm
from ujson import load as json_load
from util import collate_fn, SQuAD
def main(args):
# Set up logging and devices
args.save_dir = util.get_save_dir(args.save_dir, args.name, training=True)
log = util.get_logger(args.save_dir, args.name)
tbx = SummaryWriter(args.save_dir)
device, args.gpu_ids = util.get_available_devices()
log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')
args.batch_size *= max(1, len(args.gpu_ids))
# Set random seed
log.info(f'Using random seed {args.seed}...')
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
# Get embeddings
log.info('Loading embeddings...')
word_vectors = util.torch_from_json(args.word_emb_file)
# --
char_vectors = util.torch_from_json(args.char_emb_file)
# --
# Get model
log.info('Building model...')
# model = BiDAF(word_vectors=word_vectors,
# char_vectors = char_vectors,
# hidden_size=args.hidden_size,
# drop_prob=args.drop_prob,
# )
print("QANet..", args.hidden_size, args.drop_prob)
model = QANet(word_vectors, char_vectors,
args.hidden_size, drop_prob=args.drop_prob)
model = nn.DataParallel(model, args.gpu_ids)
if args.load_path:
log.info(f'Loading checkpoint from {args.load_path}...')
model, step = util.load_model(model, args.load_path, args.gpu_ids)
else:
step = 0
model = model.to(device)
model.train()
ema = util.EMA(model, args.ema_decay)
# Get saver
saver = util.CheckpointSaver(args.save_dir,
max_checkpoints=args.max_checkpoints,
metric_name=args.metric_name,
maximize_metric=args.maximize_metric,
log=log)
# Get optimizer and scheduler
optimizer = optim.Adam(model.parameters(), args.lr,
betas=[0.8, 0.999],
weight_decay=args.l2_wd)
scheduler = sched.LambdaLR(optimizer, lambda s: 1.) # Constant LR
# Get data loader
log.info('Building dataset...')
train_dataset = SQuAD(args.train_record_file, args.use_squad_v2)
train_loader = data.DataLoader(train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
collate_fn=collate_fn)
dev_dataset = SQuAD(args.dev_record_file, args.use_squad_v2)
dev_loader = data.DataLoader(dev_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
collate_fn=collate_fn)
# Train
log.info('Training...')
steps_till_eval = args.eval_steps
epoch = step // len(train_dataset)
while epoch != args.num_epochs:
epoch += 1
log.info(f'Starting epoch {epoch}...')
with torch.enable_grad(), \
tqdm(total=len(train_loader.dataset)) as progress_bar:
for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in train_loader:
# Setup for forward
cw_idxs = cw_idxs.to(device)
qw_idxs = qw_idxs.to(device)
# --
cc_idxs = cc_idxs.to(device)
qc_idxs = qc_idxs.to(device)
# --
batch_size = cw_idxs.size(0)
optimizer.zero_grad()
# Forward
log_p1, log_p2 = model(cw_idxs, qw_idxs, cc_idxs, qc_idxs)
y1, y2 = y1.to(device), y2.to(device)
loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
loss_val = loss.item()
# Backward
loss.backward()
nn.utils.clip_grad_norm_(
model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step(step // batch_size)
ema(model, step // batch_size)
# Log info
step += batch_size
progress_bar.update(batch_size)
progress_bar.set_postfix(epoch=epoch,
NLL=loss_val)
tbx.add_scalar('train/NLL', loss_val, step)
tbx.add_scalar('train/LR',
optimizer.param_groups[0]['lr'],
step)
steps_till_eval -= batch_size
if steps_till_eval <= 0:
steps_till_eval = args.eval_steps
# Evaluate and save checkpoint
log.info(f'Evaluating at step {step}...')
ema.assign(model)
results, pred_dict = evaluate(model, dev_loader, device,
args.dev_eval_file,
args.max_ans_len,
args.use_squad_v2)
saver.save(step, model, results[args.metric_name], device)
ema.resume(model)
# Log to console
results_str = ', '.join(
f'{k}: {v:05.2f}' for k, v in results.items())
log.info(f'Dev {results_str}')
# Log to TensorBoard
log.info('Visualizing in TensorBoard...')
for k, v in results.items():
tbx.add_scalar(f'dev/{k}', v, step)
util.visualize(tbx,
pred_dict=pred_dict,
step=step,
split='dev',
num_visuals=args.num_visuals)
def evaluate(model, data_loader, device, eval_file, max_len, use_squad_v2):
nll_meter = util.AverageMeter()
model.eval()
pred_dict = {}
with open(eval_file, 'r') as fh:
gold_dict = json_load(fh)
with torch.no_grad(), \
tqdm(total=len(data_loader.dataset)) as progress_bar:
for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in data_loader:
# Setup for forward
cw_idxs = cw_idxs.to(device)
qw_idxs = qw_idxs.to(device)
batch_size = cw_idxs.size(0)
# Forward
log_p1, log_p2 = model(cw_idxs, qw_idxs, cc_idxs, qc_idxs)
y1, y2 = y1.to(device), y2.to(device)
loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
nll_meter.update(loss.item(), batch_size)
# Get F1 and EM scores
p1, p2 = log_p1.exp(), log_p2.exp()
starts, ends = util.discretize(p1, p2, max_len, use_squad_v2)
# Log info
progress_bar.update(batch_size)
progress_bar.set_postfix(NLL=nll_meter.avg)
preds, _ = util.convert_tokens(gold_dict,
ids.tolist(),
starts.tolist(),
ends.tolist(),
use_squad_v2)
pred_dict.update(preds)
model.train()
results = util.eval_dicts(gold_dict, pred_dict, use_squad_v2)
results_list = [('NLL', nll_meter.avg),
('F1', results['F1']),
('EM', results['EM'])]
if use_squad_v2:
results_list.append(('AvNA', results['AvNA']))
results = OrderedDict(results_list)
return results, pred_dict
if __name__ == '__main__':
main(get_train_args())