diff --git a/README.md b/README.md
index b7855918f8..e47f6d080c 100644
--- a/README.md
+++ b/README.md
@@ -97,7 +97,7 @@ Please refer to [get_started.md](docs/en/get_started.md#installation) for instal
Please see [Overview](docs/en/overview.md) for the general introduction of MMSegmentation.
Please see [user guides](https://mmsegmentation.readthedocs.io/en/1.x/user_guides/index.html#) for the basic usage of MMSegmentation.
-There are also [advanced tutorials](https://mmsegmentation.readthedocs.io/en/dev-1.x/advanced_guides/index.html) for in-depth understanding of mmseg design and implementation .
+There are also [advanced tutorials](https://mmsegmentation.readthedocs.io/en/main/advanced_guides/index.html) for in-depth understanding of mmseg design and implementation .
A Colab tutorial is also provided. You may preview the notebook [here](demo/MMSegmentation_Tutorial.ipynb) or directly [run](https://colab.research.google.com/github/open-mmlab/mmsegmentation/blob/1.x/demo/MMSegmentation_Tutorial.ipynb) on Colab.
diff --git a/configs/ann/README.md b/configs/ann/README.md
index cbc1be2dc1..1281a9ee14 100644
--- a/configs/ann/README.md
+++ b/configs/ann/README.md
@@ -26,34 +26,34 @@ The non-local module works as a particularly useful technique for semantic segme
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| ANN | R-50-D8 | 512x1024 | 40000 | 6 | 3.71 | V100 | 77.40 | 78.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ann/ann_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x1024_40k_cityscapes/ann_r50-d8_512x1024_40k_cityscapes_20200605_095211-049fc292.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x1024_40k_cityscapes/ann_r50-d8_512x1024_40k_cityscapes_20200605_095211.log.json) |
-| ANN | R-101-D8 | 512x1024 | 40000 | 9.5 | 2.55 | V100 | 76.55 | 78.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ann/ann_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x1024_40k_cityscapes/ann_r101-d8_512x1024_40k_cityscapes_20200605_095243-adf6eece.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x1024_40k_cityscapes/ann_r101-d8_512x1024_40k_cityscapes_20200605_095243.log.json) |
-| ANN | R-50-D8 | 769x769 | 40000 | 6.8 | 1.70 | V100 | 78.89 | 80.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ann/ann_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_769x769_40k_cityscapes/ann_r50-d8_769x769_40k_cityscapes_20200530_025712-2b46b04d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_769x769_40k_cityscapes/ann_r50-d8_769x769_40k_cityscapes_20200530_025712.log.json) |
-| ANN | R-101-D8 | 769x769 | 40000 | 10.7 | 1.15 | V100 | 79.32 | 80.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ann/ann_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_769x769_40k_cityscapes/ann_r101-d8_769x769_40k_cityscapes_20200530_025720-059bff28.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_769x769_40k_cityscapes/ann_r101-d8_769x769_40k_cityscapes_20200530_025720.log.json) |
-| ANN | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 77.34 | 78.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ann/ann_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x1024_80k_cityscapes/ann_r50-d8_512x1024_80k_cityscapes_20200607_101911-5a9ad545.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x1024_80k_cityscapes/ann_r50-d8_512x1024_80k_cityscapes_20200607_101911.log.json) |
-| ANN | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 77.14 | 78.81 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ann/ann_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x1024_80k_cityscapes/ann_r101-d8_512x1024_80k_cityscapes_20200607_013728-aceccc6e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x1024_80k_cityscapes/ann_r101-d8_512x1024_80k_cityscapes_20200607_013728.log.json) |
-| ANN | R-50-D8 | 769x769 | 80000 | - | - | V100 | 78.88 | 80.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ann/ann_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_769x769_80k_cityscapes/ann_r50-d8_769x769_80k_cityscapes_20200607_044426-cc7ff323.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_769x769_80k_cityscapes/ann_r50-d8_769x769_80k_cityscapes_20200607_044426.log.json) |
-| ANN | R-101-D8 | 769x769 | 80000 | - | - | V100 | 78.80 | 80.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ann/ann_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_769x769_80k_cityscapes/ann_r101-d8_769x769_80k_cityscapes_20200607_013713-a9d4be8d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_769x769_80k_cityscapes/ann_r101-d8_769x769_80k_cityscapes_20200607_013713.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| ANN | R-50-D8 | 512x1024 | 40000 | 6 | 3.71 | V100 | 77.40 | 78.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x1024_40k_cityscapes/ann_r50-d8_512x1024_40k_cityscapes_20200605_095211-049fc292.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x1024_40k_cityscapes/ann_r50-d8_512x1024_40k_cityscapes_20200605_095211.log.json) |
+| ANN | R-101-D8 | 512x1024 | 40000 | 9.5 | 2.55 | V100 | 76.55 | 78.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x1024_40k_cityscapes/ann_r101-d8_512x1024_40k_cityscapes_20200605_095243-adf6eece.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x1024_40k_cityscapes/ann_r101-d8_512x1024_40k_cityscapes_20200605_095243.log.json) |
+| ANN | R-50-D8 | 769x769 | 40000 | 6.8 | 1.70 | V100 | 78.89 | 80.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_769x769_40k_cityscapes/ann_r50-d8_769x769_40k_cityscapes_20200530_025712-2b46b04d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_769x769_40k_cityscapes/ann_r50-d8_769x769_40k_cityscapes_20200530_025712.log.json) |
+| ANN | R-101-D8 | 769x769 | 40000 | 10.7 | 1.15 | V100 | 79.32 | 80.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_769x769_40k_cityscapes/ann_r101-d8_769x769_40k_cityscapes_20200530_025720-059bff28.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_769x769_40k_cityscapes/ann_r101-d8_769x769_40k_cityscapes_20200530_025720.log.json) |
+| ANN | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 77.34 | 78.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x1024_80k_cityscapes/ann_r50-d8_512x1024_80k_cityscapes_20200607_101911-5a9ad545.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x1024_80k_cityscapes/ann_r50-d8_512x1024_80k_cityscapes_20200607_101911.log.json) |
+| ANN | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 77.14 | 78.81 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x1024_80k_cityscapes/ann_r101-d8_512x1024_80k_cityscapes_20200607_013728-aceccc6e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x1024_80k_cityscapes/ann_r101-d8_512x1024_80k_cityscapes_20200607_013728.log.json) |
+| ANN | R-50-D8 | 769x769 | 80000 | - | - | V100 | 78.88 | 80.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_769x769_80k_cityscapes/ann_r50-d8_769x769_80k_cityscapes_20200607_044426-cc7ff323.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_769x769_80k_cityscapes/ann_r50-d8_769x769_80k_cityscapes_20200607_044426.log.json) |
+| ANN | R-101-D8 | 769x769 | 80000 | - | - | V100 | 78.80 | 80.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_769x769_80k_cityscapes/ann_r101-d8_769x769_80k_cityscapes_20200607_013713-a9d4be8d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_769x769_80k_cityscapes/ann_r101-d8_769x769_80k_cityscapes_20200607_013713.log.json) |
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| ANN | R-50-D8 | 512x512 | 80000 | 9.1 | 21.01 | V100 | 41.01 | 42.30 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ann/ann_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_80k_ade20k/ann_r50-d8_512x512_80k_ade20k_20200615_014818-26f75e11.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_80k_ade20k/ann_r50-d8_512x512_80k_ade20k_20200615_014818.log.json) |
-| ANN | R-101-D8 | 512x512 | 80000 | 12.5 | 14.12 | V100 | 42.94 | 44.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ann/ann_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_80k_ade20k/ann_r101-d8_512x512_80k_ade20k_20200615_014818-c0153543.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_80k_ade20k/ann_r101-d8_512x512_80k_ade20k_20200615_014818.log.json) |
-| ANN | R-50-D8 | 512x512 | 160000 | - | - | V100 | 41.74 | 42.62 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ann/ann_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_160k_ade20k/ann_r50-d8_512x512_160k_ade20k_20200615_231733-892247bc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_160k_ade20k/ann_r50-d8_512x512_160k_ade20k_20200615_231733.log.json) |
-| ANN | R-101-D8 | 512x512 | 160000 | - | - | V100 | 42.94 | 44.06 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ann/ann_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_160k_ade20k/ann_r101-d8_512x512_160k_ade20k_20200615_231733-955eb1ec.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_160k_ade20k/ann_r101-d8_512x512_160k_ade20k_20200615_231733.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| ANN | R-50-D8 | 512x512 | 80000 | 9.1 | 21.01 | V100 | 41.01 | 42.30 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_80k_ade20k/ann_r50-d8_512x512_80k_ade20k_20200615_014818-26f75e11.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_80k_ade20k/ann_r50-d8_512x512_80k_ade20k_20200615_014818.log.json) |
+| ANN | R-101-D8 | 512x512 | 80000 | 12.5 | 14.12 | V100 | 42.94 | 44.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_80k_ade20k/ann_r101-d8_512x512_80k_ade20k_20200615_014818-c0153543.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_80k_ade20k/ann_r101-d8_512x512_80k_ade20k_20200615_014818.log.json) |
+| ANN | R-50-D8 | 512x512 | 160000 | - | - | V100 | 41.74 | 42.62 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_160k_ade20k/ann_r50-d8_512x512_160k_ade20k_20200615_231733-892247bc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_160k_ade20k/ann_r50-d8_512x512_160k_ade20k_20200615_231733.log.json) |
+| ANN | R-101-D8 | 512x512 | 160000 | - | - | V100 | 42.94 | 44.06 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_160k_ade20k/ann_r101-d8_512x512_160k_ade20k_20200615_231733-955eb1ec.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_160k_ade20k/ann_r101-d8_512x512_160k_ade20k_20200615_231733.log.json) |
### Pascal VOC 2012 + Aug
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| ANN | R-50-D8 | 512x512 | 20000 | 6 | 20.92 | V100 | 74.86 | 76.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ann/ann_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_20k_voc12aug/ann_r50-d8_512x512_20k_voc12aug_20200617_222246-dfcb1c62.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_20k_voc12aug/ann_r50-d8_512x512_20k_voc12aug_20200617_222246.log.json) |
-| ANN | R-101-D8 | 512x512 | 20000 | 9.5 | 13.94 | V100 | 77.47 | 78.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ann/ann_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_20k_voc12aug/ann_r101-d8_512x512_20k_voc12aug_20200617_222246-2fad0042.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_20k_voc12aug/ann_r101-d8_512x512_20k_voc12aug_20200617_222246.log.json) |
-| ANN | R-50-D8 | 512x512 | 40000 | - | - | V100 | 76.56 | 77.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ann/ann_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_40k_voc12aug/ann_r50-d8_512x512_40k_voc12aug_20200613_231314-b5dac322.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_40k_voc12aug/ann_r50-d8_512x512_40k_voc12aug_20200613_231314.log.json) |
-| ANN | R-101-D8 | 512x512 | 40000 | - | - | V100 | 76.70 | 78.06 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ann/ann_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_40k_voc12aug/ann_r101-d8_512x512_40k_voc12aug_20200613_231314-bd205bbe.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_40k_voc12aug/ann_r101-d8_512x512_40k_voc12aug_20200613_231314.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| ANN | R-50-D8 | 512x512 | 20000 | 6 | 20.92 | V100 | 74.86 | 76.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_20k_voc12aug/ann_r50-d8_512x512_20k_voc12aug_20200617_222246-dfcb1c62.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_20k_voc12aug/ann_r50-d8_512x512_20k_voc12aug_20200617_222246.log.json) |
+| ANN | R-101-D8 | 512x512 | 20000 | 9.5 | 13.94 | V100 | 77.47 | 78.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_20k_voc12aug/ann_r101-d8_512x512_20k_voc12aug_20200617_222246-2fad0042.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_20k_voc12aug/ann_r101-d8_512x512_20k_voc12aug_20200617_222246.log.json) |
+| ANN | R-50-D8 | 512x512 | 40000 | - | - | V100 | 76.56 | 77.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_40k_voc12aug/ann_r50-d8_512x512_40k_voc12aug_20200613_231314-b5dac322.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_40k_voc12aug/ann_r50-d8_512x512_40k_voc12aug_20200613_231314.log.json) |
+| ANN | R-101-D8 | 512x512 | 40000 | - | - | V100 | 76.70 | 78.06 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_40k_voc12aug/ann_r101-d8_512x512_40k_voc12aug_20200613_231314-bd205bbe.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_40k_voc12aug/ann_r101-d8_512x512_40k_voc12aug_20200613_231314.log.json) |
## Citation
diff --git a/configs/apcnet/README.md b/configs/apcnet/README.md
index 0d7f1d6614..9104f3c87f 100644
--- a/configs/apcnet/README.md
+++ b/configs/apcnet/README.md
@@ -26,25 +26,25 @@ Recent studies witnessed that context features can significantly improve the per
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| APCNet | R-50-D8 | 512x1024 | 40000 | 7.7 | 3.57 | V100 | 78.02 | 79.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/apcnet/apcnet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes/apcnet_r50-d8_512x1024_40k_cityscapes_20201214_115717-5e88fa33.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes/apcnet_r50-d8_512x1024_40k_cityscapes-20201214_115717.log.json) |
-| APCNet | R-101-D8 | 512x1024 | 40000 | 11.2 | 2.15 | V100 | 79.08 | 80.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/apcnet/apcnet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes/apcnet_r101-d8_512x1024_40k_cityscapes_20201214_115716-abc9d111.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes/apcnet_r101-d8_512x1024_40k_cityscapes-20201214_115716.log.json) |
-| APCNet | R-50-D8 | 769x769 | 40000 | 8.7 | 1.52 | V100 | 77.89 | 79.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/apcnet/apcnet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_40k_cityscapes/apcnet_r50-d8_769x769_40k_cityscapes_20201214_115717-2a2628d7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_40k_cityscapes/apcnet_r50-d8_769x769_40k_cityscapes-20201214_115717.log.json) |
-| APCNet | R-101-D8 | 769x769 | 40000 | 12.7 | 1.03 | V100 | 77.96 | 79.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/apcnet/apcnet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_40k_cityscapes/apcnet_r101-d8_769x769_40k_cityscapes_20201214_115718-b650de90.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_40k_cityscapes/apcnet_r101-d8_769x769_40k_cityscapes-20201214_115718.log.json) |
-| APCNet | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 78.96 | 79.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/apcnet/apcnet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes/apcnet_r50-d8_512x1024_80k_cityscapes_20201214_115716-987f51e3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes/apcnet_r50-d8_512x1024_80k_cityscapes-20201214_115716.log.json) |
-| APCNet | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 79.64 | 80.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/apcnet/apcnet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes/apcnet_r101-d8_512x1024_80k_cityscapes_20201214_115705-b1ff208a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes/apcnet_r101-d8_512x1024_80k_cityscapes-20201214_115705.log.json) |
-| APCNet | R-50-D8 | 769x769 | 80000 | - | - | V100 | 78.79 | 80.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/apcnet/apcnet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_80k_cityscapes/apcnet_r50-d8_769x769_80k_cityscapes_20201214_115718-7ea9fa12.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_80k_cityscapes/apcnet_r50-d8_769x769_80k_cityscapes-20201214_115718.log.json) |
-| APCNet | R-101-D8 | 769x769 | 80000 | - | - | V100 | 78.45 | 79.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/apcnet/apcnet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_80k_cityscapes/apcnet_r101-d8_769x769_80k_cityscapes_20201214_115716-a7fbc2ab.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_80k_cityscapes/apcnet_r101-d8_769x769_80k_cityscapes-20201214_115716.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| APCNet | R-50-D8 | 512x1024 | 40000 | 7.7 | 3.57 | V100 | 78.02 | 79.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/apcnet/apcnet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes/apcnet_r50-d8_512x1024_40k_cityscapes_20201214_115717-5e88fa33.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes/apcnet_r50-d8_512x1024_40k_cityscapes-20201214_115717.log.json) |
+| APCNet | R-101-D8 | 512x1024 | 40000 | 11.2 | 2.15 | V100 | 79.08 | 80.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/apcnet/apcnet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes/apcnet_r101-d8_512x1024_40k_cityscapes_20201214_115716-abc9d111.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes/apcnet_r101-d8_512x1024_40k_cityscapes-20201214_115716.log.json) |
+| APCNet | R-50-D8 | 769x769 | 40000 | 8.7 | 1.52 | V100 | 77.89 | 79.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/apcnet/apcnet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_40k_cityscapes/apcnet_r50-d8_769x769_40k_cityscapes_20201214_115717-2a2628d7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_40k_cityscapes/apcnet_r50-d8_769x769_40k_cityscapes-20201214_115717.log.json) |
+| APCNet | R-101-D8 | 769x769 | 40000 | 12.7 | 1.03 | V100 | 77.96 | 79.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/apcnet/apcnet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_40k_cityscapes/apcnet_r101-d8_769x769_40k_cityscapes_20201214_115718-b650de90.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_40k_cityscapes/apcnet_r101-d8_769x769_40k_cityscapes-20201214_115718.log.json) |
+| APCNet | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 78.96 | 79.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/apcnet/apcnet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes/apcnet_r50-d8_512x1024_80k_cityscapes_20201214_115716-987f51e3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes/apcnet_r50-d8_512x1024_80k_cityscapes-20201214_115716.log.json) |
+| APCNet | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 79.64 | 80.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/apcnet/apcnet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes/apcnet_r101-d8_512x1024_80k_cityscapes_20201214_115705-b1ff208a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes/apcnet_r101-d8_512x1024_80k_cityscapes-20201214_115705.log.json) |
+| APCNet | R-50-D8 | 769x769 | 80000 | - | - | V100 | 78.79 | 80.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/apcnet/apcnet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_80k_cityscapes/apcnet_r50-d8_769x769_80k_cityscapes_20201214_115718-7ea9fa12.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_80k_cityscapes/apcnet_r50-d8_769x769_80k_cityscapes-20201214_115718.log.json) |
+| APCNet | R-101-D8 | 769x769 | 80000 | - | - | V100 | 78.45 | 79.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/apcnet/apcnet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_80k_cityscapes/apcnet_r101-d8_769x769_80k_cityscapes_20201214_115716-a7fbc2ab.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_80k_cityscapes/apcnet_r101-d8_769x769_80k_cityscapes-20201214_115716.log.json) |
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| APCNet | R-50-D8 | 512x512 | 80000 | 10.1 | 19.61 | V100 | 42.20 | 43.30 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/apcnet/apcnet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_80k_ade20k/apcnet_r50-d8_512x512_80k_ade20k_20201214_115705-a8626293.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_80k_ade20k/apcnet_r50-d8_512x512_80k_ade20k-20201214_115705.log.json) |
-| APCNet | R-101-D8 | 512x512 | 80000 | 13.6 | 13.10 | V100 | 45.54 | 46.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/apcnet/apcnet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_80k_ade20k/apcnet_r101-d8_512x512_80k_ade20k_20201214_115704-c656c3fb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_80k_ade20k/apcnet_r101-d8_512x512_80k_ade20k-20201214_115704.log.json) |
-| APCNet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 43.40 | 43.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/apcnet/apcnet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_160k_ade20k/apcnet_r50-d8_512x512_160k_ade20k_20201214_115706-25fb92c2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_160k_ade20k/apcnet_r50-d8_512x512_160k_ade20k-20201214_115706.log.json) |
-| APCNet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 45.41 | 46.63 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/apcnet/apcnet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_160k_ade20k/apcnet_r101-d8_512x512_160k_ade20k_20201214_115705-73f9a8d7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_160k_ade20k/apcnet_r101-d8_512x512_160k_ade20k-20201214_115705.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| APCNet | R-50-D8 | 512x512 | 80000 | 10.1 | 19.61 | V100 | 42.20 | 43.30 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/apcnet/apcnet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_80k_ade20k/apcnet_r50-d8_512x512_80k_ade20k_20201214_115705-a8626293.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_80k_ade20k/apcnet_r50-d8_512x512_80k_ade20k-20201214_115705.log.json) |
+| APCNet | R-101-D8 | 512x512 | 80000 | 13.6 | 13.10 | V100 | 45.54 | 46.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/apcnet/apcnet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_80k_ade20k/apcnet_r101-d8_512x512_80k_ade20k_20201214_115704-c656c3fb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_80k_ade20k/apcnet_r101-d8_512x512_80k_ade20k-20201214_115704.log.json) |
+| APCNet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 43.40 | 43.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/apcnet/apcnet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_160k_ade20k/apcnet_r50-d8_512x512_160k_ade20k_20201214_115706-25fb92c2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_160k_ade20k/apcnet_r50-d8_512x512_160k_ade20k-20201214_115706.log.json) |
+| APCNet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 45.41 | 46.63 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/apcnet/apcnet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_160k_ade20k/apcnet_r101-d8_512x512_160k_ade20k_20201214_115705-73f9a8d7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_160k_ade20k/apcnet_r101-d8_512x512_160k_ade20k-20201214_115705.log.json) |
## Citation
diff --git a/configs/beit/README.md b/configs/beit/README.md
index 8e34e29410..b005c88c50 100644
--- a/configs/beit/README.md
+++ b/configs/beit/README.md
@@ -67,10 +67,10 @@ upernet_beit-large_fp16_8x1_640x640_160k_ade20k-8fc0dd5d.pth $GPUS --eval mIoU
### ADE20K
-| Method | Backbone | Crop Size | pretrain | pretrain img size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------- | -------- | --------- | ------------ | ----------------- | ---------- | ------- | -------- | -------------- | ------ | ----- | ------------: | ----------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| UPerNet | BEiT-B | 640x640 | ImageNet-22K | 224x224 | 16 | 160000 | 15.88 | 2.00 | V100 | 53.08 | 53.84 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/beit/beit-base_upernet_8xb2-160k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/beit/upernet_beit-base_8x2_640x640_160k_ade20k/upernet_beit-base_8x2_640x640_160k_ade20k-eead221d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/beit/upernet_beit-base_8x2_640x640_160k_ade20k/upernet_beit-base_8x2_640x640_160k_ade20k.log.json) |
