-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinprog.py
162 lines (136 loc) · 4.57 KB
/
linprog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import numpy as np
from scipy.optimize import linprog
from scipy.sparse import csr_matrix
from typing import Iterable
def solve_linprog_ez(
edges: np.ndarray,
differences: np.ndarray,
toa: np.ndarray = None,
weights: np.ndarray = None,
toa_weights: np.ndarray = None,
) -> np.ndarray:
assert differences.dtype == np.int64, "differences must be int"
M = edges.shape[0]
N = np.max(edges) + 1
vals = np.concatenate(
(np.ones((M,), dtype=np.int64), -np.ones((M,), dtype=np.int64))
)
rows = np.tile(np.arange(M), 2)
cols = np.concatenate((edges[:, 1], edges[:, 0]))
if weights is None:
weights = np.ones((M,), dtype=np.int64)
if toa is not None:
vals = np.concatenate((vals, np.ones(N, dtype=np.int64)))
rows = np.concatenate((rows, np.arange(M, M + N)))
cols = np.concatenate((cols, np.arange(N)))
targets = np.concatenate((differences, toa))
if toa_weights is None:
weights = np.concatenate((weights, np.ones(N, dtype=np.int64)))
else:
weights = np.concatenate((weights, toa_weights))
else:
targets = differences
num_k = M + N if toa is not None else M
A_eq = csr_matrix(
(
np.concatenate((vals, np.ones(num_k), -np.ones(num_k))).astype(np.int64),
(
np.concatenate((rows, np.tile(np.arange(num_k), 2))),
np.concatenate((cols, np.arange(2 * num_k) + N)),
),
),
shape=(num_k, N + 2 * num_k),
)
c = np.concatenate((np.zeros((N,), dtype=np.int64), weights, weights))
b_eq = targets
res = linprog(c, A_eq=A_eq, b_eq=b_eq, integrality=1)
if res.x is None:
return None
m = res.x[:N]
return np.round(m).astype(np.int64)
def solve_linprog(
edges: np.ndarray,
simplices: Iterable[Iterable[int]],
differences: np.ndarray,
c: np.ndarray = None,
fixed_k_mask: np.ndarray = None,
adaptive_weights: bool = False,
**options,
) -> np.ndarray:
"""
This function assumes the solutions and the targets are integers.
Args:
edges: (M, 2)
simplices: (N, *)
weights: (M,)
"""
M, N = edges.shape[0], len(simplices)
edge_dict = {tuple(x): i for i, x in enumerate(edges)}
rows = []
cols = []
vals = []
for i, simplex in enumerate(simplices):
u = simplex[-1]
for v in simplex:
key = (u, v)
rows.append(i)
if key in edge_dict:
cols.append(edge_dict[key])
vals.append(1)
else:
cols.append(edge_dict[(v, u)])
vals.append(-1)
u = v
rows = np.array(rows)
cols = np.array(cols)
vals = np.array(vals)
V = csr_matrix((vals, (rows, cols)), shape=(N, M))
y = V @ differences
if fixed_k_mask is not None:
nonzero_cols = np.nonzero(~fixed_k_mask)[0]
unique_cols_dict = {x: i for i, x in enumerate(nonzero_cols)}
filtered_rows = []
filtered_cols = []
filtered_vals = []
for i, (row, col, val) in enumerate(zip(rows, cols, vals)):
if col in unique_cols_dict:
filtered_rows.append(row)
filtered_cols.append(unique_cols_dict[col])
filtered_vals.append(val)
unique_rows, rows_inv = np.unique(filtered_rows, return_inverse=True)
rows = np.arange(len(unique_rows))[rows_inv]
y = y[unique_rows]
cols = np.array(filtered_cols)
vals = np.array(filtered_vals)
V = csr_matrix(
(vals, (rows, cols)),
shape=(len(unique_rows), len(nonzero_cols)),
)
N, M = V.shape
if c is not None:
c = c[~fixed_k_mask]
y = np.round(y).astype(np.int64)
# print("Number of non-zero simplices:", np.count_nonzero(y))
# print("L1 norm of non-zero simplices:", np.abs(y).sum())
A_eq = csr_matrix(
(
np.concatenate((vals, -vals)),
(np.tile(rows, 2), np.concatenate((cols, cols + M))),
),
shape=(N, M * 2),
)
b_eq = -y
if c is None:
if adaptive_weights:
c = np.abs(A_eq).T @ np.abs(b_eq)
c = np.where(c == 0, 1, 0).astype(np.int64)
else:
c = np.ones((M * 2,), dtype=np.int64)
else:
c = np.tile(c, 2)
res = linprog(c, A_eq=A_eq, b_eq=b_eq, integrality=1, options=options)
k = res.x[:M] - res.x[M:]
k = np.round(k).astype(np.int64)
cost = np.abs(V @ k + y).sum()
assert cost == 0, f"cost is {cost}"
return k