-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSampler.R
127 lines (114 loc) · 3.52 KB
/
Sampler.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
library(MASS)
library(GIGrvg)
library(truncnorm)
library(tibble)
library(rmutil)
library(msm)
library(invgamma)
# Sample beta
sampleBeta <- function(X,z,w,tau2,theta,kappa,beta0,sigma=1) {
term1 <- 0
for (i in 1:length(z)) {
term1 <- term1+X[i,]%*%t(X[i,])/(kappa^2*sigma^2*w[i])
}
cov <- solve(diag(1/tau2)+term1)
term2 <- 0
for (i in 1:length(z)) {
term2 <- term2+X[i,]*(z[i]-theta*sigma*w[i]-beta0)/(kappa^2*sigma^2*w[i])
}
mean <- cov%*%term2
return(mvrnorm(1,mean,cov))
}
# Sample w
sampleW <- function(X,z,beta,beta0,theta,kappa,sigma=1) {
lambda <- 0.5
chi <- NULL
for (i in 1:length(z)) {
chi <- c(chi,(z[i]-beta0-array(X[i,],dim=c(1,length(beta)))%*%beta)^2/(sigma^2*kappa^2))
}
psi <- (theta^2/(sigma^2*kappa^2) + 2)
return(sapply(1:length(z),function(x) rgig(1,lambda,chi[x],psi)))
}
# Sample z
sampleZ <- function(y,X,beta,beta0,delta,w,kappa,theta,sigma=1) {
mean <- NULL
for (i in 1:length(w)) {
mean <- c(mean,beta0+array(X[i,],dim=c(1,length(beta)))%*%beta+theta*sigma*w[i])
}
sd <- kappa*sigma*sqrt(w)
delta.new <- c(-10000000,delta,10000000)
return(rtruncnorm(length(y),delta.new[y],delta.new[y+1],mean,sd))
}
# Sample beta0
sampleBeta0 <- function(X,z,w,beta,theta,kappa,alpha,sigma=1) {
alpha.tilde <- 1/((1/alpha)+sum(1/(kappa^2*sigma^2*w)))
phi <- 0
for (i in 1:length(z)) {
phi <- phi+(1/(kappa^2*sigma^2*w[i]))*(z[i]-array(X[i,],dim=c(1,length(beta)))%*%beta-theta*sigma*w[i])
}
return(rnorm(1,phi*alpha.tilde,sqrt(alpha.tilde)))
}
# Sample tau
sampleTau2 <- function(lambda2,beta,sigma=1) {
lambda <- 0.5
chi <- beta^2/sigma^2
psi <- lambda2
return(sapply(1:length(beta),function(x) rgig(1,lambda,chi[x],psi[x])))
}
# Sample lambda
sampleLambda2 <- function(r,gamma,tau2,sigma=1) {
return(rgamma(length(tau2),r+1,(gamma+(tau2/(2)))))
}
# Sample delta
sampleDelta <- function(y,z,delta) {
delta.new <- c(-10000000,delta,10000000)
for (i in 3:(length(delta.new)-1)) {
lower <- min(c(max(z[y==(i-1)]),delta.new[i],10000000))
upper <- max(c(min(z[y==i]),delta.new[i-1],-10000000))
delta.new[i] <- runif(1,lower,upper)
}
return(delta.new[2:(length(delta.new)-1)])
}
# Sample sigma
sampleSigma <- function(z,kappa,w,beta,theta,tau2,lambda2) {
term1 <- (3*length(z)/2) + (3*length(beta))/2
term2 <- sum((z-rowSums(X%*%beta)-theta*w)/(2*kappa^2*w))+sum(w)+
sum(lambda2*tau2/2)+sum(beta^2/(2*tau2))
return(rinvgamma(1,term1,term2))
}
# Sampler
BOQR_BAL <- function(data,q,iters=10000) {
# Initialize parameters
y <- data[,1]
X <- as.matrix(data[,2:ncol(data)])
beta0 <- 0
beta <- rep(1,ncol(X))
theta <- (1-2*q)/(q*(1-q))
kappa <- sqrt(2/(q*(1-q)))
w <- rexp(length(y),1)
delta <- 0:(max(y)-2)
delta.new <- c(-10000000,delta,10000000)
z <- rtruncnorm(length(y),delta.new[y],delta.new[y+1],0,1)
r <- 1
gamma <- 0.1
alpha <- 10
lambda2 <- rep(sqrt(0.2),length(beta))
tau2 <- rep(0.001,length(beta))
sigma <- 1
# Store estimates
beta.chain <- array(NA,dim=c(iters,length(beta)))
delta.chain <- array(NA,dim=c(iters,length(delta)))
# Run sampler
for (i in 1:iters) {
beta <- sampleBeta(X,z,w,tau2,theta,kappa,beta0,sigma)
w <- sampleW(X,z,beta,beta0,theta,kappa,sigma)
z <- sampleZ(y,X,beta,beta0,delta,w,kappa,theta,sigma)
beta0 <- sampleBeta0(X,z,w,beta,theta,kappa,alpha,sigma)
tau2 <- sampleTau2(lambda2,beta,sigma)
lambda2 <- sampleLambda2(r,gamma,tau2,sigma)
delta <- sampleDelta(y,z,delta)
beta.chain[i,] <- beta
delta.chain[i,] <- delta
}
return(beta.chain)
}