-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpiece_values.py
102 lines (84 loc) · 5.04 KB
/
piece_values.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import argparse
import fileinput
from math import log
import re
import pandas
from sklearn.linear_model import LogisticRegression
from tqdm import tqdm
from common import sum_line_count, parse_epd
SCORE = {'1-0': 1, '0-1': 0, '1/2-1/2': 0.5}
def has_imbalance(pieces, imbalance):
return all(pieces.count(p) - pieces.count(p.swapcase()) >= imbalance.count(p) - imbalance.count(p.swapcase()) for p in set(imbalance))
def game_phase(phases, max_pieces, num_board_pieces):
return phases - 1 - min(max(int(phases * (num_board_pieces - 1) / max_pieces), 0), phases - 1)
def piece_values(instream, stable_ply, keep_color, unpromoted, normalization, rescale, phases, max_pieces,
imbalance, equal_weighted, min_fullmove):
total = sum_line_count(instream)
# collect data
diffs = [[] for _ in range(phases)]
results = [[] for _ in range(phases)]
last_game = None
last_set = None
for epd in tqdm(instream, total=total):
fen, annotations = parse_epd(epd)
board = fen.split(' ')[0]
hm = int(annotations.get('hmvc') or fen.split(' ')[-2])
fm = int(annotations.get('fmvn') or fen.split(' ')[-1])
pieces = re.findall(r'[A-Za-z]' if unpromoted else r'(?:\+)?[A-Za-z]', board)
num_board_pieces = len(re.findall(r'[A-Za-z]', board.split('[')[0]))
if imbalance:
for baseImbalance in imbalance:
for colorImbalance in (baseImbalance, baseImbalance.swapcase()):
if has_imbalance(pieces, colorImbalance):
pieces.append(colorImbalance)
result = annotations.get('result')
if result in ('1-0', '0-1') and hm >= stable_ply and fm >= min_fullmove:
black_pov = fen.split(' ')[1] == 'b' and not keep_color
pov_result = ('1-0' if result == '0-1' else '0-1') if black_pov else result
phase = game_phase(phases, max_pieces, num_board_pieces)
piece_set = set(min(p, p.swapcase()) for p in pieces)
if not equal_weighted or (annotations.get('game_uuid') != last_game or piece_set != last_set):
last_game = annotations.get('game_uuid')
last_set = piece_set
diffs[phase].append({p: (pieces.count(p) - pieces.count(p.swapcase())) * (-1 if black_pov else 1) for p in piece_set})
results[phase].append(SCORE[pov_result])
for i in range(phases):
print('\nPhase {} of {}'.format(i + 1, phases))
# convert to dataframe
piece_diffs = pandas.DataFrame(diffs[i])
piece_diffs.fillna(0, inplace=True)
# fit
model = LogisticRegression(solver='liblinear', C=10.0, random_state=0)
model.fit(piece_diffs, results[i])
# print fitted piece values
if normalization == 'auto':
norm = min(abs(v) for p, v in zip(piece_diffs.columns, model.coef_[0]) if len(p) == 1 and v > 0.05) / rescale
elif normalization == 'natural':
norm = log(10) / 2
elif normalization == 'elo':
norm = log(10) / 400
else:
norm = 1
for p, v in sorted(zip(piece_diffs.columns, model.coef_[0]), key=lambda x: x[1], reverse=True):
print(p, '{:.2f}'.format(v / norm))
print('white' if keep_color else 'move', '{:.2f}'.format(model.intercept_[0] / norm))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('epd_files', nargs='*')
parser.add_argument('-s', '--stable-ply', type=int, default=1, help='minimum ply since last material change')
parser.add_argument('-c', '--keep-color', action='store_true', help='report color-specific statistics')
parser.add_argument('-u', '--unpromoted', action='store_true', help='ignore promoted state of pieces')
parser.add_argument('-i', '--imbalance', action='append', help='imbalance to evaluate. Can be specified more than once.')
parser.add_argument('-n', '--normalization', choices=['off', 'elo', 'natural', 'auto'], default='auto', help='define normalization scale, one of %(choices)s')
parser.add_argument('-r', '--rescale', type=float, default=1, help='rescale. only for "auto" normalization')
parser.add_argument('-p', '--phases', type=int, default=1, help='number of game phases')
parser.add_argument('-m', '--max-pieces', type=int, default=32, help='maximum possible number of pieces, for game phases')
parser.add_argument('-e', '--equal-weighted', action='store_true', help='use each material configuration only once per game')
parser.add_argument('-f', '--min-fullmove', type=int, default=0, help='minimum fullmove count to consider position')
args = parser.parse_args()
if args.rescale != 1 and args.normalization != 'auto':
parser.error('Rescaling only supported for "auto" normalization.')
with fileinput.input(args.epd_files) as instream:
piece_values(instream, args.stable_ply, args.keep_color, args.unpromoted,
args.normalization, args.rescale, args.phases, args.max_pieces,
args.imbalance, args.equal_weighted, args.min_fullmove)