-| UPerNet | BEiT-L | 640x640 | ImageNet-22K | 224x224 | 8 | 320000 | 22.64 | 0.96 | V100 | 56.33 | 56.84 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/beit/beit-large_upernet_8xb1-amp-160k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/beit/upernet_beit-large_fp16_8x1_640x640_160k_ade20k/upernet_beit-large_fp16_8x1_640x640_160k_ade20k-8fc0dd5d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/beit/upernet_beit-large_fp16_8x1_640x640_160k_ade20k/upernet_beit-large_fp16_8x1_640x640_160k_ade20k.log.json) |
+| Method | Backbone | Crop Size | pretrain | pretrain img size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------- | -------- | --------- | ------------ | ----------------- | ---------- | ------- | -------- | -------------- | ------ | ----- | ------------: | -------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| UPerNet | BEiT-B | 640x640 | ImageNet-22K | 224x224 | 16 | 160000 | 15.88 | 2.00 | V100 | 53.08 | 53.84 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/beit/beit-base_upernet_8xb2-160k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/beit/upernet_beit-base_8x2_640x640_160k_ade20k/upernet_beit-base_8x2_640x640_160k_ade20k-eead221d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/beit/upernet_beit-base_8x2_640x640_160k_ade20k/upernet_beit-base_8x2_640x640_160k_ade20k.log.json) |
+| UPerNet | BEiT-L | 640x640 | ImageNet-22K | 224x224 | 8 | 320000 | 22.64 | 0.96 | V100 | 56.33 | 56.84 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/beit/beit-large_upernet_8xb1-amp-160k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/beit/upernet_beit-large_fp16_8x1_640x640_160k_ade20k/upernet_beit-large_fp16_8x1_640x640_160k_ade20k-8fc0dd5d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/beit/upernet_beit-large_fp16_8x1_640x640_160k_ade20k/upernet_beit-large_fp16_8x1_640x640_160k_ade20k.log.json) |
## Citation
diff --git a/configs/bisenetv1/README.md b/configs/bisenetv1/README.md
index c895fdfe63..a5058957f0 100644
--- a/configs/bisenetv1/README.md
+++ b/configs/bisenetv1/README.md
@@ -26,24 +26,24 @@ Semantic segmentation requires both rich spatial information and sizeable recept
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| --------- | ---------------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------- | -------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| BiSeNetV1 | R-18-D32 (No Pretrain) | 1024x1024 | 160000 | 5.69 | 31.77 | V100 | 74.44 | 77.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/bisenetv1/bisenetv1_r18-d32_4xb4-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes_20210922_172239-c55e78e2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes_20210922_172239.log.json) |
-| BiSeNetV1 | R-18-D32 | 1024x1024 | 160000 | 5.69 | 31.77 | V100 | 74.37 | 76.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/bisenetv1/bisenetv1_r18-d32-in1k-pre_4xb4-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210905_220251-8ba80eff.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210905_220251.log.json) |
-| BiSeNetV1 | R-18-D32 (4x8) | 1024x1024 | 160000 | 11.17 | 31.77 | V100 | 75.16 | 77.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/bisenetv1/bisenetv1_r18-d32-in1k-pre_4xb8-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes_20210905_220322-bb8db75f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes_20210905_220322.log.json) |
-| BiSeNetV1 | R-50-D32 (No Pretrain) | 1024x1024 | 160000 | 15.39 | 7.71 | V100 | 76.92 | 78.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/bisenetv1/bisenetv1_r50-d32_4xb4-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes_20210923_222639-7b28a2a6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes_20210923_222639.log.json) |
-| BiSeNetV1 | R-50-D32 | 1024x1024 | 160000 | 15.39 | 7.71 | V100 | 77.68 | 79.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/bisenetv1/bisenetv1_r50-d32-in1k-pre_4xb4-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210917_234628-8b304447.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210917_234628.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| --------- | ---------------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------- | ----------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| BiSeNetV1 | R-18-D32 (No Pretrain) | 1024x1024 | 160000 | 5.69 | 31.77 | V100 | 74.44 | 77.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/bisenetv1/bisenetv1_r18-d32_4xb4-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes_20210922_172239-c55e78e2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes_20210922_172239.log.json) |
+| BiSeNetV1 | R-18-D32 | 1024x1024 | 160000 | 5.69 | 31.77 | V100 | 74.37 | 76.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/bisenetv1/bisenetv1_r18-d32-in1k-pre_4xb4-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210905_220251-8ba80eff.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210905_220251.log.json) |
+| BiSeNetV1 | R-18-D32 (4x8) | 1024x1024 | 160000 | 11.17 | 31.77 | V100 | 75.16 | 77.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/bisenetv1/bisenetv1_r18-d32-in1k-pre_4xb8-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes_20210905_220322-bb8db75f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes_20210905_220322.log.json) |
+| BiSeNetV1 | R-50-D32 (No Pretrain) | 1024x1024 | 160000 | 15.39 | 7.71 | V100 | 76.92 | 78.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/bisenetv1/bisenetv1_r50-d32_4xb4-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes_20210923_222639-7b28a2a6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes_20210923_222639.log.json) |
+| BiSeNetV1 | R-50-D32 | 1024x1024 | 160000 | 15.39 | 7.71 | V100 | 77.68 | 79.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/bisenetv1/bisenetv1_r50-d32-in1k-pre_4xb4-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210917_234628-8b304447.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210917_234628.log.json) |
### COCO-Stuff 164k
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| --------- | ----------------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| BiSeNetV1 | R-18-D32 (No Pretrain) | 512x512 | 160000 | - | - | V100 | 25.45 | 26.15 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/bisenetv1/bisenetv1_r18-d32_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211022_054328-046aa2f2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211022_054328.log.json) |
-| BiSeNetV1 | R-18-D32 | 512x512 | 160000 | 6.33 | 74.24 | V100 | 28.55 | 29.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/bisenetv1/bisenetv1_r18-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211023_013100-f700dbf7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211023_013100.log.json) |
-| BiSeNetV1 | R-50-D32 (No Pretrain) | 512x512 | 160000 | - | - | V100 | 29.82 | 30.33 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/bisenetv1/bisenetv1_r50-d32_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_040616-d2bb0df4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_040616.log.json) |
-| BiSeNetV1 | R-50-D32 | 512x512 | 160000 | 9.28 | 32.60 | V100 | 34.88 | 35.37 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/bisenetv1/bisenetv1_r50-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_181932-66747911.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_181932.log.json) |
-| BiSeNetV1 | R-101-D32 (No Pretrain) | 512x512 | 160000 | - | - | V100 | 31.14 | 31.76 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/bisenetv1/bisenetv1_r50-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211102_164147-c6b32c3b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211102_164147.log.json) |
-| BiSeNetV1 | R-101-D32 | 512x512 | 160000 | 10.36 | 25.25 | V100 | 37.38 | 37.99 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/bisenetv1/bisenetv1_r101-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_225220-28c8f092.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_225220.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| --------- | ----------------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------- | -------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| BiSeNetV1 | R-18-D32 (No Pretrain) | 512x512 | 160000 | - | - | V100 | 25.45 | 26.15 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/bisenetv1/bisenetv1_r18-d32_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211022_054328-046aa2f2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211022_054328.log.json) |
+| BiSeNetV1 | R-18-D32 | 512x512 | 160000 | 6.33 | 74.24 | V100 | 28.55 | 29.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/bisenetv1/bisenetv1_r18-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211023_013100-f700dbf7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211023_013100.log.json) |
+| BiSeNetV1 | R-50-D32 (No Pretrain) | 512x512 | 160000 | - | - | V100 | 29.82 | 30.33 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/bisenetv1/bisenetv1_r50-d32_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_040616-d2bb0df4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_040616.log.json) |
+| BiSeNetV1 | R-50-D32 | 512x512 | 160000 | 9.28 | 32.60 | V100 | 34.88 | 35.37 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/bisenetv1/bisenetv1_r50-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_181932-66747911.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_181932.log.json) |
+| BiSeNetV1 | R-101-D32 (No Pretrain) | 512x512 | 160000 | - | - | V100 | 31.14 | 31.76 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/bisenetv1/bisenetv1_r50-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211102_164147-c6b32c3b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211102_164147.log.json) |
+| BiSeNetV1 | R-101-D32 | 512x512 | 160000 | 10.36 | 25.25 | V100 | 37.38 | 37.99 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/bisenetv1/bisenetv1_r101-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_225220-28c8f092.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_225220.log.json) |
Note:
diff --git a/configs/bisenetv2/README.md b/configs/bisenetv2/README.md
index 1f44c01f36..a5871dfeb9 100644
--- a/configs/bisenetv2/README.md
+++ b/configs/bisenetv2/README.md
@@ -26,12 +26,12 @@ The low-level details and high-level semantics are both essential to the semanti
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| --------- | ---------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| BiSeNetV2 | BiSeNetV2 | 1024x1024 | 160000 | 7.64 | 31.77 | V100 | 73.21 | 75.74 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/bisenetv2/bisenetv2_fcn_4xb4-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes_20210902_015551-bcf10f09.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes_20210902_015551.log.json) |
-| BiSeNetV2 | BiSeNetV2 (OHEM) | 1024x1024 | 160000 | 7.64 | - | V100 | 73.57 | 75.80 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/bisenetv2/bisenetv2_fcn_4xb4-ohem-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes_20210902_112947-5f8103b4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes_20210902_112947.log.json) |
-| BiSeNetV2 | BiSeNetV2 (4x8) | 1024x1024 | 160000 | 15.05 | - | V100 | 75.76 | 77.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/bisenetv2/bisenetv2_fcn_4xb8-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes_20210903_000032-e1a2eed6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes_20210903_000032.log.json) |
-| BiSeNetV2 | BiSeNetV2 (FP16) | 1024x1024 | 160000 | 5.77 | 36.65 | V100 | 73.07 | 75.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/bisenetv2/bisenetv2_fcn_4xb4-amp-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes_20210902_045942-b979777b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes_20210902_045942.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| --------- | ---------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| BiSeNetV2 | BiSeNetV2 | 1024x1024 | 160000 | 7.64 | 31.77 | V100 | 73.21 | 75.74 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/bisenetv2/bisenetv2_fcn_4xb4-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes_20210902_015551-bcf10f09.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes_20210902_015551.log.json) |
+| BiSeNetV2 | BiSeNetV2 (OHEM) | 1024x1024 | 160000 | 7.64 | - | V100 | 73.57 | 75.80 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/bisenetv2/bisenetv2_fcn_4xb4-ohem-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes_20210902_112947-5f8103b4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes_20210902_112947.log.json) |
+| BiSeNetV2 | BiSeNetV2 (4x8) | 1024x1024 | 160000 | 15.05 | - | V100 | 75.76 | 77.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/bisenetv2/bisenetv2_fcn_4xb8-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes_20210903_000032-e1a2eed6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes_20210903_000032.log.json) |
+| BiSeNetV2 | BiSeNetV2 (FP16) | 1024x1024 | 160000 | 5.77 | 36.65 | V100 | 73.07 | 75.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/bisenetv2/bisenetv2_fcn_4xb4-amp-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes_20210902_045942-b979777b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes_20210902_045942.log.json) |
Note:
diff --git a/configs/ccnet/README.md b/configs/ccnet/README.md
index c7a0163495..64dd5f0298 100644
--- a/configs/ccnet/README.md
+++ b/configs/ccnet/README.md
@@ -26,34 +26,34 @@ Contextual information is vital in visual understanding problems, such as semant
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| CCNet | R-50-D8 | 512x1024 | 40000 | 6 | 3.32 | V100 | 77.76 | 78.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ccnet/ccnet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x1024_40k_cityscapes/ccnet_r50-d8_512x1024_40k_cityscapes_20200616_142517-4123f401.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x1024_40k_cityscapes/ccnet_r50-d8_512x1024_40k_cityscapes_20200616_142517.log.json) |
-| CCNet | R-101-D8 | 512x1024 | 40000 | 9.5 | 2.31 | V100 | 76.35 | 78.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ccnet/ccnet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x1024_40k_cityscapes/ccnet_r101-d8_512x1024_40k_cityscapes_20200616_142540-a3b84ba6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x1024_40k_cityscapes/ccnet_r101-d8_512x1024_40k_cityscapes_20200616_142540.log.json) |
-| CCNet | R-50-D8 | 769x769 | 40000 | 6.8 | 1.43 | V100 | 78.46 | 79.93 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ccnet/ccnet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_769x769_40k_cityscapes/ccnet_r50-d8_769x769_40k_cityscapes_20200616_145125-76d11884.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_769x769_40k_cityscapes/ccnet_r50-d8_769x769_40k_cityscapes_20200616_145125.log.json) |
-| CCNet | R-101-D8 | 769x769 | 40000 | 10.7 | 1.01 | V100 | 76.94 | 78.62 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ccnet/ccnet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_769x769_40k_cityscapes/ccnet_r101-d8_769x769_40k_cityscapes_20200617_101428-4f57c8d0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_769x769_40k_cityscapes/ccnet_r101-d8_769x769_40k_cityscapes_20200617_101428.log.json) |
-| CCNet | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 79.03 | 80.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ccnet/ccnet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x1024_80k_cityscapes/ccnet_r50-d8_512x1024_80k_cityscapes_20200617_010421-869a3423.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x1024_80k_cityscapes/ccnet_r50-d8_512x1024_80k_cityscapes_20200617_010421.log.json) |
-| CCNet | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 78.87 | 79.90 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ccnet/ccnet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x1024_80k_cityscapes/ccnet_r101-d8_512x1024_80k_cityscapes_20200617_203935-ffae8917.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x1024_80k_cityscapes/ccnet_r101-d8_512x1024_80k_cityscapes_20200617_203935.log.json) |
-| CCNet | R-50-D8 | 769x769 | 80000 | - | - | V100 | 79.29 | 81.08 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ccnet/ccnet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_769x769_80k_cityscapes/ccnet_r50-d8_769x769_80k_cityscapes_20200617_010421-73eed8ca.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_769x769_80k_cityscapes/ccnet_r50-d8_769x769_80k_cityscapes_20200617_010421.log.json) |
-| CCNet | R-101-D8 | 769x769 | 80000 | - | - | V100 | 79.45 | 80.66 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ccnet/ccnet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_769x769_80k_cityscapes/ccnet_r101-d8_769x769_80k_cityscapes_20200618_011502-ad3cd481.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_769x769_80k_cityscapes/ccnet_r101-d8_769x769_80k_cityscapes_20200618_011502.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| CCNet | R-50-D8 | 512x1024 | 40000 | 6 | 3.32 | V100 | 77.76 | 78.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ccnet/ccnet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x1024_40k_cityscapes/ccnet_r50-d8_512x1024_40k_cityscapes_20200616_142517-4123f401.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x1024_40k_cityscapes/ccnet_r50-d8_512x1024_40k_cityscapes_20200616_142517.log.json) |
+| CCNet | R-101-D8 | 512x1024 | 40000 | 9.5 | 2.31 | V100 | 76.35 | 78.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ccnet/ccnet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x1024_40k_cityscapes/ccnet_r101-d8_512x1024_40k_cityscapes_20200616_142540-a3b84ba6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x1024_40k_cityscapes/ccnet_r101-d8_512x1024_40k_cityscapes_20200616_142540.log.json) |
+| CCNet | R-50-D8 | 769x769 | 40000 | 6.8 | 1.43 | V100 | 78.46 | 79.93 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ccnet/ccnet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_769x769_40k_cityscapes/ccnet_r50-d8_769x769_40k_cityscapes_20200616_145125-76d11884.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_769x769_40k_cityscapes/ccnet_r50-d8_769x769_40k_cityscapes_20200616_145125.log.json) |
+| CCNet | R-101-D8 | 769x769 | 40000 | 10.7 | 1.01 | V100 | 76.94 | 78.62 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ccnet/ccnet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_769x769_40k_cityscapes/ccnet_r101-d8_769x769_40k_cityscapes_20200617_101428-4f57c8d0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_769x769_40k_cityscapes/ccnet_r101-d8_769x769_40k_cityscapes_20200617_101428.log.json) |
+| CCNet | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 79.03 | 80.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ccnet/ccnet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x1024_80k_cityscapes/ccnet_r50-d8_512x1024_80k_cityscapes_20200617_010421-869a3423.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x1024_80k_cityscapes/ccnet_r50-d8_512x1024_80k_cityscapes_20200617_010421.log.json) |
+| CCNet | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 78.87 | 79.90 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ccnet/ccnet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x1024_80k_cityscapes/ccnet_r101-d8_512x1024_80k_cityscapes_20200617_203935-ffae8917.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x1024_80k_cityscapes/ccnet_r101-d8_512x1024_80k_cityscapes_20200617_203935.log.json) |
+| CCNet | R-50-D8 | 769x769 | 80000 | - | - | V100 | 79.29 | 81.08 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ccnet/ccnet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_769x769_80k_cityscapes/ccnet_r50-d8_769x769_80k_cityscapes_20200617_010421-73eed8ca.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_769x769_80k_cityscapes/ccnet_r50-d8_769x769_80k_cityscapes_20200617_010421.log.json) |
+| CCNet | R-101-D8 | 769x769 | 80000 | - | - | V100 | 79.45 | 80.66 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ccnet/ccnet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_769x769_80k_cityscapes/ccnet_r101-d8_769x769_80k_cityscapes_20200618_011502-ad3cd481.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_769x769_80k_cityscapes/ccnet_r101-d8_769x769_80k_cityscapes_20200618_011502.log.json) |
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| CCNet | R-50-D8 | 512x512 | 80000 | 8.8 | 20.89 | V100 | 41.78 | 42.98 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ccnet/ccnet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_80k_ade20k/ccnet_r50-d8_512x512_80k_ade20k_20200615_014848-aa37f61e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_80k_ade20k/ccnet_r50-d8_512x512_80k_ade20k_20200615_014848.log.json) |
-| CCNet | R-101-D8 | 512x512 | 80000 | 12.2 | 14.11 | V100 | 43.97 | 45.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ccnet/ccnet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_80k_ade20k/ccnet_r101-d8_512x512_80k_ade20k_20200615_014848-1f4929a3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_80k_ade20k/ccnet_r101-d8_512x512_80k_ade20k_20200615_014848.log.json) |
-| CCNet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 42.08 | 43.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ccnet/ccnet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_160k_ade20k/ccnet_r50-d8_512x512_160k_ade20k_20200616_084435-7c97193b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_160k_ade20k/ccnet_r50-d8_512x512_160k_ade20k_20200616_084435.log.json) |
-| CCNet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 43.71 | 45.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ccnet/ccnet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_160k_ade20k/ccnet_r101-d8_512x512_160k_ade20k_20200616_000644-e849e007.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_160k_ade20k/ccnet_r101-d8_512x512_160k_ade20k_20200616_000644.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| CCNet | R-50-D8 | 512x512 | 80000 | 8.8 | 20.89 | V100 | 41.78 | 42.98 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ccnet/ccnet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_80k_ade20k/ccnet_r50-d8_512x512_80k_ade20k_20200615_014848-aa37f61e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_80k_ade20k/ccnet_r50-d8_512x512_80k_ade20k_20200615_014848.log.json) |
+| CCNet | R-101-D8 | 512x512 | 80000 | 12.2 | 14.11 | V100 | 43.97 | 45.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ccnet/ccnet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_80k_ade20k/ccnet_r101-d8_512x512_80k_ade20k_20200615_014848-1f4929a3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_80k_ade20k/ccnet_r101-d8_512x512_80k_ade20k_20200615_014848.log.json) |
+| CCNet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 42.08 | 43.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ccnet/ccnet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_160k_ade20k/ccnet_r50-d8_512x512_160k_ade20k_20200616_084435-7c97193b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_160k_ade20k/ccnet_r50-d8_512x512_160k_ade20k_20200616_084435.log.json) |
+| CCNet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 43.71 | 45.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ccnet/ccnet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_160k_ade20k/ccnet_r101-d8_512x512_160k_ade20k_20200616_000644-e849e007.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_160k_ade20k/ccnet_r101-d8_512x512_160k_ade20k_20200616_000644.log.json) |
