-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
157 lines (138 loc) · 5.65 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
'''
5-fold Cross Validation
train five models
return the average kappa
'''
import argparse
import os
import torch
from torch import optim
import torch.nn as nn
import timm
from torch.utils.data import DataLoader
from dataset import dataset
from sklearn.metrics import cohen_kappa_score,accuracy_score
from timm.data.mixup import Mixup
from timm.loss import SoftTargetCrossEntropy
# argument parser
parser = argparse.ArgumentParser()
parser.add_argument('--model', default='resnet50d', help='model')
parser.add_argument('--gpu', default=0, type=int, help='gpu')
parser.add_argument('--batch-size', default=32, type=int, help='batch-size')
parser.add_argument('--lr', default=1e-3, type=float, help='lr')
parser.add_argument('--epochs', default=30, type=int, help='epochs')
parser.add_argument('--eval-cycle', default=2, type=int, help='eval-cycle')
parser.add_argument('--save-dir', default='checkpoints', type=str, help='where to save model')
parser.add_argument('--mixup', action='store_true', help='whether do mixup')
parser.add_argument('--alpha', default=1.0, type=float, help='weighted loss(1 will cancel mixup)')
args = parser.parse_args()
kappaSum = 0
stateList = []
for k in range(5):
print(f'kfold: {k}')
# backbone network
if args.model == 'resnet18':
net = timm.create_model('resnet18', pretrained=True, num_classes=3).to(args.gpu)
elif args.model == 'resnet50d':
net = timm.create_model('resnet50d', pretrained=True, num_classes=3).to(args.gpu)
elif args.model == 'incepv3':
net = timm.create_model('inception_v3', pretrained=True, num_classes=3).to(args.gpu)
elif args.model == 'effb2':
net = timm.create_model('tf_efficientnet_b2', pretrained=True, num_classes=3).to(args.gpu)
# dataset
trainset = dataset(train=True,kfold=k)
valset = dataset(val=True,kfold=k)
trainloader = DataLoader(trainset, shuffle=True, batch_size=args.batch_size, num_workers=4, pin_memory=True)
valloader = DataLoader(valset, shuffle=False, batch_size=args.batch_size, num_workers=4, pin_memory=True)
# optimizer & criterion
optimizer = optim.AdamW(net.parameters(), lr=args.lr, amsgrad=True)
criterion = nn.CrossEntropyLoss()
# mixup
criterion_mix = SoftTargetCrossEntropy()
mixup_fn = Mixup(
mixup_alpha=0.4, cutmix_alpha=1.0, cutmix_minmax=None,
prob=0.5, switch_prob=0.5, mode='batch',
label_smoothing=0.1, num_classes=3)
# evaluation: find best model
bestModel = {
'state': None,
'kappa': -1,
'epoch': 0,
}
for epoch in range(args.epochs):
# train
net.train()
totalLoss = 0
totalLoss_mix = 0
predList = []
gtList = []
for img, label, name in trainloader:
img = img.to(args.gpu)
label = label.to(args.gpu) # bs
label_pred = net(img) # bs*3
prediction = torch.max(label_pred, 1)[1] # bs
loss = args.alpha * criterion(label_pred, label)
totalLoss += loss.item()
predList.extend(prediction.detach().cpu())
gtList.extend(label.cpu())
if args.mixup:
mix_imgs, mix_labels = mixup_fn(img.clone(), label.clone())
mix_pred = net(mix_imgs)
loss_mix = (1-args.alpha)*criterion_mix(mix_pred, mix_labels)
totalLoss_mix += loss_mix
# update
optimizer.zero_grad()
loss.backward()
if args.mixup:
loss_mix.backward()
optimizer.step()
kappa = cohen_kappa_score(gtList, predList, weights='quadratic')
acc = accuracy_score(gtList, predList)
if args.mixup:
print(f'Train Epoch:{epoch}, Loss:{totalLoss}, Loss_mixup:{totalLoss_mix}, Acc: {acc}, Kappa: {kappa}')
else:
print(f'Train Epoch:{epoch}, Loss:{totalLoss}, Acc: {acc}, Kappa: {kappa}')
# validation
if (epoch+1) % args.eval_cycle == 0:
with torch.no_grad():
net.eval()
predList = []
gtList = []
for img, label, name in valloader:
img = img.to(args.gpu)
label_pred = net(img)
predList.extend(label_pred.max(1)[1].cpu())
gtList.extend(label)
kappa = cohen_kappa_score(gtList, predList, weights='quadratic')
acc = accuracy_score(gtList, predList)
print(f'Val Epoch: {epoch}, Acc: {acc}, Kappa: {kappa}')
# update best model
if kappa > bestModel['kappa']:
bestModel['epoch'] = epoch
bestModel['kappa'] = kappa
bestModel['state'] = net.state_dict()
stateList.append(bestModel['state'])
kappaSum += bestModel["kappa"]
# save best model
savePath = os.path.join(args.save_dir, args.model, f'kfold_{k}.pkl')
print(f'Saving model(epoch={bestModel["epoch"]},kappa={bestModel["kappa"]}) to {savePath}...')
torch.save(bestModel, savePath)
print("*" * 90)
print(f'Average kappa is {kappaSum/5}')
# average 5 models' state_dict
# it doesn't seem to work well, inclined to predict all pics to 2
# savePath = os.path.join(args.save_dir, args.model, f'avg.pkl')
# print(f'Saving average model to {savePath}')
# weight_keys = list(stateList[0].keys())
# avg_state_dict = {}
# for key in weight_keys:
# key_sum = 0
# for i in range(5):
# key_sum += stateList[i][key]
# avg_state_dict[key] = key_sum / 5
# avgModel = {
# 'state': avg_state_dict,
# 'kappa': kappaSum/5,
# 'epoch': -1,
# }
# torch.save(avgModel, savePath)