forked from princetonvisualai/imagenet-face-obfuscation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblurring.py
71 lines (62 loc) · 2.34 KB
/
blurring.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
"""
Script for generating face-blurred images
It assumes:
1. Original ILSVRC images are in data/train and data/val.
2. Face annotations are in data/face_annotations_ILSVRC.json.
It will save blurred images to data/train_blurred and data/val_blurred.
"""
from glob import glob
import json
import os
from tqdm import tqdm
from PIL import Image, ImageDraw, ImageFilter
from typing import Any
import sys
sys.path.append(".")
from common import FACE_ANNOTATIONS_PATH, TRAIN_IMAGES_PATH, VAL_IMAGES_PATH
face_annotations = {
x["url"]: x["bboxes"] for x in json.load(open(FACE_ANNOTATIONS_PATH))
}
def blur(img: Any, url: str) -> Any:
"""
Apply a variant of Gaussian blurring.
See the appendix for detail.
"""
mask = Image.new(mode="L", size=img.size, color="white")
max_diagonal = 0
for bbox in face_annotations[url]:
if bbox["x0"] >= bbox["x1"] or bbox["y0"] >= bbox["y1"]:
continue
diagonal = max(bbox["x1"] - bbox["x0"], bbox["y1"] - bbox["y0"])
max_diagonal = max(max_diagonal, diagonal)
bbox = [
bbox["x0"] - 0.1 * diagonal,
bbox["y0"] - 0.1 * diagonal,
bbox["x1"] + 0.1 * diagonal,
bbox["y1"] + 0.1 * diagonal,
]
draw = ImageDraw.Draw(mask)
draw.rectangle(bbox, fill="black")
blurred_img = img.filter(ImageFilter.GaussianBlur(0.1 * max_diagonal))
blurred_mask = mask.filter(ImageFilter.GaussianBlur(0.1 * max_diagonal))
img = Image.composite(img, blurred_img, blurred_mask)
return img
if __name__ == "__main__":
image_paths = glob(os.path.join(TRAIN_IMAGES_PATH, "n*/*.jpg")) + glob(
os.path.join(VAL_IMAGES_PATH, "n*/*.jpg")
)
print("%d images to process" % len(image_paths))
for path in tqdm(image_paths):
img = Image.open(path).convert("RGB")
url = os.path.sep.join(path.split(os.path.sep)[-3:])[:-4] + ".JPEG"
if url.startswith("val"):
url = "val/" + url.split(os.path.sep)[-1]
if url in face_annotations: # face annotations available
img = blur(img, url)
target_path = path.replace("train/", "train_blurred/").replace(
"val/", "val_blurred/"
)
dir, _ = os.path.split(target_path)
if not os.path.exists(dir):
os.makedirs(dir)
img.save(target_path)