### Pascal VOC 2012 + Aug
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| CCNet | R-50-D8 | 512x512 | 20000 | 6 | 20.45 | V100 | 76.17 | 77.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ccnet/ccnet_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_20k_voc12aug/ccnet_r50-d8_512x512_20k_voc12aug_20200617_193212-fad81784.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_20k_voc12aug/ccnet_r50-d8_512x512_20k_voc12aug_20200617_193212.log.json) |
-| CCNet | R-101-D8 | 512x512 | 20000 | 9.5 | 13.64 | V100 | 77.27 | 79.02 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ccnet/ccnet_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_20k_voc12aug/ccnet_r101-d8_512x512_20k_voc12aug_20200617_193212-0007b61d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_20k_voc12aug/ccnet_r101-d8_512x512_20k_voc12aug_20200617_193212.log.json) |
-| CCNet | R-50-D8 | 512x512 | 40000 | - | - | V100 | 75.96 | 77.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ccnet/ccnet_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_40k_voc12aug/ccnet_r50-d8_512x512_40k_voc12aug_20200613_232127-c2a15f02.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_40k_voc12aug/ccnet_r50-d8_512x512_40k_voc12aug_20200613_232127.log.json) |
-| CCNet | R-101-D8 | 512x512 | 40000 | - | - | V100 | 77.87 | 78.90 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ccnet/ccnet_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_40k_voc12aug/ccnet_r101-d8_512x512_40k_voc12aug_20200613_232127-c30da577.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_40k_voc12aug/ccnet_r101-d8_512x512_40k_voc12aug_20200613_232127.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| CCNet | R-50-D8 | 512x512 | 20000 | 6 | 20.45 | V100 | 76.17 | 77.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ccnet/ccnet_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_20k_voc12aug/ccnet_r50-d8_512x512_20k_voc12aug_20200617_193212-fad81784.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_20k_voc12aug/ccnet_r50-d8_512x512_20k_voc12aug_20200617_193212.log.json) |
+| CCNet | R-101-D8 | 512x512 | 20000 | 9.5 | 13.64 | V100 | 77.27 | 79.02 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ccnet/ccnet_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_20k_voc12aug/ccnet_r101-d8_512x512_20k_voc12aug_20200617_193212-0007b61d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_20k_voc12aug/ccnet_r101-d8_512x512_20k_voc12aug_20200617_193212.log.json) |
+| CCNet | R-50-D8 | 512x512 | 40000 | - | - | V100 | 75.96 | 77.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ccnet/ccnet_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_40k_voc12aug/ccnet_r50-d8_512x512_40k_voc12aug_20200613_232127-c2a15f02.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_40k_voc12aug/ccnet_r50-d8_512x512_40k_voc12aug_20200613_232127.log.json) |
+| CCNet | R-101-D8 | 512x512 | 40000 | - | - | V100 | 77.87 | 78.90 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ccnet/ccnet_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_40k_voc12aug/ccnet_r101-d8_512x512_40k_voc12aug_20200613_232127-c30da577.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_40k_voc12aug/ccnet_r101-d8_512x512_40k_voc12aug_20200613_232127.log.json) |
## Citation
diff --git a/configs/cgnet/README.md b/configs/cgnet/README.md
index 60cde58291..96c9fcf515 100644
--- a/configs/cgnet/README.md
+++ b/configs/cgnet/README.md
@@ -26,10 +26,10 @@ The demand of applying semantic segmentation model on mobile devices has been in
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| CGNet | M3N21 | 680x680 | 60000 | 7.5 | 30.51 | V100 | 65.63 | 68.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/cgnet/cgnet_fcn_4xb4-60k_cityscapes-680x680.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/cgnet/cgnet_680x680_60k_cityscapes/cgnet_680x680_60k_cityscapes_20201101_110253-4c0b2f2d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/cgnet/cgnet_680x680_60k_cityscapes/cgnet_680x680_60k_cityscapes-20201101_110253.log.json) |
-| CGNet | M3N21 | 512x1024 | 60000 | 8.3 | 31.14 | V100 | 68.27 | 70.33 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/cgnet/cgnet_fcn_4xb8-60k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/cgnet/cgnet_512x1024_60k_cityscapes/cgnet_512x1024_60k_cityscapes_20201101_110254-124ea03b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/cgnet/cgnet_512x1024_60k_cityscapes/cgnet_512x1024_60k_cityscapes-20201101_110254.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| CGNet | M3N21 | 680x680 | 60000 | 7.5 | 30.51 | V100 | 65.63 | 68.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/cgnet/cgnet_fcn_4xb4-60k_cityscapes-680x680.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/cgnet/cgnet_680x680_60k_cityscapes/cgnet_680x680_60k_cityscapes_20201101_110253-4c0b2f2d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/cgnet/cgnet_680x680_60k_cityscapes/cgnet_680x680_60k_cityscapes-20201101_110253.log.json) |
+| CGNet | M3N21 | 512x1024 | 60000 | 8.3 | 31.14 | V100 | 68.27 | 70.33 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/cgnet/cgnet_fcn_4xb8-60k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/cgnet/cgnet_512x1024_60k_cityscapes/cgnet_512x1024_60k_cityscapes_20201101_110254-124ea03b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/cgnet/cgnet_512x1024_60k_cityscapes/cgnet_512x1024_60k_cityscapes-20201101_110254.log.json) |
## Citation
diff --git a/configs/convnext/README.md b/configs/convnext/README.md
index 91339377c0..cedf467557 100644
--- a/configs/convnext/README.md
+++ b/configs/convnext/README.md
@@ -49,14 +49,14 @@ The pre-trained models on ImageNet-1k or ImageNet-21k are used to fine-tune on t
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------- | ----------- | --------- | ------- | -------- | -------------- | ------ | ----- | ------------- | -------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| UPerNet | ConvNeXt-T | 512x512 | 160000 | 4.23 | 19.90 | V100 | 46.11 | 46.62 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/convnext/convnext-tiny_upernet_8xb2-amp-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553.log.json) |
-| UPerNet | ConvNeXt-S | 512x512 | 160000 | 5.16 | 15.18 | V100 | 48.56 | 49.02 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/convnext/convnext-small_upernet_8xb2-amp-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208.log.json) |
-| UPerNet | ConvNeXt-B | 512x512 | 160000 | 6.33 | 14.41 | V100 | 48.71 | 49.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/convnext/convnext-base_upernet_8xb2-amp-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227.log.json) |
-| UPerNet | ConvNeXt-B | 640x640 | 160000 | 8.53 | 10.88 | V100 | 52.13 | 52.66 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/convnext/convnext-base_upernet_8xb2-amp-160k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_640x640_160k_ade20k/upernet_convnext_base_fp16_640x640_160k_ade20k_20220227_182859-9280e39b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_640x640_160k_ade20k/upernet_convnext_base_fp16_640x640_160k_ade20k_20220227_182859.log.json) |
-| UPerNet | ConvNeXt-L | 640x640 | 160000 | 12.08 | 7.69 | V100 | 53.16 | 53.38 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/convnext/convnext-large_upernet_8xb2-amp-160k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532.log.json) |
-| UPerNet | ConvNeXt-XL | 640x640 | 160000 | 26.16\* | 6.33 | V100 | 53.58 | 54.11 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/convnext/convnext-xlarge_upernet_8xb2-amp-160k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------- | ----------- | --------- | ------- | -------- | -------------- | ------ | ----- | ------------- | ----------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| UPerNet | ConvNeXt-T | 512x512 | 160000 | 4.23 | 19.90 | V100 | 46.11 | 46.62 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/convnext/convnext-tiny_upernet_8xb2-amp-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553.log.json) |
+| UPerNet | ConvNeXt-S | 512x512 | 160000 | 5.16 | 15.18 | V100 | 48.56 | 49.02 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/convnext/convnext-small_upernet_8xb2-amp-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208.log.json) |
+| UPerNet | ConvNeXt-B | 512x512 | 160000 | 6.33 | 14.41 | V100 | 48.71 | 49.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/convnext/convnext-base_upernet_8xb2-amp-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227.log.json) |
+| UPerNet | ConvNeXt-B | 640x640 | 160000 | 8.53 | 10.88 | V100 | 52.13 | 52.66 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/convnext/convnext-base_upernet_8xb2-amp-160k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_640x640_160k_ade20k/upernet_convnext_base_fp16_640x640_160k_ade20k_20220227_182859-9280e39b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_640x640_160k_ade20k/upernet_convnext_base_fp16_640x640_160k_ade20k_20220227_182859.log.json) |
+| UPerNet | ConvNeXt-L | 640x640 | 160000 | 12.08 | 7.69 | V100 | 53.16 | 53.38 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/convnext/convnext-large_upernet_8xb2-amp-160k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532.log.json) |
+| UPerNet | ConvNeXt-XL | 640x640 | 160000 | 26.16\* | 6.33 | V100 | 53.58 | 54.11 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/convnext/convnext-xlarge_upernet_8xb2-amp-160k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344.log.json) |
Note:
diff --git a/configs/danet/README.md b/configs/danet/README.md
index b5841e23be..90194f3073 100644
--- a/configs/danet/README.md
+++ b/configs/danet/README.md
@@ -26,34 +26,34 @@ In this paper, we address the scene segmentation task by capturing rich contextu
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------- | ------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| DANet | R-50-D8 | 512x1024 | 40000 | 7.4 | 2.66 | V100 | 78.74 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/danet/danet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x1024_40k_cityscapes/danet_r50-d8_512x1024_40k_cityscapes_20200605_191324-c0dbfa5f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x1024_40k_cityscapes/danet_r50-d8_512x1024_40k_cityscapes_20200605_191324.log.json) |
-| DANet | R-101-D8 | 512x1024 | 40000 | 10.9 | 1.99 | V100 | 80.52 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/danet/danet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x1024_40k_cityscapes/danet_r101-d8_512x1024_40k_cityscapes_20200605_200831-c57a7157.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x1024_40k_cityscapes/danet_r101-d8_512x1024_40k_cityscapes_20200605_200831.log.json) |
-| DANet | R-50-D8 | 769x769 | 40000 | 8.8 | 1.56 | V100 | 78.88 | 80.62 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/danet/danet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_769x769_40k_cityscapes/danet_r50-d8_769x769_40k_cityscapes_20200530_025703-76681c60.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_769x769_40k_cityscapes/danet_r50-d8_769x769_40k_cityscapes_20200530_025703.log.json) |
-| DANet | R-101-D8 | 769x769 | 40000 | 12.8 | 1.07 | V100 | 79.88 | 81.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/danet/danet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_769x769_40k_cityscapes/danet_r101-d8_769x769_40k_cityscapes_20200530_025717-dcb7fd4e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_769x769_40k_cityscapes/danet_r101-d8_769x769_40k_cityscapes_20200530_025717.log.json) |
-| DANet | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 79.34 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/danet/danet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x1024_80k_cityscapes/danet_r50-d8_512x1024_80k_cityscapes_20200607_133029-2bfa2293.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x1024_80k_cityscapes/danet_r50-d8_512x1024_80k_cityscapes_20200607_133029.log.json) |
-| DANet | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 80.41 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/danet/danet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x1024_80k_cityscapes/danet_r101-d8_512x1024_80k_cityscapes_20200607_132918-955e6350.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x1024_80k_cityscapes/danet_r101-d8_512x1024_80k_cityscapes_20200607_132918.log.json) |
-| DANet | R-50-D8 | 769x769 | 80000 | - | - | V100 | 79.27 | 80.96 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/danet/danet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_769x769_80k_cityscapes/danet_r50-d8_769x769_80k_cityscapes_20200607_132954-495689b4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_769x769_80k_cityscapes/danet_r50-d8_769x769_80k_cityscapes_20200607_132954.log.json) |
-| DANet | R-101-D8 | 769x769 | 80000 | - | - | V100 | 80.47 | 82.02 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/danet/danet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_769x769_80k_cityscapes/danet_r101-d8_769x769_80k_cityscapes_20200607_132918-f3a929e7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_769x769_80k_cityscapes/danet_r101-d8_769x769_80k_cityscapes_20200607_132918.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------- | ---------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| DANet | R-50-D8 | 512x1024 | 40000 | 7.4 | 2.66 | V100 | 78.74 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/danet/danet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x1024_40k_cityscapes/danet_r50-d8_512x1024_40k_cityscapes_20200605_191324-c0dbfa5f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x1024_40k_cityscapes/danet_r50-d8_512x1024_40k_cityscapes_20200605_191324.log.json) |
+| DANet | R-101-D8 | 512x1024 | 40000 | 10.9 | 1.99 | V100 | 80.52 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/danet/danet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x1024_40k_cityscapes/danet_r101-d8_512x1024_40k_cityscapes_20200605_200831-c57a7157.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x1024_40k_cityscapes/danet_r101-d8_512x1024_40k_cityscapes_20200605_200831.log.json) |
+| DANet | R-50-D8 | 769x769 | 40000 | 8.8 | 1.56 | V100 | 78.88 | 80.62 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/danet/danet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_769x769_40k_cityscapes/danet_r50-d8_769x769_40k_cityscapes_20200530_025703-76681c60.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_769x769_40k_cityscapes/danet_r50-d8_769x769_40k_cityscapes_20200530_025703.log.json) |
+| DANet | R-101-D8 | 769x769 | 40000 | 12.8 | 1.07 | V100 | 79.88 | 81.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/danet/danet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_769x769_40k_cityscapes/danet_r101-d8_769x769_40k_cityscapes_20200530_025717-dcb7fd4e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_769x769_40k_cityscapes/danet_r101-d8_769x769_40k_cityscapes_20200530_025717.log.json) |
+| DANet | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 79.34 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/danet/danet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x1024_80k_cityscapes/danet_r50-d8_512x1024_80k_cityscapes_20200607_133029-2bfa2293.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x1024_80k_cityscapes/danet_r50-d8_512x1024_80k_cityscapes_20200607_133029.log.json) |
+| DANet | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 80.41 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/danet/danet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x1024_80k_cityscapes/danet_r101-d8_512x1024_80k_cityscapes_20200607_132918-955e6350.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x1024_80k_cityscapes/danet_r101-d8_512x1024_80k_cityscapes_20200607_132918.log.json) |
+| DANet | R-50-D8 | 769x769 | 80000 | - | - | V100 | 79.27 | 80.96 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/danet/danet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_769x769_80k_cityscapes/danet_r50-d8_769x769_80k_cityscapes_20200607_132954-495689b4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_769x769_80k_cityscapes/danet_r50-d8_769x769_80k_cityscapes_20200607_132954.log.json) |
+| DANet | R-101-D8 | 769x769 | 80000 | - | - | V100 | 80.47 | 82.02 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/danet/danet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_769x769_80k_cityscapes/danet_r101-d8_769x769_80k_cityscapes_20200607_132918-f3a929e7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_769x769_80k_cityscapes/danet_r101-d8_769x769_80k_cityscapes_20200607_132918.log.json) |
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| DANet | R-50-D8 | 512x512 | 80000 | 11.5 | 21.20 | V100 | 41.66 | 42.90 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/danet/danet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_80k_ade20k/danet_r50-d8_512x512_80k_ade20k_20200615_015125-edb18e08.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_80k_ade20k/danet_r50-d8_512x512_80k_ade20k_20200615_015125.log.json) |
-| DANet | R-101-D8 | 512x512 | 80000 | 15 | 14.18 | V100 | 43.64 | 45.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/danet/danet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_80k_ade20k/danet_r101-d8_512x512_80k_ade20k_20200615_015126-d0357c73.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_80k_ade20k/danet_r101-d8_512x512_80k_ade20k_20200615_015126.log.json) |
-| DANet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 42.45 | 43.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/danet/danet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_160k_ade20k/danet_r50-d8_512x512_160k_ade20k_20200616_082340-9cb35dcd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_160k_ade20k/danet_r50-d8_512x512_160k_ade20k_20200616_082340.log.json) |
-| DANet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 44.17 | 45.02 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/danet/danet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_160k_ade20k/danet_r101-d8_512x512_160k_ade20k_20200616_082348-23bf12f9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_160k_ade20k/danet_r101-d8_512x512_160k_ade20k_20200616_082348.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| DANet | R-50-D8 | 512x512 | 80000 | 11.5 | 21.20 | V100 | 41.66 | 42.90 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/danet/danet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_80k_ade20k/danet_r50-d8_512x512_80k_ade20k_20200615_015125-edb18e08.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_80k_ade20k/danet_r50-d8_512x512_80k_ade20k_20200615_015125.log.json) |
+| DANet | R-101-D8 | 512x512 | 80000 | 15 | 14.18 | V100 | 43.64 | 45.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/danet/danet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_80k_ade20k/danet_r101-d8_512x512_80k_ade20k_20200615_015126-d0357c73.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_80k_ade20k/danet_r101-d8_512x512_80k_ade20k_20200615_015126.log.json) |
+| DANet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 42.45 | 43.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/danet/danet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_160k_ade20k/danet_r50-d8_512x512_160k_ade20k_20200616_082340-9cb35dcd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_160k_ade20k/danet_r50-d8_512x512_160k_ade20k_20200616_082340.log.json) |
+| DANet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 44.17 | 45.02 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/danet/danet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_160k_ade20k/danet_r101-d8_512x512_160k_ade20k_20200616_082348-23bf12f9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_160k_ade20k/danet_r101-d8_512x512_160k_ade20k_20200616_082348.log.json) |
### Pascal VOC 2012 + Aug
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| DANet | R-50-D8 | 512x512 | 20000 | 6.5 | 20.94 | V100 | 74.45 | 75.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/danet/danet_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_20k_voc12aug/danet_r50-d8_512x512_20k_voc12aug_20200618_070026-9e9e3ab3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_20k_voc12aug/danet_r50-d8_512x512_20k_voc12aug_20200618_070026.log.json) |
-| DANet | R-101-D8 | 512x512 | 20000 | 9.9 | 13.76 | V100 | 76.02 | 77.23 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/danet/danet_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_20k_voc12aug/danet_r101-d8_512x512_20k_voc12aug_20200618_070026-d48d23b2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_20k_voc12aug/danet_r101-d8_512x512_20k_voc12aug_20200618_070026.log.json) |
-| DANet | R-50-D8 | 512x512 | 40000 | - | - | V100 | 76.37 | 77.29 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/danet/danet_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_40k_voc12aug/danet_r50-d8_512x512_40k_voc12aug_20200613_235526-426e3a64.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_40k_voc12aug/danet_r50-d8_512x512_40k_voc12aug_20200613_235526.log.json) |
-| DANet | R-101-D8 | 512x512 | 40000 | - | - | V100 | 76.51 | 77.32 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/danet/danet_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_40k_voc12aug/danet_r101-d8_512x512_40k_voc12aug_20200613_223031-788e232a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_40k_voc12aug/danet_r101-d8_512x512_40k_voc12aug_20200613_223031.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| DANet | R-50-D8 | 512x512 | 20000 | 6.5 | 20.94 | V100 | 74.45 | 75.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/danet/danet_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_20k_voc12aug/danet_r50-d8_512x512_20k_voc12aug_20200618_070026-9e9e3ab3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_20k_voc12aug/danet_r50-d8_512x512_20k_voc12aug_20200618_070026.log.json) |
+| DANet | R-101-D8 | 512x512 | 20000 | 9.9 | 13.76 | V100 | 76.02 | 77.23 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/danet/danet_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_20k_voc12aug/danet_r101-d8_512x512_20k_voc12aug_20200618_070026-d48d23b2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_20k_voc12aug/danet_r101-d8_512x512_20k_voc12aug_20200618_070026.log.json) |
+| DANet | R-50-D8 | 512x512 | 40000 | - | - | V100 | 76.37 | 77.29 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/danet/danet_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_40k_voc12aug/danet_r50-d8_512x512_40k_voc12aug_20200613_235526-426e3a64.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_40k_voc12aug/danet_r50-d8_512x512_40k_voc12aug_20200613_235526.log.json) |
+| DANet | R-101-D8 | 512x512 | 40000 | - | - | V100 | 76.51 | 77.32 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/danet/danet_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_40k_voc12aug/danet_r101-d8_512x512_40k_voc12aug_20200613_223031-788e232a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_40k_voc12aug/danet_r101-d8_512x512_40k_voc12aug_20200613_223031.log.json) |
## Citation
diff --git a/configs/deeplabv3/README.md b/configs/deeplabv3/README.md
index 836db6a9a5..df50b7f90a 100644
--- a/configs/deeplabv3/README.md
+++ b/configs/deeplabv3/README.md
@@ -27,79 +27,79 @@ DEEPLABv3_ResNet-D8 model structure
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ---------------- | --------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| DeepLabV3 | R-50-D8 | 512x1024 | 40000 | 6.1 | 2.57 | V100 | 79.09 | 80.45 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes/deeplabv3_r50-d8_512x1024_40k_cityscapes_20200605_022449-acadc2f8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes/deeplabv3_r50-d8_512x1024_40k_cityscapes_20200605_022449.log.json) |
-| DeepLabV3 | R-101-D8 | 512x1024 | 40000 | 9.6 | 1.92 | V100 | 77.12 | 79.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes/deeplabv3_r101-d8_512x1024_40k_cityscapes_20200605_012241-7fd3f799.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes/deeplabv3_r101-d8_512x1024_40k_cityscapes_20200605_012241.log.json) |
