-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
286 lines (246 loc) · 10.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import gymnasium as gym
import argparse
from model import DQN, DuelDQN
from torch import optim
from utils import Transition, ReplayMemory, VideoRecorder
from wrapper import AtariWrapper
import numpy as np
import random
import torch
import torch.nn as nn
from itertools import count
import os
import matplotlib.pyplot as plt
import math
from collections import deque
# parser
parser = argparse.ArgumentParser()
parser.add_argument('--env-name',default="breakout",type=str,choices=["pong","breakout","boxing"], help="env name")
parser.add_argument('--model', default="dqn", type=str, choices=["dqn","dueldqn"], help="dqn model")
parser.add_argument('--gpu',default=0,type=int,help="which gpu to use")
parser.add_argument('--lr', default=2.5e-4, type=float, help="learning rate")
parser.add_argument('--epoch', default=10001, type=int, help="training epoch")
parser.add_argument('--batch-size', default=32, type=int, help="batch size")
parser.add_argument('--ddqn',action='store_true', help="double dqn/dueldqn")
parser.add_argument('--eval-cycle', default=500, type=int, help="evaluation cycle")
args = parser.parse_args()
# some hyperparameters
GAMMA = 0.99 # bellman function
EPS_START = 1
EPS_END = 0.05
EPS_DECAY = 50000
WARMUP = 1000 # don't update net until WARMUP steps
steps_done = 0
eps_threshold = EPS_START
def select_action(state:torch.Tensor)->torch.Tensor:
'''
epsilon greedy
- epsilon: choose random action
- 1-epsilon: argmax Q(a,s)
Input: state shape (1,4,84,84)
Output: action shape (1,1)
'''
global eps_threshold
global steps_done
sample = random.random()
eps_threshold = EPS_END + (EPS_START - EPS_END) * \
math.exp(-1. * steps_done / EPS_DECAY)
steps_done += 1
if sample > eps_threshold:
with torch.no_grad():
return policy_net(state).max(1)[1].view(1, 1)
else:
return torch.tensor([[env.action_space.sample()]]).to(args.gpu)
# environment
if args.env_name == "pong":
env = gym.make("PongNoFrameskip-v4")
elif args.env_name == "breakout":
env = gym.make("BreakoutNoFrameskip-v4")
else:
env = gym.make("BoxingNoFrameskip-v4")
env = AtariWrapper(env)
n_action = env.action_space.n # pong:6; breakout:4; boxing:18
# make dir to store result
if args.ddqn:
methodname = f"double_{args.model}"
else:
methodname = args.model
log_dir = os.path.join(f"log_{args.env_name}",methodname)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
log_path = os.path.join(log_dir,"log.txt")
# video
video = VideoRecorder(log_dir)
# create network and target network
if args.model == "dqn":
policy_net = DQN(in_channels=4, n_actions=n_action).to(args.gpu)
target_net = DQN(in_channels=4, n_actions=n_action).to(args.gpu)
else:
policy_net = DuelDQN(in_channels=4, n_actions=n_action).to(args.gpu)
target_net = DuelDQN(in_channels=4, n_actions=n_action).to(args.gpu)
# let target model = model
target_net.load_state_dict(policy_net.state_dict())
target_net.eval()
# replay memory
memory = ReplayMemory(50000)
# optimizer
optimizer = optim.AdamW(policy_net.parameters(), lr=args.lr, amsgrad=True)
# warming up
print("Warming up...")
warmupstep = 0
for epoch in count():
obs, info = env.reset() # (84,84)
obs = torch.from_numpy(obs).to(args.gpu) #(84,84)
# stack four frames together, hoping to learn temporal info
obs = torch.stack((obs,obs,obs,obs)).unsqueeze(0) #(1,4,84,84)
# step loop
for step in count():
warmupstep += 1
# take one step
action = torch.tensor([[env.action_space.sample()]]).to(args.gpu)
next_obs, reward, terminated, truncated, info = env.step(action.item())
done = terminated or truncated
# convert to tensor
reward = torch.tensor([reward],device=args.gpu) # (1)
done = torch.tensor([done],device=args.gpu) # (1)
next_obs = torch.from_numpy(next_obs).to(args.gpu) # (84,84)
next_obs = torch.stack((next_obs,obs[0][0],obs[0][1],obs[0][2])).unsqueeze(0) # (1,4,84,84)
# store the transition in memory
memory.push(obs,action,next_obs,reward,done)
# move to next state
obs = next_obs
if done:
break
if warmupstep > WARMUP:
break
rewardList = []
lossList = []
rewarddeq = deque([], maxlen=100)
lossdeq = deque([],maxlen=100)
avgrewardlist = []
avglosslist = []
# epoch loop
for epoch in range(args.epoch):
obs, info = env.reset() # (84,84)
obs = torch.from_numpy(obs).to(args.gpu) #(84,84)
# stack four frames together, hoping to learn temporal info
obs = torch.stack((obs,obs,obs,obs)).unsqueeze(0) #(1,4,84,84)
total_loss = 0.0
total_reward = 0
# step loop
for step in count():
# take one step
action = select_action(obs)
next_obs, reward, terminated, truncated, info = env.step(action.item())
total_reward += reward
done = terminated or truncated
# convert to tensor
reward = torch.tensor([reward],device=args.gpu) # (1)
done = torch.tensor([done],device=args.gpu) # (1)
next_obs = torch.from_numpy(next_obs).to(args.gpu) # (84,84)
next_obs = torch.stack((next_obs,obs[0][0],obs[0][1],obs[0][2])).unsqueeze(0) # (1,4,84,84)
# store the transition in memory
memory.push(obs,action,next_obs,reward,done)
# move to next state
obs = next_obs
# train
policy_net.train()
transitions = memory.sample(args.batch_size)
batch = Transition(*zip(*transitions)) # batch-array of Transitions -> Transition of batch-arrays.
