-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopen_cv_object_deaction.py
53 lines (45 loc) · 1.65 KB
/
open_cv_object_deaction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import cv2
def get_object_name(preview=0):
thres = 0.45 # Threshold to detect object
cap = cv2.VideoCapture(0)
cap.set(3,1280)
cap.set(4,720)
cap.set(10,70)
classNames= []
classFile = r'C:\Users\IamTheHimansh\Documents\BILLROPY\coco.names'
with open(classFile,'rt') as f:
classNames = f.read().rstrip('\n').split('\n')
# print(classNames)
configPath = r'C:\Users\IamTheHimansh\Documents\BILLROPY\ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt'
weightsPath = r'C:\Users\IamTheHimansh\Documents\BILLROPY\frozen_inference_graph.pb'
net = cv2.dnn_DetectionModel(weightsPath,configPath)
net.setInputSize(320,320)
net.setInputScale(1.0/ 127.5)
net.setInputMean((127.5, 127.5, 127.5))
net.setInputSwapRB(True)
finded_obj=[]
# while True:
success,img = cap.read()
classIds, confs, bbox = net.detect(img,confThreshold=thres)
#print(classIds,bbox)
if len(classIds) != 0:
for classId, confidence,box in zip(classIds.flatten(),confs.flatten(),bbox):
cv2.rectangle(img,box,color=(255,255,0),thickness=2)
cv2.putText(img,classNames[classId-1].upper(),(box[0]+10,box[1]+30),
cv2.FONT_HERSHEY_COMPLEX,1,(255,255,0),2)
cv2.putText(img,str(round(confidence*100,2)),(box[0]+200,box[1]+30),
cv2.FONT_HERSHEY_COMPLEX,1,(255,255,0),2)
print(classNames[classId-1].lower()+" Founded")
finded_obj.append(classNames[classId-1].lower())
else:
print("Nothing Founded")
if preview==1:
cv2.imshow("Output",img)
cv2.waitKey()
elif preview==0:
pass
else :
print(f"ValueError:- Wanted 0 or 1 but given {preview} \n The value for Preview is only 0 or 1 . 1 mean on And 0 means off.")
return finded_obj
if __name__ == '__main__':
print(get_object_name(1))