forked from AILab-CVC/YOLO-World
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexport_onnx.py
182 lines (165 loc) · 7.13 KB
/
export_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# # Copyright (c) OpenMMLab. All rights reserved.
import os
import json
import warnings
import argparse
from io import BytesIO
import onnx
import torch
from mmdet.apis import init_detector
from mmengine.config import ConfigDict
from mmengine.logging import print_log
from mmengine.utils.path import mkdir_or_exist
from easydeploy.model import DeployModel, MMYOLOBackend # noqa E402
warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning)
warnings.filterwarnings(action='ignore', category=torch.jit.ScriptWarning)
warnings.filterwarnings(action='ignore', category=UserWarning)
warnings.filterwarnings(action='ignore', category=FutureWarning)
warnings.filterwarnings(action='ignore', category=ResourceWarning)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('config', help='Config file')
parser.add_argument('checkpoint', help='Checkpoint file')
parser.add_argument('--custom-text',
type=str,
help='custom text inputs (text json) for YOLO-World.')
parser.add_argument('--add-padding',
action="store_true",
help="add an empty padding to texts.")
parser.add_argument('--model-only',
action='store_true',
help='Export model only')
parser.add_argument('--without-nms',
action='store_true',
help='Export model without NMS')
parser.add_argument('--without-bbox-decoder',
action='store_true',
help='Export model without Bbox Decoder (for INT8 Quantization)')
parser.add_argument('--work-dir',
default='./work_dirs',
help='Path to save export model')
parser.add_argument('--img-size',
nargs='+',
type=int,
default=[640, 640],
help='Image size of height and width')
parser.add_argument('--batch-size', type=int, default=1, help='Batch size')
parser.add_argument('--device',
default='cuda:0',
help='Device used for inference')
parser.add_argument('--simplify',
action='store_true',
help='Simplify onnx model by onnx-sim')
parser.add_argument('--opset',
type=int,
default=11,
help='ONNX opset version')
parser.add_argument('--backend',
type=str,
default='onnxruntime',
help='Backend for export onnx')
parser.add_argument('--pre-topk',
type=int,
default=1000,
help='Postprocess pre topk bboxes feed into NMS')
parser.add_argument('--keep-topk',
type=int,
default=100,
help='Postprocess keep topk bboxes out of NMS')
parser.add_argument('--iou-threshold',
type=float,
default=0.65,
help='IoU threshold for NMS')
parser.add_argument('--score-threshold',
type=float,
default=0.25,
help='Score threshold for NMS')
args = parser.parse_args()
args.img_size *= 2 if len(args.img_size) == 1 else 1
return args
def build_model_from_cfg(config_path, checkpoint_path, device):
model = init_detector(config_path, checkpoint_path, device=device)
model.eval()
return model
def main():
args = parse_args()
mkdir_or_exist(args.work_dir)
backend = MMYOLOBackend(args.backend.lower())
if backend in (MMYOLOBackend.ONNXRUNTIME, MMYOLOBackend.OPENVINO,
MMYOLOBackend.TENSORRT8, MMYOLOBackend.TENSORRT7):
if not args.model_only:
print_log('Export ONNX with bbox decoder and NMS ...')
else:
args.model_only = True
print_log(f'Can not export postprocess for {args.backend.lower()}.\n'
f'Set "args.model_only=True" default.')
if args.model_only:
postprocess_cfg = None
output_names = None
else:
postprocess_cfg = ConfigDict(pre_top_k=args.pre_topk,
keep_top_k=args.keep_topk,
iou_threshold=args.iou_threshold,
score_threshold=args.score_threshold)
output_names = ['num_dets', 'boxes', 'scores', 'labels']
if args.without_bbox_decoder or args.without_nms:
output_names = ['scores', 'boxes']
if args.custom_text is not None and len(args.custom_text) > 0:
with open(args.custom_text) as f:
texts = json.load(f)
texts = [x[0] for x in texts]
else:
from mmdet.datasets import CocoDataset
texts = CocoDataset.METAINFO['classes']
if args.add_padding:
texts = texts + [' ']
baseModel = build_model_from_cfg(args.config, args.checkpoint, args.device)
if hasattr(baseModel, 'reparameterize'):
# reparameterize text into YOLO-World
baseModel.reparameterize([texts])
deploy_model = DeployModel(baseModel=baseModel,
backend=backend,
postprocess_cfg=postprocess_cfg,
with_nms=not args.without_nms,
without_bbox_decoder=args.without_bbox_decoder)
deploy_model.eval()
fake_input = torch.randn(args.batch_size, 3,
*args.img_size).to(args.device)
# dry run
deploy_model(fake_input)
save_onnx_path = os.path.join(
args.work_dir,
os.path.basename(args.checkpoint).replace('pth', 'onnx'))
# export onnx
with BytesIO() as f:
torch.onnx.export(deploy_model,
fake_input,
f,
input_names=['images'],
output_names=output_names,
opset_version=args.opset)
f.seek(0)
onnx_model = onnx.load(f)
onnx.checker.check_model(onnx_model)
# Fix tensorrt onnx output shape, just for view
if not args.model_only and not args.without_nms and backend in (
MMYOLOBackend.TENSORRT8, MMYOLOBackend.TENSORRT7):
shapes = [
args.batch_size, 1, args.batch_size, args.keep_topk, 4,
args.batch_size, args.keep_topk, args.batch_size,
args.keep_topk
]
for i in onnx_model.graph.output:
for j in i.type.tensor_type.shape.dim:
j.dim_param = str(shapes.pop(0))
if args.simplify:
try:
import onnxsim
onnx_model, check = onnxsim.simplify(onnx_model)
assert check, 'assert check failed'
except Exception as e:
print_log(f'Simplify failure: {e}')
onnx.save(onnx_model, save_onnx_path)
print_log(f'ONNX export success, save into {save_onnx_path}')
if __name__ == '__main__':
main()