-| DeepLabV3 | R-50-D8 | 769x769 | 40000 | 6.9 | 1.11 | V100 | 78.58 | 79.89 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes/deeplabv3_r50-d8_769x769_40k_cityscapes_20200606_113723-7eda553c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes/deeplabv3_r50-d8_769x769_40k_cityscapes_20200606_113723.log.json) |
-| DeepLabV3 | R-101-D8 | 769x769 | 40000 | 10.9 | 0.83 | V100 | 79.27 | 80.11 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes/deeplabv3_r101-d8_769x769_40k_cityscapes_20200606_113809-c64f889f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes/deeplabv3_r101-d8_769x769_40k_cityscapes_20200606_113809.log.json) |
-| DeepLabV3 | R-18-D8 | 512x1024 | 80000 | 1.7 | 13.78 | V100 | 76.70 | 78.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r18-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes/deeplabv3_r18-d8_512x1024_80k_cityscapes_20201225_021506-23dffbe2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes/deeplabv3_r18-d8_512x1024_80k_cityscapes-20201225_021506.log.json) |
-| DeepLabV3 | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 79.32 | 80.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes/deeplabv3_r50-d8_512x1024_80k_cityscapes_20200606_113404-b92cfdd4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes/deeplabv3_r50-d8_512x1024_80k_cityscapes_20200606_113404.log.json) |
-| DeepLabV3 | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 80.20 | 81.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes/deeplabv3_r101-d8_512x1024_80k_cityscapes_20200606_113503-9e428899.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes/deeplabv3_r101-d8_512x1024_80k_cityscapes_20200606_113503.log.json) |
-| DeepLabV3 (FP16) | R-101-D8 | 512x1024 | 80000 | 5.75 | 3.86 | V100 | 80.48 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-774d9cec.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920.log.json) |
-| DeepLabV3 | R-18-D8 | 769x769 | 80000 | 1.9 | 5.55 | V100 | 76.60 | 78.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r18-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes/deeplabv3_r18-d8_769x769_80k_cityscapes_20201225_021506-6452126a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes/deeplabv3_r18-d8_769x769_80k_cityscapes-20201225_021506.log.json) |
-| DeepLabV3 | R-50-D8 | 769x769 | 80000 | - | - | V100 | 79.89 | 81.06 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes/deeplabv3_r50-d8_769x769_80k_cityscapes_20200606_221338-788d6228.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes/deeplabv3_r50-d8_769x769_80k_cityscapes_20200606_221338.log.json) |
-| DeepLabV3 | R-101-D8 | 769x769 | 80000 | - | - | V100 | 79.67 | 80.81 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes/deeplabv3_r101-d8_769x769_80k_cityscapes_20200607_013353-60e95418.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes/deeplabv3_r101-d8_769x769_80k_cityscapes_20200607_013353.log.json) |
-| DeepLabV3 | R-101-D16-MG124 | 512x1024 | 40000 | 4.7 | 6.96 | V100 | 76.71 | 78.63 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d16-mg124_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes_20200908_005644-67b0c992.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes-20200908_005644.log.json) |
-| DeepLabV3 | R-101-D16-MG124 | 512x1024 | 80000 | - | - | V100 | 78.36 | 79.84 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d16-mg124_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes_20200908_005644-57bb8425.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes-20200908_005644.log.json) |
-| DeepLabV3 | R-18b-D8 | 512x1024 | 80000 | 1.6 | 13.93 | V100 | 76.26 | 77.88 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r18b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes/deeplabv3_r18b-d8_512x1024_80k_cityscapes_20201225_094144-46040cef.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes/deeplabv3_r18b-d8_512x1024_80k_cityscapes-20201225_094144.log.json) |
-| DeepLabV3 | R-50b-D8 | 512x1024 | 80000 | 6.0 | 2.74 | V100 | 79.63 | 80.98 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes/deeplabv3_r50b-d8_512x1024_80k_cityscapes_20201225_155148-ec368954.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes/deeplabv3_r50b-d8_512x1024_80k_cityscapes-20201225_155148.log.json) |
-| DeepLabV3 | R-101b-D8 | 512x1024 | 80000 | 9.5 | 1.81 | V100 | 80.01 | 81.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes/deeplabv3_r101b-d8_512x1024_80k_cityscapes_20201226_171821-8fd49503.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes/deeplabv3_r101b-d8_512x1024_80k_cityscapes-20201226_171821.log.json) |
-| DeepLabV3 | R-18b-D8 | 769x769 | 80000 | 1.8 | 5.79 | V100 | 75.63 | 77.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r18b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes/deeplabv3_r18b-d8_769x769_80k_cityscapes_20201225_094144-fdc985d9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes/deeplabv3_r18b-d8_769x769_80k_cityscapes-20201225_094144.log.json) |
-| DeepLabV3 | R-50b-D8 | 769x769 | 80000 | 6.8 | 1.16 | V100 | 78.80 | 80.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes/deeplabv3_r50b-d8_769x769_80k_cityscapes_20201225_155404-87fb0cf4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes/deeplabv3_r50b-d8_769x769_80k_cityscapes-20201225_155404.log.json) |
-| DeepLabV3 | R-101b-D8 | 769x769 | 80000 | 10.7 | 0.82 | V100 | 79.41 | 80.73 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes/deeplabv3_r101b-d8_769x769_80k_cityscapes_20201226_190843-9142ee57.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes/deeplabv3_r101b-d8_769x769_80k_cityscapes-20201226_190843.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ---------------- | --------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| DeepLabV3 | R-50-D8 | 512x1024 | 40000 | 6.1 | 2.57 | V100 | 79.09 | 80.45 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes/deeplabv3_r50-d8_512x1024_40k_cityscapes_20200605_022449-acadc2f8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes/deeplabv3_r50-d8_512x1024_40k_cityscapes_20200605_022449.log.json) |
+| DeepLabV3 | R-101-D8 | 512x1024 | 40000 | 9.6 | 1.92 | V100 | 77.12 | 79.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes/deeplabv3_r101-d8_512x1024_40k_cityscapes_20200605_012241-7fd3f799.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes/deeplabv3_r101-d8_512x1024_40k_cityscapes_20200605_012241.log.json) |
+| DeepLabV3 | R-50-D8 | 769x769 | 40000 | 6.9 | 1.11 | V100 | 78.58 | 79.89 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes/deeplabv3_r50-d8_769x769_40k_cityscapes_20200606_113723-7eda553c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes/deeplabv3_r50-d8_769x769_40k_cityscapes_20200606_113723.log.json) |
+| DeepLabV3 | R-101-D8 | 769x769 | 40000 | 10.9 | 0.83 | V100 | 79.27 | 80.11 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes/deeplabv3_r101-d8_769x769_40k_cityscapes_20200606_113809-c64f889f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes/deeplabv3_r101-d8_769x769_40k_cityscapes_20200606_113809.log.json) |
+| DeepLabV3 | R-18-D8 | 512x1024 | 80000 | 1.7 | 13.78 | V100 | 76.70 | 78.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r18-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes/deeplabv3_r18-d8_512x1024_80k_cityscapes_20201225_021506-23dffbe2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes/deeplabv3_r18-d8_512x1024_80k_cityscapes-20201225_021506.log.json) |
+| DeepLabV3 | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 79.32 | 80.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes/deeplabv3_r50-d8_512x1024_80k_cityscapes_20200606_113404-b92cfdd4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes/deeplabv3_r50-d8_512x1024_80k_cityscapes_20200606_113404.log.json) |
+| DeepLabV3 | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 80.20 | 81.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes/deeplabv3_r101-d8_512x1024_80k_cityscapes_20200606_113503-9e428899.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes/deeplabv3_r101-d8_512x1024_80k_cityscapes_20200606_113503.log.json) |
+| DeepLabV3 (FP16) | R-101-D8 | 512x1024 | 80000 | 5.75 | 3.86 | V100 | 80.48 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-774d9cec.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920.log.json) |
+| DeepLabV3 | R-18-D8 | 769x769 | 80000 | 1.9 | 5.55 | V100 | 76.60 | 78.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r18-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes/deeplabv3_r18-d8_769x769_80k_cityscapes_20201225_021506-6452126a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes/deeplabv3_r18-d8_769x769_80k_cityscapes-20201225_021506.log.json) |
+| DeepLabV3 | R-50-D8 | 769x769 | 80000 | - | - | V100 | 79.89 | 81.06 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes/deeplabv3_r50-d8_769x769_80k_cityscapes_20200606_221338-788d6228.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes/deeplabv3_r50-d8_769x769_80k_cityscapes_20200606_221338.log.json) |
+| DeepLabV3 | R-101-D8 | 769x769 | 80000 | - | - | V100 | 79.67 | 80.81 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes/deeplabv3_r101-d8_769x769_80k_cityscapes_20200607_013353-60e95418.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes/deeplabv3_r101-d8_769x769_80k_cityscapes_20200607_013353.log.json) |
+| DeepLabV3 | R-101-D16-MG124 | 512x1024 | 40000 | 4.7 | 6.96 | V100 | 76.71 | 78.63 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r101-d16-mg124_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes_20200908_005644-67b0c992.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes-20200908_005644.log.json) |
+| DeepLabV3 | R-101-D16-MG124 | 512x1024 | 80000 | - | - | V100 | 78.36 | 79.84 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r101-d16-mg124_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes_20200908_005644-57bb8425.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes-20200908_005644.log.json) |
+| DeepLabV3 | R-18b-D8 | 512x1024 | 80000 | 1.6 | 13.93 | V100 | 76.26 | 77.88 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r18b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes/deeplabv3_r18b-d8_512x1024_80k_cityscapes_20201225_094144-46040cef.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes/deeplabv3_r18b-d8_512x1024_80k_cityscapes-20201225_094144.log.json) |
+| DeepLabV3 | R-50b-D8 | 512x1024 | 80000 | 6.0 | 2.74 | V100 | 79.63 | 80.98 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r50b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes/deeplabv3_r50b-d8_512x1024_80k_cityscapes_20201225_155148-ec368954.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes/deeplabv3_r50b-d8_512x1024_80k_cityscapes-20201225_155148.log.json) |
+| DeepLabV3 | R-101b-D8 | 512x1024 | 80000 | 9.5 | 1.81 | V100 | 80.01 | 81.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r101b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes/deeplabv3_r101b-d8_512x1024_80k_cityscapes_20201226_171821-8fd49503.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes/deeplabv3_r101b-d8_512x1024_80k_cityscapes-20201226_171821.log.json) |
+| DeepLabV3 | R-18b-D8 | 769x769 | 80000 | 1.8 | 5.79 | V100 | 75.63 | 77.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r18b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes/deeplabv3_r18b-d8_769x769_80k_cityscapes_20201225_094144-fdc985d9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes/deeplabv3_r18b-d8_769x769_80k_cityscapes-20201225_094144.log.json) |
+| DeepLabV3 | R-50b-D8 | 769x769 | 80000 | 6.8 | 1.16 | V100 | 78.80 | 80.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r50b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes/deeplabv3_r50b-d8_769x769_80k_cityscapes_20201225_155404-87fb0cf4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes/deeplabv3_r50b-d8_769x769_80k_cityscapes-20201225_155404.log.json) |
+| DeepLabV3 | R-101b-D8 | 769x769 | 80000 | 10.7 | 0.82 | V100 | 79.41 | 80.73 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r101b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes/deeplabv3_r101b-d8_769x769_80k_cityscapes_20201226_190843-9142ee57.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes/deeplabv3_r101b-d8_769x769_80k_cityscapes-20201226_190843.log.json) |
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| --------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| DeepLabV3 | R-50-D8 | 512x512 | 80000 | 8.9 | 14.76 | V100 | 42.42 | 43.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k/deeplabv3_r50-d8_512x512_80k_ade20k_20200614_185028-0bb3f844.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k/deeplabv3_r50-d8_512x512_80k_ade20k_20200614_185028.log.json) |
-| DeepLabV3 | R-101-D8 | 512x512 | 80000 | 12.4 | 10.14 | V100 | 44.08 | 45.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k/deeplabv3_r101-d8_512x512_80k_ade20k_20200615_021256-d89c7fa4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k/deeplabv3_r101-d8_512x512_80k_ade20k_20200615_021256.log.json) |
-| DeepLabV3 | R-50-D8 | 512x512 | 160000 | - | - | V100 | 42.66 | 44.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k/deeplabv3_r50-d8_512x512_160k_ade20k_20200615_123227-5d0ee427.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k/deeplabv3_r50-d8_512x512_160k_ade20k_20200615_123227.log.json) |
-| DeepLabV3 | R-101-D8 | 512x512 | 160000 | - | - | V100 | 45.00 | 46.66 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k/deeplabv3_r101-d8_512x512_160k_ade20k_20200615_105816-b1f72b3b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k/deeplabv3_r101-d8_512x512_160k_ade20k_20200615_105816.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| --------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| DeepLabV3 | R-50-D8 | 512x512 | 80000 | 8.9 | 14.76 | V100 | 42.42 | 43.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k/deeplabv3_r50-d8_512x512_80k_ade20k_20200614_185028-0bb3f844.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k/deeplabv3_r50-d8_512x512_80k_ade20k_20200614_185028.log.json) |
+| DeepLabV3 | R-101-D8 | 512x512 | 80000 | 12.4 | 10.14 | V100 | 44.08 | 45.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k/deeplabv3_r101-d8_512x512_80k_ade20k_20200615_021256-d89c7fa4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k/deeplabv3_r101-d8_512x512_80k_ade20k_20200615_021256.log.json) |
+| DeepLabV3 | R-50-D8 | 512x512 | 160000 | - | - | V100 | 42.66 | 44.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k/deeplabv3_r50-d8_512x512_160k_ade20k_20200615_123227-5d0ee427.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k/deeplabv3_r50-d8_512x512_160k_ade20k_20200615_123227.log.json) |
+| DeepLabV3 | R-101-D8 | 512x512 | 160000 | - | - | V100 | 45.00 | 46.66 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k/deeplabv3_r101-d8_512x512_160k_ade20k_20200615_105816-b1f72b3b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k/deeplabv3_r101-d8_512x512_160k_ade20k_20200615_105816.log.json) |
### Pascal VOC 2012 + Aug
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| --------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| DeepLabV3 | R-50-D8 | 512x512 | 20000 | 6.1 | 13.88 | V100 | 76.17 | 77.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug/deeplabv3_r50-d8_512x512_20k_voc12aug_20200617_010906-596905ef.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug/deeplabv3_r50-d8_512x512_20k_voc12aug_20200617_010906.log.json) |
-| DeepLabV3 | R-101-D8 | 512x512 | 20000 | 9.6 | 9.81 | V100 | 78.70 | 79.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug/deeplabv3_r101-d8_512x512_20k_voc12aug_20200617_010932-8d13832f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug/deeplabv3_r101-d8_512x512_20k_voc12aug_20200617_010932.log.json) |
-| DeepLabV3 | R-50-D8 | 512x512 | 40000 | - | - | V100 | 77.68 | 78.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug/deeplabv3_r50-d8_512x512_40k_voc12aug_20200613_161546-2ae96e7e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug/deeplabv3_r50-d8_512x512_40k_voc12aug_20200613_161546.log.json) |
-| DeepLabV3 | R-101-D8 | 512x512 | 40000 | - | - | V100 | 77.92 | 79.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug/deeplabv3_r101-d8_512x512_40k_voc12aug_20200613_161432-0017d784.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug/deeplabv3_r101-d8_512x512_40k_voc12aug_20200613_161432.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| --------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| DeepLabV3 | R-50-D8 | 512x512 | 20000 | 6.1 | 13.88 | V100 | 76.17 | 77.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug/deeplabv3_r50-d8_512x512_20k_voc12aug_20200617_010906-596905ef.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug/deeplabv3_r50-d8_512x512_20k_voc12aug_20200617_010906.log.json) |
+| DeepLabV3 | R-101-D8 | 512x512 | 20000 | 9.6 | 9.81 | V100 | 78.70 | 79.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug/deeplabv3_r101-d8_512x512_20k_voc12aug_20200617_010932-8d13832f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug/deeplabv3_r101-d8_512x512_20k_voc12aug_20200617_010932.log.json) |
+| DeepLabV3 | R-50-D8 | 512x512 | 40000 | - | - | V100 | 77.68 | 78.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug/deeplabv3_r50-d8_512x512_40k_voc12aug_20200613_161546-2ae96e7e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug/deeplabv3_r50-d8_512x512_40k_voc12aug_20200613_161546.log.json) |
+| DeepLabV3 | R-101-D8 | 512x512 | 40000 | - | - | V100 | 77.92 | 79.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug/deeplabv3_r101-d8_512x512_40k_voc12aug_20200613_161432-0017d784.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug/deeplabv3_r101-d8_512x512_40k_voc12aug_20200613_161432.log.json) |
### Pascal Context
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| --------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| DeepLabV3 | R-101-D8 | 480x480 | 40000 | 9.2 | 7.09 | V100 | 46.55 | 47.81 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context/deeplabv3_r101-d8_480x480_40k_pascal_context_20200911_204118-1aa27336.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context/deeplabv3_r101-d8_480x480_40k_pascal_context-20200911_204118.log.json) |
-| DeepLabV3 | R-101-D8 | 480x480 | 80000 | - | - | V100 | 46.42 | 47.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context/deeplabv3_r101-d8_480x480_80k_pascal_context_20200911_170155-2a21fff3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context/deeplabv3_r101-d8_480x480_80k_pascal_context-20200911_170155.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| --------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| DeepLabV3 | R-101-D8 | 480x480 | 40000 | 9.2 | 7.09 | V100 | 46.55 | 47.81 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context/deeplabv3_r101-d8_480x480_40k_pascal_context_20200911_204118-1aa27336.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context/deeplabv3_r101-d8_480x480_40k_pascal_context-20200911_204118.log.json) |
+| DeepLabV3 | R-101-D8 | 480x480 | 80000 | - | - | V100 | 46.42 | 47.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context/deeplabv3_r101-d8_480x480_80k_pascal_context_20200911_170155-2a21fff3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context/deeplabv3_r101-d8_480x480_80k_pascal_context-20200911_170155.log.json) |
### Pascal Context 59
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| --------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| DeepLabV3 | R-101-D8 | 480x480 | 40000 | - | - | V100 | 52.61 | 54.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context_59/deeplabv3_r101-d8_480x480_40k_pascal_context_59_20210416_110332-cb08ea46.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context_59/deeplabv3_r101-d8_480x480_40k_pascal_context_59-20210416_110332.log.json) |
-| DeepLabV3 | R-101-D8 | 480x480 | 80000 | - | - | V100 | 52.46 | 54.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59/deeplabv3_r101-d8_480x480_80k_pascal_context_59_20210416_113002-26303993.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59/deeplabv3_r101-d8_480x480_80k_pascal_context_59-20210416_113002.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| --------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| DeepLabV3 | R-101-D8 | 480x480 | 40000 | - | - | V100 | 52.61 | 54.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context_59/deeplabv3_r101-d8_480x480_40k_pascal_context_59_20210416_110332-cb08ea46.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context_59/deeplabv3_r101-d8_480x480_40k_pascal_context_59-20210416_110332.log.json) |
+| DeepLabV3 | R-101-D8 | 480x480 | 80000 | - | - | V100 | 52.46 | 54.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59/deeplabv3_r101-d8_480x480_80k_pascal_context_59_20210416_113002-26303993.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59/deeplabv3_r101-d8_480x480_80k_pascal_context_59-20210416_113002.log.json) |
### COCO-Stuff 10k
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| --------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| DeepLabV3 | R-50-D8 | 512x512 | 20000 | 9.6 | 10.8 | V100 | 34.66 | 36.08 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb4-20k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025-b35f789d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025.log.json) |
-| DeepLabV3 | R-101-D8 | 512x512 | 20000 | 13.2 | 8.7 | V100 | 37.30 | 38.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-20k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025-c49752cb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025.log.json) |
-| DeepLabV3 | R-50-D8 | 512x512 | 40000 | - | - | V100 | 35.73 | 37.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb4-40k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305-dc76f3ff.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305.log.json) |
-| DeepLabV3 | R-101-D8 | 512x512 | 40000 | - | - | V100 | 37.81 | 38.80 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305-636cb433.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| --------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| DeepLabV3 | R-50-D8 | 512x512 | 20000 | 9.6 | 10.8 | V100 | 34.66 | 36.08 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r50-d8_4xb4-20k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025-b35f789d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025.log.json) |
+| DeepLabV3 | R-101-D8 | 512x512 | 20000 | 13.2 | 8.7 | V100 | 37.30 | 38.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r101-d8_4xb4-20k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025-c49752cb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025.log.json) |
+| DeepLabV3 | R-50-D8 | 512x512 | 40000 | - | - | V100 | 35.73 | 37.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r50-d8_4xb4-40k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305-dc76f3ff.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305.log.json) |
+| DeepLabV3 | R-101-D8 | 512x512 | 40000 | - | - | V100 | 37.81 | 38.80 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305-636cb433.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305.log.json) |
### COCO-Stuff 164k
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| --------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| DeepLabV3 | R-50-D8 | 512x512 | 80000 | 9.6 | 10.8 | V100 | 39.38 | 40.03 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb4-80k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k_20210709_163016-88675c24.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k_20210709_163016.log.json) |
-| DeepLabV3 | R-101-D8 | 512x512 | 80000 | 13.2 | 8.7 | V100 | 40.87 | 41.50 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k_20210709_201252-13600dc2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k_20210709_201252.log.json) |