state_batch = torch.cat(batch.state) # (bs,4,84,84)
next_state_batch = torch.cat(batch.next_state) # (bs,4,84,84)
action_batch = torch.cat(batch.action) # (bs,1)
reward_batch = torch.cat(batch.reward).unsqueeze(1) # (bs,1)
done_batch = torch.cat(batch.done).unsqueeze(1) #(bs,1)
# Q(st,a)
state_qvalues = policy_net(state_batch) # (bs,n_actions)
selected_state_qvalue = state_qvalues.gather(1,action_batch) # (bs,1)
with torch.no_grad():
# Q'(st+1,a)
next_state_target_qvalues = target_net(next_state_batch) # (bs,n_actions)
if args.ddqn:
# Q(st+1,a)
next_state_qvalues = policy_net(next_state_batch) # (bs,n_actions)
# argmax Q(st+1,a)
next_state_selected_action = next_state_qvalues.max(1,keepdim=True)[1] # (bs,1)
# Q'(st+1,argmax_a Q(st+1,a))
next_state_selected_qvalue = next_state_target_qvalues.gather(1,next_state_selected_action) # (bs,1)
else:
# max_a Q'(st+1,a)
next_state_selected_qvalue = next_state_target_qvalues.max(1,keepdim=True)[0] # (bs,1)
# td target
tdtarget = next_state_selected_qvalue * GAMMA * ~done_batch + reward_batch # (bs,1)
# optimize
criterion = nn.SmoothL1Loss()
loss = criterion(selected_state_qvalue, tdtarget)
total_loss += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
# let target_net = policy_net every 1000 steps
if steps_done % 1000 == 0:
target_net.load_state_dict(policy_net.state_dict())
if done:
# eval
if epoch % args.eval_cycle == 0:
with torch.no_grad():
video.reset()
if args.env_name == "pong":
evalenv = gym.make("PongNoFrameskip-v4")
elif args.env_name == "breakout":
evalenv = gym.make("BreakoutNoFrameskip-v4")
else:
evalenv = gym.make("BoxingNoFrameskip-v4")
evalenv = AtariWrapper(evalenv,video=video)
obs, info = evalenv.reset()
obs = torch.from_numpy(obs).to(args.gpu)
obs = torch.stack((obs,obs,obs,obs)).unsqueeze(0)
evalreward = 0
policy_net.eval()
for _ in count():
action = policy_net(obs).max(1)[1]
next_obs, reward, terminated, truncated, info = evalenv.step(action.item())
evalreward += reward
next_obs = torch.from_numpy(next_obs).to(args.gpu) # (84,84)
next_obs = torch.stack((next_obs,obs[0][0],obs[0][1],obs[0][2])).unsqueeze(0) # (1,4,84,84)
obs = next_obs
if terminated or truncated:
if info["lives"] == 0: # real end
break
else:
obs, info = evalenv.reset()
obs = torch.from_numpy(obs).to(args.gpu)
obs = torch.stack((obs,obs,obs,obs)).unsqueeze(0)
evalenv.close()
video.save(f"{epoch}.mp4")
torch.save(policy_net, os.path.join(log_dir,f'model{epoch}.pth'))
print(f"Eval epoch {epoch}: Reward {evalreward}")
break
rewardList.append(total_reward)
lossList.append(total_loss)
rewarddeq.append(total_reward)
lossdeq.append(total_loss)
avgreward = sum(rewarddeq)/len(rewarddeq)
avgloss = sum(lossdeq)/len(lossdeq)
avglosslist.append(avgloss)
avgrewardlist.append(avgreward)
output = f"Epoch {epoch}: Loss {total_loss:.2f}, Reward {total_reward}, Avgloss {avgloss:.2f}, Avgreward {avgreward:.2f}, Epsilon {eps_threshold:.2f}, TotalStep {steps_done}"
print(output)
with open(log_path,"a") as f:
f.write(f"{output}\n")
env.close()
# plot loss-epoch and reward-epoch
plt.figure(1)
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.plot(range(len(lossList)),lossList,label="loss")
plt.plot(range(len(lossList)),avglosslist,label="avg")
plt.legend()
plt.savefig(os.path.join(log_dir,"loss.png"))
plt.figure(2)
plt.xlabel("Epoch")
plt.ylabel("Reward")
plt.plot(range(len(rewardList)),rewardList,label="reward")
plt.plot(range(len(rewardList)),avgrewardlist, label="avg")
plt.legend()
plt.savefig(os.path.join(log_dir,"reward.png"))