-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_mpdata.sage
76 lines (65 loc) · 3.04 KB
/
test_mpdata.sage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from mea import mea, define_vars, truncate_to_order
from schemes import midpoint_velocity, mpdata_flux, antidiffusive_v
import pytest
def div(v, p, ndims):
def ret(t, x):
r = 0
for d in range(ndims):
r += diff(v[d](t, x) * p(t, x), x[d])
return r
return ret
# testing only selected combinations of parameters to keep the tests running in reasonable time
# notably, the 3D version is not tested by default
@pytest.mark.parametrize("ndims, time_ext, space_int, sign_v, sign_av, niters", [
(1, False, False, 1, 1, 2),
(1, True, True, -1, -1, 2),
(1, True, False, 1, -1, 3),
(2, False, True, -1, -1, 2)
])
def test_mpdata(ndims, time_ext, space_int, sign_v, sign_av, niters):
sign_v = [sign_v for d in range(ndims)]
sign_av = [sign_av for d in range(ndims)]
t, dt, x, dx, e, psi, g, v = define_vars(ndims)
# definition of midpoint (staggered) velocity both in time and in space, the
# results depends on whether the spatial interpolation (space_int)
# or temporal extrapolation (time_ext) is used
vmid = midpoint_velocity(v, time_ext, space_int, dt, e, ndims)
flux_f = lambda d, t, x : mpdata_flux(d, psi, g, vmid, sign_v, sign_av, niters, dt, dx, e, ndims)(t, x)
err_v = mea(t, dt, x, dx, psi, g, v, flux_f, ndims)
if space_int:
alpha = 4
else:
alpha = 1
if niters > 2:
beta_m = 0
else:
beta_m = 1
if time_ext:
gamma = 10
else:
gamma = 1
dt_v = [lambda t, x, vd=vd : diff(vd(t, x), t) for vd in v]
dtt_v = [lambda t, x, vd=vd: diff(vd(t, x), t, t) for vd in v]
div_v_psi_over_g = lambda t, x : div(v, psi, ndims)(t, x) / g(x)
# instead of writing the analytical expression for the antidiffusive velocity
# reuse the numerical expression expanded and truncated to give the same result
av = [ lambda t, x, avd=avd : truncate_to_order(avd(t, x), 2, dt, dx)
for avd in antidiffusive_v(psi, g, v, sign_v, dt, dx, e, ndims) ]
for d in range(ndims):
exact = (
- dx[d] ^ 2 / 24 * (
4 * v[d](t, x) * diff(psi(t, x), x[d], x[d])
+ 2 * diff(v[d](t, x), x[d]) * diff(psi(t, x), x[d])
+ alpha * diff(v[d](t, x), x[d], x[d]) * psi(t, x)
)
+ dt * dx[d] / 2 * sign_v[d] * v[d](t, x) * diff(div_v_psi_over_g(t, x), x[d])
+ beta_m * dx[d] / 2 * sign_av[d] * av[d](t, x) * diff(psi(t, x), x[d])
+ dt ^ 2 / 24 * (
+ gamma * dtt_v[d](t, x) * psi(t, x)
- 2 * diff(v[d](t, x), t) / g(x) * div(v, psi, ndims)(t, x)
+ 2 * v[d](t, x) / g(x) * div(dt_v, psi, ndims)(t, x)
)
- dt ^ 2 / 3 * v[d](t, x) / g(x) * div(v, div_v_psi_over_g, ndims)(t, x)
)
difference = (err_v[d] - exact).expand().simplify()
assert(difference == 0)