-| DeepLabV3 | R-50-D8 | 512x512 | 160000 | - | - | V100 | 41.09 | 41.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k_20210709_163016-49f2812b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k_20210709_163016.log.json) |
-| DeepLabV3 | R-101-D8 | 512x512 | 160000 | - | - | V100 | 41.82 | 42.49 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k_20210709_155402-f035acfd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k_20210709_155402.log.json) |
-| DeepLabV3 | R-50-D8 | 512x512 | 320000 | - | - | V100 | 41.37 | 42.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb4-320k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k_20210709_155403-51b21115.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k_20210709_155403.log.json) |
-| DeepLabV3 | R-101-D8 | 512x512 | 320000 | - | - | V100 | 42.61 | 43.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3/deeplabv3_r101-d8_4xb4-320k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k_20210709_155402-3cbca14d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k_20210709_155402.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| --------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| DeepLabV3 | R-50-D8 | 512x512 | 80000 | 9.6 | 10.8 | V100 | 39.38 | 40.03 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r50-d8_4xb4-80k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k_20210709_163016-88675c24.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k_20210709_163016.log.json) |
+| DeepLabV3 | R-101-D8 | 512x512 | 80000 | 13.2 | 8.7 | V100 | 40.87 | 41.50 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k_20210709_201252-13600dc2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k_20210709_201252.log.json) |
+| DeepLabV3 | R-50-D8 | 512x512 | 160000 | - | - | V100 | 41.09 | 41.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r50-d8_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k_20210709_163016-49f2812b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k_20210709_163016.log.json) |
+| DeepLabV3 | R-101-D8 | 512x512 | 160000 | - | - | V100 | 41.82 | 42.49 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r101-d8_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k_20210709_155402-f035acfd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k_20210709_155402.log.json) |
+| DeepLabV3 | R-50-D8 | 512x512 | 320000 | - | - | V100 | 41.37 | 42.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r50-d8_4xb4-320k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k_20210709_155403-51b21115.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k_20210709_155403.log.json) |
+| DeepLabV3 | R-101-D8 | 512x512 | 320000 | - | - | V100 | 42.61 | 43.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3/deeplabv3_r101-d8_4xb4-320k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k_20210709_155402-3cbca14d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k_20210709_155402.log.json) |
Note:
diff --git a/configs/deeplabv3plus/README.md b/configs/deeplabv3plus/README.md
index 15c51a504a..04d01fa512 100644
--- a/configs/deeplabv3plus/README.md
+++ b/configs/deeplabv3plus/README.md
@@ -26,98 +26,98 @@ Spatial pyramid pooling module or encode-decoder structure are used in deep neur
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ----------------- | --------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| DeepLabV3+ | R-50-D8 | 512x1024 | 40000 | 7.5 | 3.94 | V100 | 79.61 | 81.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes/deeplabv3plus_r50-d8_512x1024_40k_cityscapes_20200605_094610-d222ffcd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes/deeplabv3plus_r50-d8_512x1024_40k_cityscapes_20200605_094610.log.json) |
-| DeepLabV3+ | R-101-D8 | 512x1024 | 40000 | 11 | 2.60 | V100 | 80.21 | 81.82 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_40k_cityscapes/deeplabv3plus_r101-d8_512x1024_40k_cityscapes_20200605_094614-3769eecf.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_40k_cityscapes/deeplabv3plus_r101-d8_512x1024_40k_cityscapes_20200605_094614.log.json) |
-| DeepLabV3+ | R-50-D8 | 769x769 | 40000 | 8.5 | 1.72 | V100 | 78.97 | 80.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_40k_cityscapes/deeplabv3plus_r50-d8_769x769_40k_cityscapes_20200606_114143-1dcb0e3c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_40k_cityscapes/deeplabv3plus_r50-d8_769x769_40k_cityscapes_20200606_114143.log.json) |
-| DeepLabV3+ | R-101-D8 | 769x769 | 40000 | 12.5 | 1.15 | V100 | 79.46 | 80.50 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_40k_cityscapes/deeplabv3plus_r101-d8_769x769_40k_cityscapes_20200606_114304-ff414b9e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_40k_cityscapes/deeplabv3plus_r101-d8_769x769_40k_cityscapes_20200606_114304.log.json) |
-| DeepLabV3+ | R-18-D8 | 512x1024 | 80000 | 2.2 | 14.27 | V100 | 76.89 | 78.76 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes/deeplabv3plus_r18-d8_512x1024_80k_cityscapes_20201226_080942-cff257fe.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes/deeplabv3plus_r18-d8_512x1024_80k_cityscapes-20201226_080942.log.json) |
-| DeepLabV3+ | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 80.09 | 81.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes/deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049-f9fb496d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes/deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049.log.json) |
-| DeepLabV3+ | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 80.97 | 82.03 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143.log.json) |
-| DeepLabV3+ (FP16) | R-101-D8 | 512x1024 | 80000 | 6.35 | 7.87 | V100 | 80.46 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-f1104f4b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920.log.json) |
-| DeepLabV3+ | R-18-D8 | 769x769 | 80000 | 2.5 | 5.74 | V100 | 76.26 | 77.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes/deeplabv3plus_r18-d8_769x769_80k_cityscapes_20201226_083346-f326e06a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes/deeplabv3plus_r18-d8_769x769_80k_cityscapes-20201226_083346.log.json) |
-| DeepLabV3+ | R-50-D8 | 769x769 | 80000 | - | - | V100 | 79.83 | 81.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes/deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233-0e9dfdc4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes/deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233.log.json) |
-| DeepLabV3+ | R-101-D8 | 769x769 | 80000 | - | - | V100 | 80.65 | 81.47 | [config\[1\]](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes/deeplabv3plus_r101-d8_769x769_80k_cityscapes_20220406_154720-dfcc0b68.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes/deeplabv3plus_r101-d8_769x769_80k_cityscapes_20220406_154720.log.json) |
-| DeepLabV3+ | R-101-D16-MG124 | 512x1024 | 40000 | 5.8 | 7.48 | V100 | 79.09 | 80.36 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/ddeeplabv3plus_r101-d16-mg124_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes_20200908_005644-cf9ce186.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes-20200908_005644.log.json) |
-| DeepLabV3+ | R-101-D16-MG124 | 512x1024 | 80000 | 9.9 | - | V100 | 79.90 | 81.33 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d16-mg124_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes_20200908_005644-ee6158e0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes-20200908_005644.log.json) |
-| DeepLabV3+ | R-18b-D8 | 512x1024 | 80000 | 2.1 | 14.95 | V100 | 75.87 | 77.52 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r18b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes_20201226_090828-e451abd9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes-20201226_090828.log.json) |
-| DeepLabV3+ | R-50b-D8 | 512x1024 | 80000 | 7.4 | 3.94 | V100 | 80.28 | 81.44 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes_20201225_213645-a97e4e43.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes-20201225_213645.log.json) |
-| DeepLabV3+ | R-101b-D8 | 512x1024 | 80000 | 10.9 | 2.60 | V100 | 80.16 | 81.41 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes_20201226_190843-9c3c93a4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes-20201226_190843.log.json) |
-| DeepLabV3+ | R-18b-D8 | 769x769 | 80000 | 2.4 | 5.96 | V100 | 76.36 | 78.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r18b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_769x769_80k_cityscapes/deeplabv3plus_r18b-d8_769x769_80k_cityscapes_20201226_151312-2c868aff.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_769x769_80k_cityscapes/deeplabv3plus_r18b-d8_769x769_80k_cityscapes-20201226_151312.log.json) |
-| DeepLabV3+ | R-50b-D8 | 769x769 | 80000 | 8.4 | 1.72 | V100 | 79.41 | 80.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_769x769_80k_cityscapes/deeplabv3plus_r50b-d8_769x769_80k_cityscapes_20201225_224655-8b596d1c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_769x769_80k_cityscapes/deeplabv3plus_r50b-d8_769x769_80k_cityscapes-20201225_224655.log.json) |
-| DeepLabV3+ | R-101b-D8 | 769x769 | 80000 | 12.3 | 1.10 | V100 | 79.88 | 81.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_769x769_80k_cityscapes/deeplabv3plus_r101b-d8_769x769_80k_cityscapes_20201226_205041-227cdf7c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_769x769_80k_cityscapes/deeplabv3plus_r101b-d8_769x769_80k_cityscapes-20201226_205041.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ----------------- | --------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| DeepLabV3+ | R-50-D8 | 512x1024 | 40000 | 7.5 | 3.94 | V100 | 79.61 | 81.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes/deeplabv3plus_r50-d8_512x1024_40k_cityscapes_20200605_094610-d222ffcd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes/deeplabv3plus_r50-d8_512x1024_40k_cityscapes_20200605_094610.log.json) |
+| DeepLabV3+ | R-101-D8 | 512x1024 | 40000 | 11 | 2.60 | V100 | 80.21 | 81.82 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_40k_cityscapes/deeplabv3plus_r101-d8_512x1024_40k_cityscapes_20200605_094614-3769eecf.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_40k_cityscapes/deeplabv3plus_r101-d8_512x1024_40k_cityscapes_20200605_094614.log.json) |
+| DeepLabV3+ | R-50-D8 | 769x769 | 40000 | 8.5 | 1.72 | V100 | 78.97 | 80.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_40k_cityscapes/deeplabv3plus_r50-d8_769x769_40k_cityscapes_20200606_114143-1dcb0e3c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_40k_cityscapes/deeplabv3plus_r50-d8_769x769_40k_cityscapes_20200606_114143.log.json) |
+| DeepLabV3+ | R-101-D8 | 769x769 | 40000 | 12.5 | 1.15 | V100 | 79.46 | 80.50 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_40k_cityscapes/deeplabv3plus_r101-d8_769x769_40k_cityscapes_20200606_114304-ff414b9e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_40k_cityscapes/deeplabv3plus_r101-d8_769x769_40k_cityscapes_20200606_114304.log.json) |
+| DeepLabV3+ | R-18-D8 | 512x1024 | 80000 | 2.2 | 14.27 | V100 | 76.89 | 78.76 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes/deeplabv3plus_r18-d8_512x1024_80k_cityscapes_20201226_080942-cff257fe.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes/deeplabv3plus_r18-d8_512x1024_80k_cityscapes-20201226_080942.log.json) |
+| DeepLabV3+ | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 80.09 | 81.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes/deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049-f9fb496d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes/deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049.log.json) |
+| DeepLabV3+ | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 80.97 | 82.03 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143.log.json) |
+| DeepLabV3+ (FP16) | R-101-D8 | 512x1024 | 80000 | 6.35 | 7.87 | V100 | 80.46 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-f1104f4b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920.log.json) |
+| DeepLabV3+ | R-18-D8 | 769x769 | 80000 | 2.5 | 5.74 | V100 | 76.26 | 77.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes/deeplabv3plus_r18-d8_769x769_80k_cityscapes_20201226_083346-f326e06a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes/deeplabv3plus_r18-d8_769x769_80k_cityscapes-20201226_083346.log.json) |
+| DeepLabV3+ | R-50-D8 | 769x769 | 80000 | - | - | V100 | 79.83 | 81.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes/deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233-0e9dfdc4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes/deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233.log.json) |
+| DeepLabV3+ | R-101-D8 | 769x769 | 80000 | - | - | V100 | 80.65 | 81.47 | [config\[1\]](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes/deeplabv3plus_r101-d8_769x769_80k_cityscapes_20220406_154720-dfcc0b68.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes/deeplabv3plus_r101-d8_769x769_80k_cityscapes_20220406_154720.log.json) |
+| DeepLabV3+ | R-101-D16-MG124 | 512x1024 | 40000 | 5.8 | 7.48 | V100 | 79.09 | 80.36 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/ddeeplabv3plus_r101-d16-mg124_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes_20200908_005644-cf9ce186.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes-20200908_005644.log.json) |
+| DeepLabV3+ | R-101-D16-MG124 | 512x1024 | 80000 | 9.9 | - | V100 | 79.90 | 81.33 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d16-mg124_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes_20200908_005644-ee6158e0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes-20200908_005644.log.json) |
+| DeepLabV3+ | R-18b-D8 | 512x1024 | 80000 | 2.1 | 14.95 | V100 | 75.87 | 77.52 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r18b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes_20201226_090828-e451abd9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes-20201226_090828.log.json) |
+| DeepLabV3+ | R-50b-D8 | 512x1024 | 80000 | 7.4 | 3.94 | V100 | 80.28 | 81.44 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes_20201225_213645-a97e4e43.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes-20201225_213645.log.json) |
+| DeepLabV3+ | R-101b-D8 | 512x1024 | 80000 | 10.9 | 2.60 | V100 | 80.16 | 81.41 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes_20201226_190843-9c3c93a4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes-20201226_190843.log.json) |
+| DeepLabV3+ | R-18b-D8 | 769x769 | 80000 | 2.4 | 5.96 | V100 | 76.36 | 78.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r18b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_769x769_80k_cityscapes/deeplabv3plus_r18b-d8_769x769_80k_cityscapes_20201226_151312-2c868aff.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_769x769_80k_cityscapes/deeplabv3plus_r18b-d8_769x769_80k_cityscapes-20201226_151312.log.json) |
+| DeepLabV3+ | R-50b-D8 | 769x769 | 80000 | 8.4 | 1.72 | V100 | 79.41 | 80.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_769x769_80k_cityscapes/deeplabv3plus_r50b-d8_769x769_80k_cityscapes_20201225_224655-8b596d1c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_769x769_80k_cityscapes/deeplabv3plus_r50b-d8_769x769_80k_cityscapes-20201225_224655.log.json) |
+| DeepLabV3+ | R-101b-D8 | 769x769 | 80000 | 12.3 | 1.10 | V100 | 79.88 | 81.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_769x769_80k_cityscapes/deeplabv3plus_r101b-d8_769x769_80k_cityscapes_20201226_205041-227cdf7c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_769x769_80k_cityscapes/deeplabv3plus_r101b-d8_769x769_80k_cityscapes-20201226_205041.log.json) |
\[1\] The training of the model is sensitive to random seed, and the seed to train it is 1111.
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| DeepLabV3+ | R-50-D8 | 512x512 | 80000 | 10.6 | 21.01 | V100 | 42.72 | 43.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_ade20k/deeplabv3plus_r50-d8_512x512_80k_ade20k_20200614_185028-bf1400d8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_ade20k/deeplabv3plus_r50-d8_512x512_80k_ade20k_20200614_185028.log.json) |
-| DeepLabV3+ | R-101-D8 | 512x512 | 80000 | 14.1 | 14.16 | V100 | 44.60 | 46.06 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_ade20k/deeplabv3plus_r101-d8_512x512_80k_ade20k_20200615_014139-d5730af7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_ade20k/deeplabv3plus_r101-d8_512x512_80k_ade20k_20200615_014139.log.json) |
-| DeepLabV3+ | R-50-D8 | 512x512 | 160000 | - | - | V100 | 43.95 | 44.93 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_160k_ade20k/deeplabv3plus_r50-d8_512x512_160k_ade20k_20200615_124504-6135c7e0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_160k_ade20k/deeplabv3plus_r50-d8_512x512_160k_ade20k_20200615_124504.log.json) |
-| DeepLabV3+ | R-101-D8 | 512x512 | 160000 | - | - | V100 | 45.47 | 46.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| DeepLabV3+ | R-50-D8 | 512x512 | 80000 | 10.6 | 21.01 | V100 | 42.72 | 43.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_ade20k/deeplabv3plus_r50-d8_512x512_80k_ade20k_20200614_185028-bf1400d8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_ade20k/deeplabv3plus_r50-d8_512x512_80k_ade20k_20200614_185028.log.json) |
+| DeepLabV3+ | R-101-D8 | 512x512 | 80000 | 14.1 | 14.16 | V100 | 44.60 | 46.06 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_ade20k/deeplabv3plus_r101-d8_512x512_80k_ade20k_20200615_014139-d5730af7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_ade20k/deeplabv3plus_r101-d8_512x512_80k_ade20k_20200615_014139.log.json) |
+| DeepLabV3+ | R-50-D8 | 512x512 | 160000 | - | - | V100 | 43.95 | 44.93 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_160k_ade20k/deeplabv3plus_r50-d8_512x512_160k_ade20k_20200615_124504-6135c7e0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_160k_ade20k/deeplabv3plus_r50-d8_512x512_160k_ade20k_20200615_124504.log.json) |
+| DeepLabV3+ | R-101-D8 | 512x512 | 160000 | - | - | V100 | 45.47 | 46.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232.log.json) |
### Pascal VOC 2012 + Aug
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| DeepLabV3+ | R-50-D8 | 512x512 | 20000 | 7.6 | 21 | V100 | 75.93 | 77.50 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_20k_voc12aug/deeplabv3plus_r50-d8_512x512_20k_voc12aug_20200617_102323-aad58ef1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_20k_voc12aug/deeplabv3plus_r50-d8_512x512_20k_voc12aug_20200617_102323.log.json) |
-| DeepLabV3+ | R-101-D8 | 512x512 | 20000 | 11 | 13.88 | V100 | 77.22 | 78.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_20k_voc12aug/deeplabv3plus_r101-d8_512x512_20k_voc12aug_20200617_102345-c7ff3d56.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_20k_voc12aug/deeplabv3plus_r101-d8_512x512_20k_voc12aug_20200617_102345.log.json) |
-| DeepLabV3+ | R-50-D8 | 512x512 | 40000 | - | - | V100 | 76.81 | 77.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_40k_voc12aug/deeplabv3plus_r50-d8_512x512_40k_voc12aug_20200613_161759-e1b43aa9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_40k_voc12aug/deeplabv3plus_r50-d8_512x512_40k_voc12aug_20200613_161759.log.json) |
-| DeepLabV3+ | R-101-D8 | 512x512 | 40000 | - | - | V100 | 78.62 | 79.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_40k_voc12aug/deeplabv3plus_r101-d8_512x512_40k_voc12aug_20200613_205333-faf03387.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_40k_voc12aug/deeplabv3plus_r101-d8_512x512_40k_voc12aug_20200613_205333.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| DeepLabV3+ | R-50-D8 | 512x512 | 20000 | 7.6 | 21 | V100 | 75.93 | 77.50 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_20k_voc12aug/deeplabv3plus_r50-d8_512x512_20k_voc12aug_20200617_102323-aad58ef1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_20k_voc12aug/deeplabv3plus_r50-d8_512x512_20k_voc12aug_20200617_102323.log.json) |
+| DeepLabV3+ | R-101-D8 | 512x512 | 20000 | 11 | 13.88 | V100 | 77.22 | 78.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_20k_voc12aug/deeplabv3plus_r101-d8_512x512_20k_voc12aug_20200617_102345-c7ff3d56.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_20k_voc12aug/deeplabv3plus_r101-d8_512x512_20k_voc12aug_20200617_102345.log.json) |
+| DeepLabV3+ | R-50-D8 | 512x512 | 40000 | - | - | V100 | 76.81 | 77.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_40k_voc12aug/deeplabv3plus_r50-d8_512x512_40k_voc12aug_20200613_161759-e1b43aa9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_40k_voc12aug/deeplabv3plus_r50-d8_512x512_40k_voc12aug_20200613_161759.log.json) |
+| DeepLabV3+ | R-101-D8 | 512x512 | 40000 | - | - | V100 | 78.62 | 79.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_40k_voc12aug/deeplabv3plus_r101-d8_512x512_40k_voc12aug_20200613_205333-faf03387.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_40k_voc12aug/deeplabv3plus_r101-d8_512x512_40k_voc12aug_20200613_205333.log.json) |
### Pascal Context
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| DeepLabV3+ | R-101-D8 | 480x480 | 40000 | - | 9.09 | V100 | 47.30 | 48.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-40k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context/deeplabv3plus_r101-d8_480x480_40k_pascal_context_20200911_165459-d3c8a29e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context/deeplabv3plus_r101-d8_480x480_40k_pascal_context-20200911_165459.log.json) |
-| DeepLabV3+ | R-101-D8 | 480x480 | 80000 | - | - | V100 | 47.23 | 48.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context/deeplabv3plus_r101-d8_480x480_80k_pascal_context_20200911_155322-145d3ee8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context/deeplabv3plus_r101-d8_480x480_80k_pascal_context-20200911_155322.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| DeepLabV3+ | R-101-D8 | 480x480 | 40000 | - | 9.09 | V100 | 47.30 | 48.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-40k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context/deeplabv3plus_r101-d8_480x480_40k_pascal_context_20200911_165459-d3c8a29e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context/deeplabv3plus_r101-d8_480x480_40k_pascal_context-20200911_165459.log.json) |
+| DeepLabV3+ | R-101-D8 | 480x480 | 80000 | - | - | V100 | 47.23 | 48.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context/deeplabv3plus_r101-d8_480x480_80k_pascal_context_20200911_155322-145d3ee8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context/deeplabv3plus_r101-d8_480x480_80k_pascal_context-20200911_155322.log.json) |
### Pascal Context 59
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| DeepLabV3+ | R-101-D8 | 480x480 | 40000 | - | - | V100 | 52.86 | 54.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-40k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59_20210416_111233-ed937f15.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59-20210416_111233.log.json) |
-| DeepLabV3+ | R-101-D8 | 480x480 | 80000 | - | - | V100 | 53.2 | 54.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59_20210416_111127-7ca0331d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59-20210416_111127.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| DeepLabV3+ | R-101-D8 | 480x480 | 40000 | - | - | V100 | 52.86 | 54.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-40k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59_20210416_111233-ed937f15.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59-20210416_111233.log.json) |
+| DeepLabV3+ | R-101-D8 | 480x480 | 80000 | - | - | V100 | 53.2 | 54.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59_20210416_111127-7ca0331d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59-20210416_111127.log.json) |
### LoveDA
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| DeepLabV3+ | R-18-D8 | 512x512 | 80000 | 1.93 | 25.57 | V100 | 50.28 | 50.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda/deeplabv3plus_r18-d8_512x512_80k_loveda_20211104_132800-ce0fa0ca.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda/deeplabv3plus_r18-d8_512x512_80k_loveda_20211104_132800.log.json) |
-| DeepLabV3+ | R-50-D8 | 512x512 | 80000 | 7.37 | 6.00 | V100 | 50.99 | 50.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_loveda/deeplabv3plus_r50-d8_512x512_80k_loveda_20211105_080442-f0720392.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_loveda/deeplabv3plus_r50-d8_512x512_80k_loveda_20211105_080442.log.json) |
-| DeepLabV3+ | R-101-D8 | 512x512 | 80000 | 10.84 | 4.33 | V100 | 51.47 | 51.32 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_loveda/deeplabv3plus_r101-d8_512x512_80k_loveda_20211105_110759-4c1f297e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_loveda/deeplabv3plus_r101-d8_512x512_80k_loveda_20211105_110759.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| DeepLabV3+ | R-18-D8 | 512x512 | 80000 | 1.93 | 25.57 | V100 | 50.28 | 50.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda/deeplabv3plus_r18-d8_512x512_80k_loveda_20211104_132800-ce0fa0ca.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda/deeplabv3plus_r18-d8_512x512_80k_loveda_20211104_132800.log.json) |
+| DeepLabV3+ | R-50-D8 | 512x512 | 80000 | 7.37 | 6.00 | V100 | 50.99 | 50.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_loveda/deeplabv3plus_r50-d8_512x512_80k_loveda_20211105_080442-f0720392.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_loveda/deeplabv3plus_r50-d8_512x512_80k_loveda_20211105_080442.log.json) |
+| DeepLabV3+ | R-101-D8 | 512x512 | 80000 | 10.84 | 4.33 | V100 | 51.47 | 51.32 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_loveda/deeplabv3plus_r101-d8_512x512_80k_loveda_20211105_110759-4c1f297e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_loveda/deeplabv3plus_r101-d8_512x512_80k_loveda_20211105_110759.log.json) |
### Potsdam
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| DeepLabV3+ | R-18-D8 | 512x512 | 80000 | 1.91 | 81.68 | V100 | 77.09 | 78.44 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_potsdam/deeplabv3plus_r18-d8_512x512_80k_potsdam_20211219_020601-75fd5bc3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_potsdam/deeplabv3plus_r18-d8_512x512_80k_potsdam_20211219_020601.log.json) |
-| DeepLabV3+ | R-50-D8 | 512x512 | 80000 | 7.36 | 26.44 | V100 | 78.33 | 79.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_potsdam/deeplabv3plus_r50-d8_512x512_80k_potsdam_20211219_031508-7e7a2b24.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_potsdam/deeplabv3plus_r50-d8_512x512_80k_potsdam_20211219_031508.log.json) |
-| DeepLabV3+ | R-101-D8 | 512x512 | 80000 | 10.83 | 17.56 | V100 | 78.7 | 79.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_potsdam/deeplabv3plus_r101-d8_512x512_80k_potsdam_20211219_031508-8b112708.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_potsdam/deeplabv3plus_r101-d8_512x512_80k_potsdam_20211219_031508.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| DeepLabV3+ | R-18-D8 | 512x512 | 80000 | 1.91 | 81.68 | V100 | 77.09 | 78.44 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_potsdam/deeplabv3plus_r18-d8_512x512_80k_potsdam_20211219_020601-75fd5bc3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_potsdam/deeplabv3plus_r18-d8_512x512_80k_potsdam_20211219_020601.log.json) |
+| DeepLabV3+ | R-50-D8 | 512x512 | 80000 | 7.36 | 26.44 | V100 | 78.33 | 79.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_potsdam/deeplabv3plus_r50-d8_512x512_80k_potsdam_20211219_031508-7e7a2b24.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_potsdam/deeplabv3plus_r50-d8_512x512_80k_potsdam_20211219_031508.log.json) |
+| DeepLabV3+ | R-101-D8 | 512x512 | 80000 | 10.83 | 17.56 | V100 | 78.7 | 79.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_potsdam/deeplabv3plus_r101-d8_512x512_80k_potsdam_20211219_031508-8b112708.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_potsdam/deeplabv3plus_r101-d8_512x512_80k_potsdam_20211219_031508.log.json) |
### Vaihingen
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| DeepLabV3+ | R-18-D8 | 512x512 | 80000 | 1.91 | 72.79 | V100 | 72.50 | 74.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r18-d8_4x4_512x512_80k_vaihingen_20211231_230805-7626a263.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r18-d8_4x4_512x512_80k_vaihingen_20211231_230805.log.json) |
-| DeepLabV3+ | R-50-D8 | 512x512 | 80000 | 7.36 | 26.91 | V100 | 73.97 | 75.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen_20211231_230816-5040938d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen_20211231_230816.log.json) |
-| DeepLabV3+ | R-101-D8 | 512x512 | 80000 | 10.83 | 18.59 | V100 | 73.06 | 74.14 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen_20211231_230816-8a095afa.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen_20211231_230816.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| DeepLabV3+ | R-18-D8 | 512x512 | 80000 | 1.91 | 72.79 | V100 | 72.50 | 74.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r18-d8_4x4_512x512_80k_vaihingen_20211231_230805-7626a263.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r18-d8_4x4_512x512_80k_vaihingen_20211231_230805.log.json) |
+| DeepLabV3+ | R-50-D8 | 512x512 | 80000 | 7.36 | 26.91 | V100 | 73.97 | 75.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen_20211231_230816-5040938d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen_20211231_230816.log.json) |
+| DeepLabV3+ | R-101-D8 | 512x512 | 80000 | 10.83 | 18.59 | V100 | 73.06 | 74.14 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen_20211231_230816-8a095afa.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen_20211231_230816.log.json) |
### iSAID
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| DeepLabV3+ | R-18-D8 | 896x896 | 80000 | 6.19 | 24.81 | V100 | 61.35 | 62.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid_20220110_180526-7059991d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid_20220110_180526.log.json) |
-| DeepLabV3+ | R-50-D8 | 896x896 | 80000 | 21.45 | 8.42 | V100 | 67.06 | 68.02 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid_20220110_180526-598be439.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid_20220110_180526.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| DeepLabV3+ | R-18-D8 | 896x896 | 80000 | 6.19 | 24.81 | V100 | 61.35 | 62.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid_20220110_180526-7059991d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid_20220110_180526.log.json) |
+| DeepLabV3+ | R-50-D8 | 896x896 | 80000 | 21.45 | 8.42 | V100 | 67.06 | 68.02 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid_20220110_180526-598be439.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid_20220110_180526.log.json) |
### Mapillary Vistas v1.2
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| DeepLabV3+ | R-50-D8 | 1280x1280 | 300000 | 24.04 | 17.92 | A100 | 47.35 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-300k_mapillay_v1_65-1280x1280.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-300k_mapillay_v1_65-1280x1280/deeplabv3plus_r50-d8_4xb2-300k_mapillay_v1_65-1280x1280_20230301_110504-655f8e43.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-300k_mapillay_v1_65-1280x1280/deeplabv3plus_r50-d8_4xb2-300k_mapillay_v1_65-1280x1280_20230301_110504.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| DeepLabV3+ | R-50-D8 | 1280x1280 | 300000 | 24.04 | 17.92 | A100 | 47.35 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-300k_mapillay_v1_65-1280x1280.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-300k_mapillay_v1_65-1280x1280/deeplabv3plus_r50-d8_4xb2-300k_mapillay_v1_65-1280x1280_20230301_110504-655f8e43.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-300k_mapillay_v1_65-1280x1280/deeplabv3plus_r50-d8_4xb2-300k_mapillay_v1_65-1280x1280_20230301_110504.json) |
Note:
diff --git a/configs/dmnet/README.md b/configs/dmnet/README.md
index 6004c06ccb..b0cf94455e 100644
--- a/configs/dmnet/README.md
+++ b/configs/dmnet/README.md
@@ -26,25 +26,25 @@ Multi-scale representation provides an effective way toaddress scale variation o
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| DMNet | R-50-D8 | 512x1024 | 40000 | 7.0 | 3.66 | V100 | 77.78 | 79.14 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_40k_cityscapes/dmnet_r50-d8_512x1024_40k_cityscapes_20201215_042326-615373cf.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_40k_cityscapes/dmnet_r50-d8_512x1024_40k_cityscapes-20201215_042326.log.json) |
-| DMNet | R-101-D8 | 512x1024 | 40000 | 10.6 | 2.54 | V100 | 78.37 | 79.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_40k_cityscapes/dmnet_r101-d8_512x1024_40k_cityscapes_20201215_043100-8291e976.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_40k_cityscapes/dmnet_r101-d8_512x1024_40k_cityscapes-20201215_043100.log.json) |
-| DMNet | R-50-D8 | 769x769 | 40000 | 7.9 | 1.57 | V100 | 78.49 | 80.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_40k_cityscapes/dmnet_r50-d8_769x769_40k_cityscapes_20201215_093706-e7f0e23e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_40k_cityscapes/dmnet_r50-d8_769x769_40k_cityscapes-20201215_093706.log.json) |
-| DMNet | R-101-D8 | 769x769 | 40000 | 12.0 | 1.01 | V100 | 77.62 | 78.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_40k_cityscapes/dmnet_r101-d8_769x769_40k_cityscapes_20201215_081348-a74261f6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_40k_cityscapes/dmnet_r101-d8_769x769_40k_cityscapes-20201215_081348.log.json) |
-| DMNet | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 79.07 | 80.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_80k_cityscapes/dmnet_r50-d8_512x1024_80k_cityscapes_20201215_053728-3c8893b9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_80k_cityscapes/dmnet_r50-d8_512x1024_80k_cityscapes-20201215_053728.log.json) |
-| DMNet | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 79.64 | 80.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_80k_cityscapes/dmnet_r101-d8_512x1024_80k_cityscapes_20201215_031718-fa081cb8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_80k_cityscapes/dmnet_r101-d8_512x1024_80k_cityscapes-20201215_031718.log.json) |
-| DMNet | R-50-D8 | 769x769 | 80000 | - | - | V100 | 79.22 | 80.55 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_80k_cityscapes/dmnet_r50-d8_769x769_80k_cityscapes_20201215_034006-6060840e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_80k_cityscapes/dmnet_r50-d8_769x769_80k_cityscapes-20201215_034006.log.json) |
-| DMNet | R-101-D8 | 769x769 | 80000 | - | - | V100 | 79.19 | 80.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_80k_cityscapes/dmnet_r101-d8_769x769_80k_cityscapes_20201215_082810-7f0de59a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_80k_cityscapes/dmnet_r101-d8_769x769_80k_cityscapes-20201215_082810.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| DMNet | R-50-D8 | 512x1024 | 40000 | 7.0 | 3.66 | V100 | 77.78 | 79.14 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/dmnet/dmnet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_40k_cityscapes/dmnet_r50-d8_512x1024_40k_cityscapes_20201215_042326-615373cf.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_40k_cityscapes/dmnet_r50-d8_512x1024_40k_cityscapes-20201215_042326.log.json) |
+| DMNet | R-101-D8 | 512x1024 | 40000 | 10.6 | 2.54 | V100 | 78.37 | 79.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/dmnet/dmnet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_40k_cityscapes/dmnet_r101-d8_512x1024_40k_cityscapes_20201215_043100-8291e976.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_40k_cityscapes/dmnet_r101-d8_512x1024_40k_cityscapes-20201215_043100.log.json) |
+| DMNet | R-50-D8 | 769x769 | 40000 | 7.9 | 1.57 | V100 | 78.49 | 80.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/dmnet/dmnet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_40k_cityscapes/dmnet_r50-d8_769x769_40k_cityscapes_20201215_093706-e7f0e23e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_40k_cityscapes/dmnet_r50-d8_769x769_40k_cityscapes-20201215_093706.log.json) |
+| DMNet | R-101-D8 | 769x769 | 40000 | 12.0 | 1.01 | V100 | 77.62 | 78.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/dmnet/dmnet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_40k_cityscapes/dmnet_r101-d8_769x769_40k_cityscapes_20201215_081348-a74261f6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_40k_cityscapes/dmnet_r101-d8_769x769_40k_cityscapes-20201215_081348.log.json) |
+| DMNet | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 79.07 | 80.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/dmnet/dmnet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_80k_cityscapes/dmnet_r50-d8_512x1024_80k_cityscapes_20201215_053728-3c8893b9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_80k_cityscapes/dmnet_r50-d8_512x1024_80k_cityscapes-20201215_053728.log.json) |
+| DMNet | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 79.64 | 80.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/dmnet/dmnet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_80k_cityscapes/dmnet_r101-d8_512x1024_80k_cityscapes_20201215_031718-fa081cb8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_80k_cityscapes/dmnet_r101-d8_512x1024_80k_cityscapes-20201215_031718.log.json) |
+| DMNet | R-50-D8 | 769x769 | 80000 | - | - | V100 | 79.22 | 80.55 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/dmnet/dmnet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_80k_cityscapes/dmnet_r50-d8_769x769_80k_cityscapes_20201215_034006-6060840e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_80k_cityscapes/dmnet_r50-d8_769x769_80k_cityscapes-20201215_034006.log.json) |
+| DMNet | R-101-D8 | 769x769 | 80000 | - | - | V100 | 79.19 | 80.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/dmnet/dmnet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_80k_cityscapes/dmnet_r101-d8_769x769_80k_cityscapes_20201215_082810-7f0de59a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_80k_cityscapes/dmnet_r101-d8_769x769_80k_cityscapes-20201215_082810.log.json) |
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| DMNet | R-50-D8 | 512x512 | 80000 | 9.4 | 20.95 | V100 | 42.37 | 43.62 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_80k_ade20k/dmnet_r50-d8_512x512_80k_ade20k_20201215_144744-f89092a6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_80k_ade20k/dmnet_r50-d8_512x512_80k_ade20k-20201215_144744.log.json) |
-| DMNet | R-101-D8 | 512x512 | 80000 | 13.0 | 13.88 | V100 | 45.34 | 46.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_80k_ade20k/dmnet_r101-d8_512x512_80k_ade20k_20201215_104812-bfa45311.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_80k_ade20k/dmnet_r101-d8_512x512_80k_ade20k-20201215_104812.log.json) |
-| DMNet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 43.15 | 44.17 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_160k_ade20k/dmnet_r50-d8_512x512_160k_ade20k_20201215_115313-025ab3f9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_160k_ade20k/dmnet_r50-d8_512x512_160k_ade20k-20201215_115313.log.json) |
-| DMNet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 45.42 | 46.76 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dmnet/dmnet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_160k_ade20k/dmnet_r101-d8_512x512_160k_ade20k_20201215_111145-a0bc02ef.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_160k_ade20k/dmnet_r101-d8_512x512_160k_ade20k-20201215_111145.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| DMNet | R-50-D8 | 512x512 | 80000 | 9.4 | 20.95 | V100 | 42.37 | 43.62 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/dmnet/dmnet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_80k_ade20k/dmnet_r50-d8_512x512_80k_ade20k_20201215_144744-f89092a6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_80k_ade20k/dmnet_r50-d8_512x512_80k_ade20k-20201215_144744.log.json) |
+| DMNet | R-101-D8 | 512x512 | 80000 | 13.0 | 13.88 | V100 | 45.34 | 46.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/dmnet/dmnet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_80k_ade20k/dmnet_r101-d8_512x512_80k_ade20k_20201215_104812-bfa45311.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_80k_ade20k/dmnet_r101-d8_512x512_80k_ade20k-20201215_104812.log.json) |
+| DMNet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 43.15 | 44.17 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/dmnet/dmnet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_160k_ade20k/dmnet_r50-d8_512x512_160k_ade20k_20201215_115313-025ab3f9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_160k_ade20k/dmnet_r50-d8_512x512_160k_ade20k-20201215_115313.log.json) |
+| DMNet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 45.42 | 46.76 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/dmnet/dmnet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_160k_ade20k/dmnet_r101-d8_512x512_160k_ade20k_20201215_111145-a0bc02ef.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_160k_ade20k/dmnet_r101-d8_512x512_160k_ade20k-20201215_111145.log.json) |
## Citation
diff --git a/configs/dnlnet/README.md b/configs/dnlnet/README.md
index 12338c730c..6835ffd1ed 100644
--- a/configs/dnlnet/README.md
+++ b/configs/dnlnet/README.md
@@ -26,25 +26,25 @@ The non-local block is a popular module for strengthening the context modeling a
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | ------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| DNLNet | R-50-D8 | 512x1024 | 40000 | 7.3 | 2.56 | V100 | 78.61 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_40k_cityscapes/dnl_r50-d8_512x1024_40k_cityscapes_20200904_233629-53d4ea93.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_40k_cityscapes/dnl_r50-d8_512x1024_40k_cityscapes-20200904_233629.log.json) |
-| DNLNet | R-101-D8 | 512x1024 | 40000 | 10.9 | 1.96 | V100 | 78.31 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_40k_cityscapes/dnl_r101-d8_512x1024_40k_cityscapes_20200904_233629-9928ffef.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_40k_cityscapes/dnl_r101-d8_512x1024_40k_cityscapes-20200904_233629.log.json) |
-| DNLNet | R-50-D8 | 769x769 | 40000 | 9.2 | 1.50 | V100 | 78.44 | 80.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_40k_cityscapes/dnl_r50-d8_769x769_40k_cityscapes_20200820_232206-0f283785.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_40k_cityscapes/dnl_r50-d8_769x769_40k_cityscapes-20200820_232206.log.json) |
-| DNLNet | R-101-D8 | 769x769 | 40000 | 12.6 | 1.02 | V100 | 76.39 | 77.77 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_40k_cityscapes/dnl_r101-d8_769x769_40k_cityscapes_20200820_171256-76c596df.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_40k_cityscapes/dnl_r101-d8_769x769_40k_cityscapes-20200820_171256.log.json) |
-| DNLNet | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 79.33 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_80k_cityscapes/dnl_r50-d8_512x1024_80k_cityscapes_20200904_233629-58b2f778.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_80k_cityscapes/dnl_r50-d8_512x1024_80k_cityscapes-20200904_233629.log.json) |
-| DNLNet | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 80.41 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_80k_cityscapes/dnl_r101-d8_512x1024_80k_cityscapes_20200904_233629-758e2dd4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_80k_cityscapes/dnl_r101-d8_512x1024_80k_cityscapes-20200904_233629.log.json) |
-| DNLNet | R-50-D8 | 769x769 | 80000 | - | - | V100 | 79.36 | 80.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_80k_cityscapes/dnl_r50-d8_769x769_80k_cityscapes_20200820_011925-366bc4c7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_80k_cityscapes/dnl_r50-d8_769x769_80k_cityscapes-20200820_011925.log.json) |
-| DNLNet | R-101-D8 | 769x769 | 80000 | - | - | V100 | 79.41 | 80.68 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_80k_cityscapes/dnl_r101-d8_769x769_80k_cityscapes_20200821_051111-95ff84ab.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_80k_cityscapes/dnl_r101-d8_769x769_80k_cityscapes-20200821_051111.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | --------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| DNLNet | R-50-D8 | 512x1024 | 40000 | 7.3 | 2.56 | V100 | 78.61 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/dnlnet/dnl_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_40k_cityscapes/dnl_r50-d8_512x1024_40k_cityscapes_20200904_233629-53d4ea93.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_40k_cityscapes/dnl_r50-d8_512x1024_40k_cityscapes-20200904_233629.log.json) |
+| DNLNet | R-101-D8 | 512x1024 | 40000 | 10.9 | 1.96 | V100 | 78.31 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/dnlnet/dnl_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_40k_cityscapes/dnl_r101-d8_512x1024_40k_cityscapes_20200904_233629-9928ffef.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_40k_cityscapes/dnl_r101-d8_512x1024_40k_cityscapes-20200904_233629.log.json) |
+| DNLNet | R-50-D8 | 769x769 | 40000 | 9.2 | 1.50 | V100 | 78.44 | 80.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/dnlnet/dnl_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_40k_cityscapes/dnl_r50-d8_769x769_40k_cityscapes_20200820_232206-0f283785.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_40k_cityscapes/dnl_r50-d8_769x769_40k_cityscapes-20200820_232206.log.json) |
+| DNLNet | R-101-D8 | 769x769 | 40000 | 12.6 | 1.02 | V100 | 76.39 | 77.77 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/dnlnet/dnl_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_40k_cityscapes/dnl_r101-d8_769x769_40k_cityscapes_20200820_171256-76c596df.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_40k_cityscapes/dnl_r101-d8_769x769_40k_cityscapes-20200820_171256.log.json) |
+| DNLNet | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 79.33 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/dnlnet/dnl_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_80k_cityscapes/dnl_r50-d8_512x1024_80k_cityscapes_20200904_233629-58b2f778.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_80k_cityscapes/dnl_r50-d8_512x1024_80k_cityscapes-20200904_233629.log.json) |
+| DNLNet | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 80.41 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/dnlnet/dnl_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_80k_cityscapes/dnl_r101-d8_512x1024_80k_cityscapes_20200904_233629-758e2dd4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_80k_cityscapes/dnl_r101-d8_512x1024_80k_cityscapes-20200904_233629.log.json) |
+| DNLNet | R-50-D8 | 769x769 | 80000 | - | - | V100 | 79.36 | 80.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/dnlnet/dnl_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_80k_cityscapes/dnl_r50-d8_769x769_80k_cityscapes_20200820_011925-366bc4c7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_80k_cityscapes/dnl_r50-d8_769x769_80k_cityscapes-20200820_011925.log.json) |
+| DNLNet | R-101-D8 | 769x769 | 80000 | - | - | V100 | 79.41 | 80.68 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/dnlnet/dnl_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_80k_cityscapes/dnl_r101-d8_769x769_80k_cityscapes_20200821_051111-95ff84ab.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_80k_cityscapes/dnl_r101-d8_769x769_80k_cityscapes-20200821_051111.log.json) |
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | -------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| DNLNet | R-50-D8 | 512x512 | 80000 | 8.8 | 20.66 | V100 | 41.76 | 42.99 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_80k_ade20k/dnl_r50-d8_512x512_80k_ade20k_20200826_183354-1cf6e0c1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_80k_ade20k/dnl_r50-d8_512x512_80k_ade20k-20200826_183354.log.json) |
-| DNLNet | R-101-D8 | 512x512 | 80000 | 12.8 | 12.54 | V100 | 43.76 | 44.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_80k_ade20k/dnl_r101-d8_512x512_80k_ade20k_20200826_183354-d820d6ea.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_80k_ade20k/dnl_r101-d8_512x512_80k_ade20k-20200826_183354.log.json) |
-| DNLNet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 41.87 | 43.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_160k_ade20k/dnl_r50-d8_512x512_160k_ade20k_20200826_183350-37837798.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_160k_ade20k/dnl_r50-d8_512x512_160k_ade20k-20200826_183350.log.json) |
-| DNLNet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 44.25 | 45.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dnlnet/dnl_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_160k_ade20k/dnl_r101-d8_512x512_160k_ade20k_20200826_183350-ed522c61.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_160k_ade20k/dnl_r101-d8_512x512_160k_ade20k-20200826_183350.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | ----------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| DNLNet | R-50-D8 | 512x512 | 80000 | 8.8 | 20.66 | V100 | 41.76 | 42.99 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/dnlnet/dnl_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_80k_ade20k/dnl_r50-d8_512x512_80k_ade20k_20200826_183354-1cf6e0c1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_80k_ade20k/dnl_r50-d8_512x512_80k_ade20k-20200826_183354.log.json) |
+| DNLNet | R-101-D8 | 512x512 | 80000 | 12.8 | 12.54 | V100 | 43.76 | 44.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/dnlnet/dnl_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_80k_ade20k/dnl_r101-d8_512x512_80k_ade20k_20200826_183354-d820d6ea.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_80k_ade20k/dnl_r101-d8_512x512_80k_ade20k-20200826_183354.log.json) |
+| DNLNet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 41.87 | 43.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/dnlnet/dnl_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_160k_ade20k/dnl_r50-d8_512x512_160k_ade20k_20200826_183350-37837798.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_160k_ade20k/dnl_r50-d8_512x512_160k_ade20k-20200826_183350.log.json) |
+| DNLNet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 44.25 | 45.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/dnlnet/dnl_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_160k_ade20k/dnl_r101-d8_512x512_160k_ade20k_20200826_183350-ed522c61.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_160k_ade20k/dnl_r101-d8_512x512_160k_ade20k-20200826_183350.log.json) |
## Notes
diff --git a/configs/dpt/README.md b/configs/dpt/README.md
index 432d1dd226..b3a5573a65 100644
--- a/configs/dpt/README.md
+++ b/configs/dpt/README.md
@@ -44,9 +44,9 @@ This script convert model from `PRETRAIN_PATH` and store the converted model in
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| DPT | ViT-B | 512x512 | 160000 | 8.09 | 10.41 | V100 | 46.97 | 48.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/dpt/dpt_vit-b16_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dpt/dpt_vit-b16_512x512_160k_ade20k/dpt_vit-b16_512x512_160k_ade20k-db31cf52.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dpt/dpt_vit-b16_512x512_160k_ade20k/dpt_vit-b16_512x512_160k_ade20k-20210809_172025.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| DPT | ViT-B | 512x512 | 160000 | 8.09 | 10.41 | V100 | 46.97 | 48.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/dpt/dpt_vit-b16_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dpt/dpt_vit-b16_512x512_160k_ade20k/dpt_vit-b16_512x512_160k_ade20k-db31cf52.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/dpt/dpt_vit-b16_512x512_160k_ade20k/dpt_vit-b16_512x512_160k_ade20k-20210809_172025.log.json) |
## Citation
diff --git a/configs/encnet/README.md b/configs/encnet/README.md
index 31bbd98c6b..ff09bc32f8 100644
--- a/configs/encnet/README.md
+++ b/configs/encnet/README.md
@@ -26,25 +26,25 @@ Recent work has made significant progress in improving spatial resolution for pi
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| EncNet | R-50-D8 | 512x1024 | 40000 | 8.6 | 4.58 | V100 | 75.67 | 77.08 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_40k_cityscapes/encnet_r50-d8_512x1024_40k_cityscapes_20200621_220958-68638a47.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_40k_cityscapes/encnet_r50-d8_512x1024_40k_cityscapes-20200621_220958.log.json) |
-| EncNet | R-101-D8 | 512x1024 | 40000 | 12.1 | 2.66 | V100 | 75.81 | 77.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_40k_cityscapes/encnet_r101-d8_512x1024_40k_cityscapes_20200621_220933-35e0a3e8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_40k_cityscapes/encnet_r101-d8_512x1024_40k_cityscapes-20200621_220933.log.json) |
-| EncNet | R-50-D8 | 769x769 | 40000 | 9.8 | 1.82 | V100 | 76.24 | 77.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_40k_cityscapes/encnet_r50-d8_769x769_40k_cityscapes_20200621_220958-3bcd2884.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_40k_cityscapes/encnet_r50-d8_769x769_40k_cityscapes-20200621_220958.log.json) |
-| EncNet | R-101-D8 | 769x769 | 40000 | 13.7 | 1.26 | V100 | 74.25 | 76.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_40k_cityscapes/encnet_r101-d8_769x769_40k_cityscapes_20200621_220933-2fafed55.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_40k_cityscapes/encnet_r101-d8_769x769_40k_cityscapes-20200621_220933.log.json) |
-| EncNet | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 77.94 | 79.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_80k_cityscapes/encnet_r50-d8_512x1024_80k_cityscapes_20200622_003554-fc5c5624.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_80k_cityscapes/encnet_r50-d8_512x1024_80k_cityscapes-20200622_003554.log.json) |
-| EncNet | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 78.55 | 79.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_80k_cityscapes/encnet_r101-d8_512x1024_80k_cityscapes_20200622_003555-1de64bec.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_80k_cityscapes/encnet_r101-d8_512x1024_80k_cityscapes-20200622_003555.log.json) |
-| EncNet | R-50-D8 | 769x769 | 80000 | - | - | V100 | 77.44 | 78.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_80k_cityscapes/encnet_r50-d8_769x769_80k_cityscapes_20200622_003554-55096dcb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_80k_cityscapes/encnet_r50-d8_769x769_80k_cityscapes-20200622_003554.log.json) |
-| EncNet | R-101-D8 | 769x769 | 80000 | - | - | V100 | 76.10 | 76.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_80k_cityscapes/encnet_r101-d8_769x769_80k_cityscapes_20200622_003555-470ef79d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_80k_cityscapes/encnet_r101-d8_769x769_80k_cityscapes-20200622_003555.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| EncNet | R-50-D8 | 512x1024 | 40000 | 8.6 | 4.58 | V100 | 75.67 | 77.08 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/encnet/encnet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_40k_cityscapes/encnet_r50-d8_512x1024_40k_cityscapes_20200621_220958-68638a47.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_40k_cityscapes/encnet_r50-d8_512x1024_40k_cityscapes-20200621_220958.log.json) |
+| EncNet | R-101-D8 | 512x1024 | 40000 | 12.1 | 2.66 | V100 | 75.81 | 77.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/encnet/encnet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_40k_cityscapes/encnet_r101-d8_512x1024_40k_cityscapes_20200621_220933-35e0a3e8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_40k_cityscapes/encnet_r101-d8_512x1024_40k_cityscapes-20200621_220933.log.json) |
+| EncNet | R-50-D8 | 769x769 | 40000 | 9.8 | 1.82 | V100 | 76.24 | 77.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/encnet/encnet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_40k_cityscapes/encnet_r50-d8_769x769_40k_cityscapes_20200621_220958-3bcd2884.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_40k_cityscapes/encnet_r50-d8_769x769_40k_cityscapes-20200621_220958.log.json) |
+| EncNet | R-101-D8 | 769x769 | 40000 | 13.7 | 1.26 | V100 | 74.25 | 76.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/encnet/encnet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_40k_cityscapes/encnet_r101-d8_769x769_40k_cityscapes_20200621_220933-2fafed55.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_40k_cityscapes/encnet_r101-d8_769x769_40k_cityscapes-20200621_220933.log.json) |
+| EncNet | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 77.94 | 79.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/encnet/encnet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_80k_cityscapes/encnet_r50-d8_512x1024_80k_cityscapes_20200622_003554-fc5c5624.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_80k_cityscapes/encnet_r50-d8_512x1024_80k_cityscapes-20200622_003554.log.json) |
+| EncNet | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 78.55 | 79.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/encnet/encnet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_80k_cityscapes/encnet_r101-d8_512x1024_80k_cityscapes_20200622_003555-1de64bec.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_80k_cityscapes/encnet_r101-d8_512x1024_80k_cityscapes-20200622_003555.log.json) |
+| EncNet | R-50-D8 | 769x769 | 80000 | - | - | V100 | 77.44 | 78.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/encnet/encnet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_80k_cityscapes/encnet_r50-d8_769x769_80k_cityscapes_20200622_003554-55096dcb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_80k_cityscapes/encnet_r50-d8_769x769_80k_cityscapes-20200622_003554.log.json) |
+| EncNet | R-101-D8 | 769x769 | 80000 | - | - | V100 | 76.10 | 76.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/encnet/encnet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_80k_cityscapes/encnet_r101-d8_769x769_80k_cityscapes_20200622_003555-470ef79d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_80k_cityscapes/encnet_r101-d8_769x769_80k_cityscapes-20200622_003555.log.json) |
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| EncNet | R-50-D8 | 512x512 | 80000 | 10.1 | 22.81 | V100 | 39.53 | 41.17 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_80k_ade20k/encnet_r50-d8_512x512_80k_ade20k_20200622_042412-44b46b04.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_80k_ade20k/encnet_r50-d8_512x512_80k_ade20k-20200622_042412.log.json) |
-| EncNet | R-101-D8 | 512x512 | 80000 | 13.6 | 14.87 | V100 | 42.11 | 43.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_80k_ade20k/encnet_r101-d8_512x512_80k_ade20k_20200622_101128-dd35e237.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_80k_ade20k/encnet_r101-d8_512x512_80k_ade20k-20200622_101128.log.json) |
-| EncNet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 40.10 | 41.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_160k_ade20k/encnet_r50-d8_512x512_160k_ade20k_20200622_101059-b2db95e0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_160k_ade20k/encnet_r50-d8_512x512_160k_ade20k-20200622_101059.log.json) |
-| EncNet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 42.61 | 44.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet/encnet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_160k_ade20k/encnet_r101-d8_512x512_160k_ade20k_20200622_073348-7989641f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_160k_ade20k/encnet_r101-d8_512x512_160k_ade20k-20200622_073348.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| EncNet | R-50-D8 | 512x512 | 80000 | 10.1 | 22.81 | V100 | 39.53 | 41.17 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/encnet/encnet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_80k_ade20k/encnet_r50-d8_512x512_80k_ade20k_20200622_042412-44b46b04.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_80k_ade20k/encnet_r50-d8_512x512_80k_ade20k-20200622_042412.log.json) |
+| EncNet | R-101-D8 | 512x512 | 80000 | 13.6 | 14.87 | V100 | 42.11 | 43.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/encnet/encnet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_80k_ade20k/encnet_r101-d8_512x512_80k_ade20k_20200622_101128-dd35e237.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_80k_ade20k/encnet_r101-d8_512x512_80k_ade20k-20200622_101128.log.json) |
+| EncNet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 40.10 | 41.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/encnet/encnet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_160k_ade20k/encnet_r50-d8_512x512_160k_ade20k_20200622_101059-b2db95e0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_160k_ade20k/encnet_r50-d8_512x512_160k_ade20k-20200622_101059.log.json) |
+| EncNet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 42.61 | 44.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/encnet/encnet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_160k_ade20k/encnet_r101-d8_512x512_160k_ade20k_20200622_073348-7989641f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_160k_ade20k/encnet_r101-d8_512x512_160k_ade20k-20200622_073348.log.json) |
## Citation
diff --git a/configs/erfnet/README.md b/configs/erfnet/README.md
index e29afc485d..55d71973a3 100644
--- a/configs/erfnet/README.md
+++ b/configs/erfnet/README.md
@@ -26,9 +26,9 @@ Semantic segmentation is a challenging task that addresses most of the perceptio
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ---: | ------------- | ------------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| ERFNet | ERFNet | 512x1024 | 160000 | 6.04 | 15.26 | V100 | 72.5 | 74.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/erfnet/erfnet_fcn_4xb4-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/erfnet/erfnet_fcn_4x4_512x1024_160k_cityscapes/erfnet_fcn_4x4_512x1024_160k_cityscapes_20220704_162145-dc90157a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/erfnet/erfnet_fcn_4x4_512x1024_160k_cityscapes/erfnet_fcn_4x4_512x1024_160k_cityscapes_20220704_162145.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ---: | ------------- | --------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| ERFNet | ERFNet | 512x1024 | 160000 | 6.04 | 15.26 | V100 | 72.5 | 74.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/erfnet/erfnet_fcn_4xb4-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/erfnet/erfnet_fcn_4x4_512x1024_160k_cityscapes/erfnet_fcn_4x4_512x1024_160k_cityscapes_20220704_162145-dc90157a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/erfnet/erfnet_fcn_4x4_512x1024_160k_cityscapes/erfnet_fcn_4x4_512x1024_160k_cityscapes_20220704_162145.log.json) |
Note:
diff --git a/configs/fastfcn/README.md b/configs/fastfcn/README.md
index 0b26a33edd..48644e57e3 100644
--- a/configs/fastfcn/README.md
+++ b/configs/fastfcn/README.md
@@ -26,30 +26,30 @@ Modern approaches for semantic segmentation usually employ dilated convolutions
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------------------- | -------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------- | -------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| FastFCN + DeepLabV3 | R-50-D32 | 512x1024 | 80000 | 5.67 | 2.64 | V100 | 79.12 | 80.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes_20210928_053722-5d1a2648.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes_20210928_053722.log.json) |
-| FastFCN + DeepLabV3 | R-50-D32 (4x4) | 512x1024 | 80000 | 9.79 | - | V100 | 79.52 | 80.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes_20210924_214357-72220849.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes_20210924_214357.log.json) |
-| FastFCN + PSPNet | R-50-D32 | 512x1024 | 80000 | 5.67 | 4.40 | V100 | 79.26 | 80.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_psp_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes_20210928_053722-57749bed.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes_20210928_053722.log.json) |
-| FastFCN + PSPNet | R-50-D32 (4x4) | 512x1024 | 80000 | 9.94 | - | V100 | 78.76 | 80.03 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_psp_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes_20210925_061841-77e87b0a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes_20210925_061841.log.json) |
-| FastFCN + EncNet | R-50-D32 | 512x1024 | 80000 | 8.15 | 4.77 | V100 | 77.97 | 79.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_enc_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes_20210928_030036-78da5046.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes_20210928_030036.log.json) |
-| FastFCN + EncNet | R-50-D32 (4x4) | 512x1024 | 80000 | 15.45 | - | V100 | 78.6 | 80.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_enc_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes_20210926_093217-e1eb6dbb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes_20210926_093217.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------------------- | -------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------- | ----------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| FastFCN + DeepLabV3 | R-50-D32 | 512x1024 | 80000 | 5.67 | 2.64 | V100 | 79.12 | 80.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes_20210928_053722-5d1a2648.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes_20210928_053722.log.json) |
+| FastFCN + DeepLabV3 | R-50-D32 (4x4) | 512x1024 | 80000 | 9.79 | - | V100 | 79.52 | 80.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes_20210924_214357-72220849.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes_20210924_214357.log.json) |
+| FastFCN + PSPNet | R-50-D32 | 512x1024 | 80000 | 5.67 | 4.40 | V100 | 79.26 | 80.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fastfcn/fastfcn_r50-d32_jpu_psp_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes_20210928_053722-57749bed.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes_20210928_053722.log.json) |
+| FastFCN + PSPNet | R-50-D32 (4x4) | 512x1024 | 80000 | 9.94 | - | V100 | 78.76 | 80.03 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fastfcn/fastfcn_r50-d32_jpu_psp_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes_20210925_061841-77e87b0a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes_20210925_061841.log.json) |
+| FastFCN + EncNet | R-50-D32 | 512x1024 | 80000 | 8.15 | 4.77 | V100 | 77.97 | 79.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fastfcn/fastfcn_r50-d32_jpu_enc_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes_20210928_030036-78da5046.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes_20210928_030036.log.json) |
+| FastFCN + EncNet | R-50-D32 (4x4) | 512x1024 | 80000 | 15.45 | - | V100 | 78.6 | 80.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fastfcn/fastfcn_r50-d32_jpu_enc_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes_20210926_093217-e1eb6dbb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes_20210926_093217.log.json) |
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------------------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------- | ---------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| FastFCN + DeepLabV3 | R-50-D32 | 512x1024 | 80000 | 8.46 | 12.06 | V100 | 41.88 | 42.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k_20211013_190619-3aa40f2d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k_20211013_190619.log.json) |
-| FastFCN + DeepLabV3 | R-50-D32 | 512x1024 | 160000 | - | - | V100 | 43.58 | 44.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k_20211008_152246-27036aee.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k_20211008_152246.log.json) |
-| FastFCN + PSPNet | R-50-D32 | 512x1024 | 80000 | 8.02 | 19.21 | V100 | 41.40 | 42.12 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_psp_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k_20210930_225137-993d07c8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k_20210930_225137.log.json) |
-| FastFCN + PSPNet | R-50-D32 | 512x1024 | 160000 | - | - | V100 | 42.63 | 43.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_psp_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k_20211008_105455-e8f5a2fd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k_20211008_105455.log.json) |
-| FastFCN + EncNet | R-50-D32 | 512x1024 | 80000 | 9.67 | 17.23 | V100 | 40.88 | 42.36 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_enc_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k_20210930_225214-65aef6dd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k_20210930_225214.log.json) |
-| FastFCN + EncNet | R-50-D32 | 512x1024 | 160000 | - | - | V100 | 42.50 | 44.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastfcn/fastfcn_r50-d32_jpu_enc_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k_20211008_105456-d875ce3c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k_20211008_105456.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------------------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------- | ------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| FastFCN + DeepLabV3 | R-50-D32 | 512x1024 | 80000 | 8.46 | 12.06 | V100 | 41.88 | 42.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k_20211013_190619-3aa40f2d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k_20211013_190619.log.json) |
+| FastFCN + DeepLabV3 | R-50-D32 | 512x1024 | 160000 | - | - | V100 | 43.58 | 44.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k_20211008_152246-27036aee.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k_20211008_152246.log.json) |
+| FastFCN + PSPNet | R-50-D32 | 512x1024 | 80000 | 8.02 | 19.21 | V100 | 41.40 | 42.12 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fastfcn/fastfcn_r50-d32_jpu_psp_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k_20210930_225137-993d07c8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k_20210930_225137.log.json) |
+| FastFCN + PSPNet | R-50-D32 | 512x1024 | 160000 | - | - | V100 | 42.63 | 43.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fastfcn/fastfcn_r50-d32_jpu_psp_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k_20211008_105455-e8f5a2fd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k_20211008_105455.log.json) |
+| FastFCN + EncNet | R-50-D32 | 512x1024 | 80000 | 9.67 | 17.23 | V100 | 40.88 | 42.36 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fastfcn/fastfcn_r50-d32_jpu_enc_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k_20210930_225214-65aef6dd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k_20210930_225214.log.json) |
+| FastFCN + EncNet | R-50-D32 | 512x1024 | 160000 | - | - | V100 | 42.50 | 44.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fastfcn/fastfcn_r50-d32_jpu_enc_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k_20211008_105456-d875ce3c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k_20211008_105456.log.json) |
Note:
- `4x4` means 4 GPUs with 4 samples per GPU in training, default setting is 4 GPUs with 2 samples per GPU in training.
-- Results of [DeepLabV3 (mIoU: 79.32)](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/deeplabv3), [PSPNet (mIoU: 78.55)](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet) and [ENCNet (mIoU: 77.94)](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/encnet) can be found in each original repository.
+- Results of [DeepLabV3 (mIoU: 79.32)](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3), [PSPNet (mIoU: 78.55)](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet) and [ENCNet (mIoU: 77.94)](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/encnet) can be found in each original repository.
## Citation
diff --git a/configs/fastscnn/README.md b/configs/fastscnn/README.md
index ea3449fd2c..6be981462a 100644
--- a/configs/fastscnn/README.md
+++ b/configs/fastscnn/README.md
@@ -26,9 +26,9 @@ The encoder-decoder framework is state-of-the-art for offline semantic image seg
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| -------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------- | ------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| FastSCNN | FastSCNN | 512x1024 | 160000 | 3.3 | 56.45 | V100 | 70.96 | 72.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fastscnn/fast_scnn_8xb4-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fast_scnn/fast_scnn_lr0.12_8x4_160k_cityscapes/fast_scnn_lr0.12_8x4_160k_cityscapes_20210630_164853-0cec9937.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fast_scnn/fast_scnn_lr0.12_8x4_160k_cityscapes/fast_scnn_lr0.12_8x4_160k_cityscapes_20210630_164853.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| -------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------- | ---------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| FastSCNN | FastSCNN | 512x1024 | 160000 | 3.3 | 56.45 | V100 | 70.96 | 72.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fastscnn/fast_scnn_8xb4-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fast_scnn/fast_scnn_lr0.12_8x4_160k_cityscapes/fast_scnn_lr0.12_8x4_160k_cityscapes_20210630_164853-0cec9937.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fast_scnn/fast_scnn_lr0.12_8x4_160k_cityscapes/fast_scnn_lr0.12_8x4_160k_cityscapes_20210630_164853.log.json) |
## Citation
diff --git a/configs/fcn/README.md b/configs/fcn/README.md
index 6134933710..cf7379ff3d 100644
--- a/configs/fcn/README.md
+++ b/configs/fcn/README.md
@@ -26,69 +26,69 @@ Convolutional networks are powerful visual models that yield hierarchies of feat
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ---------- | ---------- | --------- | ------: | -------- | -------------- | -------- | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| FCN | R-50-D8 | 512x1024 | 40000 | 5.7 | 4.17 | V100 | 72.25 | 73.36 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_40k_cityscapes/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608-efe53f0d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_40k_cityscapes/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608.log.json) |
-| FCN | R-101-D8 | 512x1024 | 40000 | 9.2 | 2.66 | V100 | 75.45 | 76.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_40k_cityscapes/fcn_r101-d8_512x1024_40k_cityscapes_20200604_181852-a883d3a1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_40k_cityscapes/fcn_r101-d8_512x1024_40k_cityscapes_20200604_181852.log.json) |
-| FCN | R-50-D8 | 769x769 | 40000 | 6.5 | 1.80 | V100 | 71.47 | 72.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_40k_cityscapes/fcn_r50-d8_769x769_40k_cityscapes_20200606_113104-977b5d02.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_40k_cityscapes/fcn_r50-d8_769x769_40k_cityscapes_20200606_113104.log.json) |
-| FCN | R-101-D8 | 769x769 | 40000 | 10.4 | 1.19 | V100 | 73.93 | 75.14 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_40k_cityscapes/fcn_r101-d8_769x769_40k_cityscapes_20200606_113208-7d4ab69c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_40k_cityscapes/fcn_r101-d8_769x769_40k_cityscapes_20200606_113208.log.json) |
-| FCN | R-18-D8 | 512x1024 | 80000 | 1.7 | 14.65 | V100 | 71.11 | 72.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r18-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_512x1024_80k_cityscapes/fcn_r18-d8_512x1024_80k_cityscapes_20201225_021327-6c50f8b4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_512x1024_80k_cityscapes/fcn_r18-d8_512x1024_80k_cityscapes-20201225_021327.log.json) |
-| FCN | R-50-D8 | 512x1024 | 80000 | - | | V100 | 73.61 | 74.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_80k_cityscapes/fcn_r50-d8_512x1024_80k_cityscapes_20200606_113019-03aa804d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_80k_cityscapes/fcn_r50-d8_512x1024_80k_cityscapes_20200606_113019.log.json) |
-| FCN | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 75.13 | 75.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_80k_cityscapes/fcn_r101-d8_512x1024_80k_cityscapes_20200606_113038-3fb937eb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_80k_cityscapes/fcn_r101-d8_512x1024_80k_cityscapes_20200606_113038.log.json) |
-| FCN (FP16) | R-101-D8 | 512x1024 | 80000 | 5.37 | 8.64 | V100 | 76.80 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_fp16_512x1024_80k_cityscapes/fcn_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230921-fb13e883.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_fp16_512x1024_80k_cityscapes/fcn_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230921.log.json) |
-| FCN | R-18-D8 | 769x769 | 80000 | 1.9 | 6.40 | V100 | 70.80 | 73.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r18-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_769x769_80k_cityscapes/fcn_r18-d8_769x769_80k_cityscapes_20201225_021451-9739d1b8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_769x769_80k_cityscapes/fcn_r18-d8_769x769_80k_cityscapes-20201225_021451.log.json) |
-| FCN | R-50-D8 | 769x769 | 80000 | - | - | V100 | 72.64 | 73.32 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_80k_cityscapes/fcn_r50-d8_769x769_80k_cityscapes_20200606_195749-f5caeabc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_80k_cityscapes/fcn_r50-d8_769x769_80k_cityscapes_20200606_195749.log.json) |
-| FCN | R-101-D8 | 769x769 | 80000 | - | - | V100 | 75.52 | 76.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_80k_cityscapes/fcn_r101-d8_769x769_80k_cityscapes_20200606_214354-45cbac68.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_80k_cityscapes/fcn_r101-d8_769x769_80k_cityscapes_20200606_214354.log.json) |
-| FCN | R-18b-D8 | 512x1024 | 80000 | 1.6 | 16.74 | V100 | 70.24 | 72.77 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r18b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_512x1024_80k_cityscapes/fcn_r18b-d8_512x1024_80k_cityscapes_20201225_230143-92c0f445.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_512x1024_80k_cityscapes/fcn_r18b-d8_512x1024_80k_cityscapes-20201225_230143.log.json) |
-| FCN | R-50b-D8 | 512x1024 | 80000 | 5.6 | 4.20 | V100 | 75.65 | 77.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_512x1024_80k_cityscapes/fcn_r50b-d8_512x1024_80k_cityscapes_20201225_094221-82957416.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_512x1024_80k_cityscapes/fcn_r50b-d8_512x1024_80k_cityscapes-20201225_094221.log.json) |
-| FCN | R-101b-D8 | 512x1024 | 80000 | 9.1 | 2.73 | V100 | 77.37 | 78.77 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_512x1024_80k_cityscapes/fcn_r101b-d8_512x1024_80k_cityscapes_20201226_160213-4543858f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_512x1024_80k_cityscapes/fcn_r101b-d8_512x1024_80k_cityscapes-20201226_160213.log.json) |
-| FCN | R-18b-D8 | 769x769 | 80000 | 1.7 | 6.70 | V100 | 69.66 | 72.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r18b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_769x769_80k_cityscapes/fcn_r18b-d8_769x769_80k_cityscapes_20201226_004430-32d504e5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_769x769_80k_cityscapes/fcn_r18b-d8_769x769_80k_cityscapes-20201226_004430.log.json) |
-| FCN | R-50b-D8 | 769x769 | 80000 | 6.3 | 1.82 | V100 | 73.83 | 76.60 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_769x769_80k_cityscapes/fcn_r50b-d8_769x769_80k_cityscapes_20201225_094223-94552d38.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_769x769_80k_cityscapes/fcn_r50b-d8_769x769_80k_cityscapes-20201225_094223.log.json) |
-| FCN | R-101b-D8 | 769x769 | 80000 | 10.3 | 1.15 | V100 | 77.02 | 78.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_769x769_80k_cityscapes/fcn_r101b-d8_769x769_80k_cityscapes_20201226_170012-82be37e2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_769x769_80k_cityscapes/fcn_r101b-d8_769x769_80k_cityscapes-20201226_170012.log.json) |
-| FCN (D6) | R-50-D16 | 512x1024 | 40000 | 3.4 | 10.22 | TITAN Xp | 77.06 | 78.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r50-d16_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_40k_cityscapes/fcn_d6_r50-d16_512x1024_40k_cityscapes_20210305_130133-98d5d1bc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_40k_cityscapes/fcn_d6_r50-d16_512x1024_40k_cityscapes-20210305_130133.log.json) |
-| FCN (D6) | R-50-D16 | 512x1024 | 80000 | - | 10.35 | TITAN Xp | 77.27 | 78.88 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r50-d16_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_80k_cityscapes/fcn_d6_r50-d16_512x1024_80k_cityscapes_20210306_115604-133c292f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_80k_cityscapes/fcn_d6_r50-d16_512x1024_80k_cityscapes-20210306_115604.log.json) |
-| FCN (D6) | R-50-D16 | 769x769 | 40000 | 3.7 | 4.17 | TITAN Xp | 76.82 | 78.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r50-d16_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_40k_cityscapes/fcn_d6_r50-d16_769x769_40k_cityscapes_20210305_185744-1aab18ed.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_40k_cityscapes/fcn_d6_r50-d16_769x769_40k_cityscapes-20210305_185744.log.json) |
-| FCN (D6) | R-50-D16 | 769x769 | 80000 | - | 4.15 | TITAN Xp | 77.04 | 78.40 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r50-d16_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_80k_cityscapes/fcn_d6_r50-d16_769x769_80k_cityscapes_20210305_200413-109d88eb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_80k_cityscapes/fcn_d6_r50-d16_769x769_80k_cityscapes-20210305_200413.log.json) |
-| FCN (D6) | R-101-D16 | 512x1024 | 40000 | 4.5 | 8.04 | TITAN Xp | 77.36 | 79.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r101-d16_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_40k_cityscapes/fcn_d6_r101-d16_512x1024_40k_cityscapes_20210305_130337-9cf2b450.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_40k_cityscapes/fcn_d6_r101-d16_512x1024_40k_cityscapes-20210305_130337.log.json) |
-| FCN (D6) | R-101-D16 | 512x1024 | 80000 | - | 8.26 | TITAN Xp | 78.46 | 80.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r101-d16_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_80k_cityscapes/fcn_d6_r101-d16_512x1024_80k_cityscapes_20210308_102747-cb336445.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_80k_cityscapes/fcn_d6_r101-d16_512x1024_80k_cityscapes-20210308_102747.log.json) |
-| FCN (D6) | R-101-D16 | 769x769 | 40000 | 5.0 | 3.12 | TITAN Xp | 77.28 | 78.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r101-d16_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_40k_cityscapes/fcn_d6_r101-d16_769x769_40k_cityscapes_20210308_102453-60b114e9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_40k_cityscapes/fcn_d6_r101-d16_769x769_40k_cityscapes-20210308_102453.log.json) |
-| FCN (D6) | R-101-D16 | 769x769 | 80000 | - | 3.21 | TITAN Xp | 78.06 | 79.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r101-d16_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_80k_cityscapes/fcn_d6_r101-d16_769x769_80k_cityscapes_20210306_120016-e33adc4f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_80k_cityscapes/fcn_d6_r101-d16_769x769_80k_cityscapes-20210306_120016.log.json) |
-| FCN (D6) | R-50b-D16 | 512x1024 | 80000 | 3.2 | 10.16 | TITAN Xp | 76.99 | 79.03 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r50b-d16_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b-d16_512x1024_80k_cityscapes/fcn_d6_r50b-d16_512x1024_80k_cityscapes_20210311_125550-6a0b62e9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b_d16_512x1024_80k_cityscapes/fcn_d6_r50b_d16_512x1024_80k_cityscapes-20210311_125550.log.json) |
-| FCN (D6) | R-50b-D16 | 769x769 | 80000 | 3.6 | 4.17 | TITAN Xp | 76.86 | 78.52 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r50b-d16_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b-d16_769x769_80k_cityscapes/fcn_d6_r50b-d16_769x769_80k_cityscapes_20210311_131012-d665f231.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b_d16_769x769_80k_cityscapes/fcn_d6_r50b_d16_769x769_80k_cityscapes-20210311_131012.log.json) |
-| FCN (D6) | R-101b-D16 | 512x1024 | 80000 | 4.3 | 8.46 | TITAN Xp | 77.72 | 79.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r101b-d16_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b-d16_512x1024_80k_cityscapes/fcn_d6_r101b-d16_512x1024_80k_cityscapes_20210311_144305-3f2eb5b4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b_d16_512x1024_80k_cityscapes/fcn_d6_r101b_d16_512x1024_80k_cityscapes-20210311_144305.log.json) |
-| FCN (D6) | R-101b-D16 | 769x769 | 80000 | 4.8 | 3.32 | TITAN Xp | 77.34 | 78.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn-d6_r101b-d16_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b-d16_769x769_80k_cityscapes/fcn_d6_r101b-d16_769x769_80k_cityscapes_20210311_154527-c4d8bfbc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b_d16_769x769_80k_cityscapes/fcn_d6_r101b_d16_769x769_80k_cityscapes-20210311_154527.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ---------- | ---------- | --------- | ------: | -------- | -------------- | -------- | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| FCN | R-50-D8 | 512x1024 | 40000 | 5.7 | 4.17 | V100 | 72.25 | 73.36 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_40k_cityscapes/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608-efe53f0d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_40k_cityscapes/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608.log.json) |
+| FCN | R-101-D8 | 512x1024 | 40000 | 9.2 | 2.66 | V100 | 75.45 | 76.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_40k_cityscapes/fcn_r101-d8_512x1024_40k_cityscapes_20200604_181852-a883d3a1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_40k_cityscapes/fcn_r101-d8_512x1024_40k_cityscapes_20200604_181852.log.json) |
+| FCN | R-50-D8 | 769x769 | 40000 | 6.5 | 1.80 | V100 | 71.47 | 72.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_40k_cityscapes/fcn_r50-d8_769x769_40k_cityscapes_20200606_113104-977b5d02.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_40k_cityscapes/fcn_r50-d8_769x769_40k_cityscapes_20200606_113104.log.json) |
+| FCN | R-101-D8 | 769x769 | 40000 | 10.4 | 1.19 | V100 | 73.93 | 75.14 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_40k_cityscapes/fcn_r101-d8_769x769_40k_cityscapes_20200606_113208-7d4ab69c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_40k_cityscapes/fcn_r101-d8_769x769_40k_cityscapes_20200606_113208.log.json) |
+| FCN | R-18-D8 | 512x1024 | 80000 | 1.7 | 14.65 | V100 | 71.11 | 72.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r18-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_512x1024_80k_cityscapes/fcn_r18-d8_512x1024_80k_cityscapes_20201225_021327-6c50f8b4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_512x1024_80k_cityscapes/fcn_r18-d8_512x1024_80k_cityscapes-20201225_021327.log.json) |
+| FCN | R-50-D8 | 512x1024 | 80000 | - | | V100 | 73.61 | 74.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_80k_cityscapes/fcn_r50-d8_512x1024_80k_cityscapes_20200606_113019-03aa804d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_80k_cityscapes/fcn_r50-d8_512x1024_80k_cityscapes_20200606_113019.log.json) |
+| FCN | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 75.13 | 75.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_80k_cityscapes/fcn_r101-d8_512x1024_80k_cityscapes_20200606_113038-3fb937eb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_80k_cityscapes/fcn_r101-d8_512x1024_80k_cityscapes_20200606_113038.log.json) |
+| FCN (FP16) | R-101-D8 | 512x1024 | 80000 | 5.37 | 8.64 | V100 | 76.80 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_fp16_512x1024_80k_cityscapes/fcn_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230921-fb13e883.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_fp16_512x1024_80k_cityscapes/fcn_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230921.log.json) |
+| FCN | R-18-D8 | 769x769 | 80000 | 1.9 | 6.40 | V100 | 70.80 | 73.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r18-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_769x769_80k_cityscapes/fcn_r18-d8_769x769_80k_cityscapes_20201225_021451-9739d1b8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_769x769_80k_cityscapes/fcn_r18-d8_769x769_80k_cityscapes-20201225_021451.log.json) |
+| FCN | R-50-D8 | 769x769 | 80000 | - | - | V100 | 72.64 | 73.32 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_80k_cityscapes/fcn_r50-d8_769x769_80k_cityscapes_20200606_195749-f5caeabc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_80k_cityscapes/fcn_r50-d8_769x769_80k_cityscapes_20200606_195749.log.json) |
+| FCN | R-101-D8 | 769x769 | 80000 | - | - | V100 | 75.52 | 76.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_80k_cityscapes/fcn_r101-d8_769x769_80k_cityscapes_20200606_214354-45cbac68.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_80k_cityscapes/fcn_r101-d8_769x769_80k_cityscapes_20200606_214354.log.json) |
+| FCN | R-18b-D8 | 512x1024 | 80000 | 1.6 | 16.74 | V100 | 70.24 | 72.77 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r18b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_512x1024_80k_cityscapes/fcn_r18b-d8_512x1024_80k_cityscapes_20201225_230143-92c0f445.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_512x1024_80k_cityscapes/fcn_r18b-d8_512x1024_80k_cityscapes-20201225_230143.log.json) |
+| FCN | R-50b-D8 | 512x1024 | 80000 | 5.6 | 4.20 | V100 | 75.65 | 77.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r50b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_512x1024_80k_cityscapes/fcn_r50b-d8_512x1024_80k_cityscapes_20201225_094221-82957416.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_512x1024_80k_cityscapes/fcn_r50b-d8_512x1024_80k_cityscapes-20201225_094221.log.json) |
+| FCN | R-101b-D8 | 512x1024 | 80000 | 9.1 | 2.73 | V100 | 77.37 | 78.77 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r101b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_512x1024_80k_cityscapes/fcn_r101b-d8_512x1024_80k_cityscapes_20201226_160213-4543858f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_512x1024_80k_cityscapes/fcn_r101b-d8_512x1024_80k_cityscapes-20201226_160213.log.json) |
+| FCN | R-18b-D8 | 769x769 | 80000 | 1.7 | 6.70 | V100 | 69.66 | 72.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r18b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_769x769_80k_cityscapes/fcn_r18b-d8_769x769_80k_cityscapes_20201226_004430-32d504e5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_769x769_80k_cityscapes/fcn_r18b-d8_769x769_80k_cityscapes-20201226_004430.log.json) |
+| FCN | R-50b-D8 | 769x769 | 80000 | 6.3 | 1.82 | V100 | 73.83 | 76.60 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r50b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_769x769_80k_cityscapes/fcn_r50b-d8_769x769_80k_cityscapes_20201225_094223-94552d38.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_769x769_80k_cityscapes/fcn_r50b-d8_769x769_80k_cityscapes-20201225_094223.log.json) |
+| FCN | R-101b-D8 | 769x769 | 80000 | 10.3 | 1.15 | V100 | 77.02 | 78.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r101b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_769x769_80k_cityscapes/fcn_r101b-d8_769x769_80k_cityscapes_20201226_170012-82be37e2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_769x769_80k_cityscapes/fcn_r101b-d8_769x769_80k_cityscapes-20201226_170012.log.json) |
+| FCN (D6) | R-50-D16 | 512x1024 | 40000 | 3.4 | 10.22 | TITAN Xp | 77.06 | 78.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn-d6_r50-d16_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_40k_cityscapes/fcn_d6_r50-d16_512x1024_40k_cityscapes_20210305_130133-98d5d1bc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_40k_cityscapes/fcn_d6_r50-d16_512x1024_40k_cityscapes-20210305_130133.log.json) |
+| FCN (D6) | R-50-D16 | 512x1024 | 80000 | - | 10.35 | TITAN Xp | 77.27 | 78.88 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn-d6_r50-d16_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_80k_cityscapes/fcn_d6_r50-d16_512x1024_80k_cityscapes_20210306_115604-133c292f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_80k_cityscapes/fcn_d6_r50-d16_512x1024_80k_cityscapes-20210306_115604.log.json) |
+| FCN (D6) | R-50-D16 | 769x769 | 40000 | 3.7 | 4.17 | TITAN Xp | 76.82 | 78.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn-d6_r50-d16_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_40k_cityscapes/fcn_d6_r50-d16_769x769_40k_cityscapes_20210305_185744-1aab18ed.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_40k_cityscapes/fcn_d6_r50-d16_769x769_40k_cityscapes-20210305_185744.log.json) |
+| FCN (D6) | R-50-D16 | 769x769 | 80000 | - | 4.15 | TITAN Xp | 77.04 | 78.40 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn-d6_r50-d16_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_80k_cityscapes/fcn_d6_r50-d16_769x769_80k_cityscapes_20210305_200413-109d88eb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_80k_cityscapes/fcn_d6_r50-d16_769x769_80k_cityscapes-20210305_200413.log.json) |
+| FCN (D6) | R-101-D16 | 512x1024 | 40000 | 4.5 | 8.04 | TITAN Xp | 77.36 | 79.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn-d6_r101-d16_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_40k_cityscapes/fcn_d6_r101-d16_512x1024_40k_cityscapes_20210305_130337-9cf2b450.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_40k_cityscapes/fcn_d6_r101-d16_512x1024_40k_cityscapes-20210305_130337.log.json) |
+| FCN (D6) | R-101-D16 | 512x1024 | 80000 | - | 8.26 | TITAN Xp | 78.46 | 80.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn-d6_r101-d16_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_80k_cityscapes/fcn_d6_r101-d16_512x1024_80k_cityscapes_20210308_102747-cb336445.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_80k_cityscapes/fcn_d6_r101-d16_512x1024_80k_cityscapes-20210308_102747.log.json) |
+| FCN (D6) | R-101-D16 | 769x769 | 40000 | 5.0 | 3.12 | TITAN Xp | 77.28 | 78.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn-d6_r101-d16_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_40k_cityscapes/fcn_d6_r101-d16_769x769_40k_cityscapes_20210308_102453-60b114e9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_40k_cityscapes/fcn_d6_r101-d16_769x769_40k_cityscapes-20210308_102453.log.json) |
+| FCN (D6) | R-101-D16 | 769x769 | 80000 | - | 3.21 | TITAN Xp | 78.06 | 79.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn-d6_r101-d16_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_80k_cityscapes/fcn_d6_r101-d16_769x769_80k_cityscapes_20210306_120016-e33adc4f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_80k_cityscapes/fcn_d6_r101-d16_769x769_80k_cityscapes-20210306_120016.log.json) |
+| FCN (D6) | R-50b-D16 | 512x1024 | 80000 | 3.2 | 10.16 | TITAN Xp | 76.99 | 79.03 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn-d6_r50b-d16_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b-d16_512x1024_80k_cityscapes/fcn_d6_r50b-d16_512x1024_80k_cityscapes_20210311_125550-6a0b62e9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b_d16_512x1024_80k_cityscapes/fcn_d6_r50b_d16_512x1024_80k_cityscapes-20210311_125550.log.json) |
+| FCN (D6) | R-50b-D16 | 769x769 | 80000 | 3.6 | 4.17 | TITAN Xp | 76.86 | 78.52 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn-d6_r50b-d16_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b-d16_769x769_80k_cityscapes/fcn_d6_r50b-d16_769x769_80k_cityscapes_20210311_131012-d665f231.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b_d16_769x769_80k_cityscapes/fcn_d6_r50b_d16_769x769_80k_cityscapes-20210311_131012.log.json) |
+| FCN (D6) | R-101b-D16 | 512x1024 | 80000 | 4.3 | 8.46 | TITAN Xp | 77.72 | 79.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn-d6_r101b-d16_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b-d16_512x1024_80k_cityscapes/fcn_d6_r101b-d16_512x1024_80k_cityscapes_20210311_144305-3f2eb5b4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b_d16_512x1024_80k_cityscapes/fcn_d6_r101b_d16_512x1024_80k_cityscapes-20210311_144305.log.json) |
+| FCN (D6) | R-101b-D16 | 769x769 | 80000 | 4.8 | 3.32 | TITAN Xp | 77.34 | 78.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn-d6_r101b-d16_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b-d16_769x769_80k_cityscapes/fcn_d6_r101b-d16_769x769_80k_cityscapes_20210311_154527-c4d8bfbc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b_d16_769x769_80k_cityscapes/fcn_d6_r101b_d16_769x769_80k_cityscapes-20210311_154527.log.json) |
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| FCN | R-50-D8 | 512x512 | 80000 | 8.5 | 23.49 | V100 | 35.94 | 37.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_80k_ade20k/fcn_r50-d8_512x512_80k_ade20k_20200614_144016-f8ac5082.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_80k_ade20k/fcn_r50-d8_512x512_80k_ade20k_20200614_144016.log.json) |
-| FCN | R-101-D8 | 512x512 | 80000 | 12 | 14.78 | V100 | 39.61 | 40.83 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb4-80k_ade20k-512x512.pyy) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_80k_ade20k/fcn_r101-d8_512x512_80k_ade20k_20200615_014143-bc1809f7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_80k_ade20k/fcn_r101-d8_512x512_80k_ade20k_20200615_014143.log.json) |
-| FCN | R-50-D8 | 512x512 | 160000 | - | - | V100 | 36.10 | 38.08 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_160k_ade20k/fcn_r50-d8_512x512_160k_ade20k_20200615_100713-4edbc3b4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_160k_ade20k/fcn_r50-d8_512x512_160k_ade20k_20200615_100713.log.json) |
-| FCN | R-101-D8 | 512x512 | 160000 | - | - | V100 | 39.91 | 41.40 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_160k_ade20k/fcn_r101-d8_512x512_160k_ade20k_20200615_105816-fd192bd5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_160k_ade20k/fcn_r101-d8_512x512_160k_ade20k_20200615_105816.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| FCN | R-50-D8 | 512x512 | 80000 | 8.5 | 23.49 | V100 | 35.94 | 37.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_80k_ade20k/fcn_r50-d8_512x512_80k_ade20k_20200614_144016-f8ac5082.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_80k_ade20k/fcn_r50-d8_512x512_80k_ade20k_20200614_144016.log.json) |
+| FCN | R-101-D8 | 512x512 | 80000 | 12 | 14.78 | V100 | 39.61 | 40.83 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r101-d8_4xb4-80k_ade20k-512x512.pyy) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_80k_ade20k/fcn_r101-d8_512x512_80k_ade20k_20200615_014143-bc1809f7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_80k_ade20k/fcn_r101-d8_512x512_80k_ade20k_20200615_014143.log.json) |
+| FCN | R-50-D8 | 512x512 | 160000 | - | - | V100 | 36.10 | 38.08 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_160k_ade20k/fcn_r50-d8_512x512_160k_ade20k_20200615_100713-4edbc3b4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_160k_ade20k/fcn_r50-d8_512x512_160k_ade20k_20200615_100713.log.json) |
+| FCN | R-101-D8 | 512x512 | 160000 | - | - | V100 | 39.91 | 41.40 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_160k_ade20k/fcn_r101-d8_512x512_160k_ade20k_20200615_105816-fd192bd5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_160k_ade20k/fcn_r101-d8_512x512_160k_ade20k_20200615_105816.log.json) |
### Pascal VOC 2012 + Aug
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| FCN | R-50-D8 | 512x512 | 20000 | 5.7 | 23.28 | V100 | 67.08 | 69.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_20k_voc12aug/fcn_r50-d8_512x512_20k_voc12aug_20200617_010715-52dc5306.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_20k_voc12aug/fcn_r50-d8_512x512_20k_voc12aug_20200617_010715.log.json) |
-| FCN | R-101-D8 | 512x512 | 20000 | 9.2 | 14.81 | V100 | 71.16 | 73.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_20k_voc12aug/fcn_r101-d8_512x512_20k_voc12aug_20200617_010842-0bb4e798.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_20k_voc12aug/fcn_r101-d8_512x512_20k_voc12aug_20200617_010842.log.json) |
-| FCN | R-50-D8 | 512x512 | 40000 | - | - | V100 | 66.97 | 69.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_40k_voc12aug/fcn_r50-d8_512x512_40k_voc12aug_20200613_161222-5e2dbf40.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_40k_voc12aug/fcn_r50-d8_512x512_40k_voc12aug_20200613_161222.log.json) |
-| FCN | R-101-D8 | 512x512 | 40000 | - | - | V100 | 69.91 | 72.38 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_40k_voc12aug/fcn_r101-d8_512x512_40k_voc12aug_20200613_161240-4c8bcefd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_40k_voc12aug/fcn_r101-d8_512x512_40k_voc12aug_20200613_161240.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| FCN | R-50-D8 | 512x512 | 20000 | 5.7 | 23.28 | V100 | 67.08 | 69.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_20k_voc12aug/fcn_r50-d8_512x512_20k_voc12aug_20200617_010715-52dc5306.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_20k_voc12aug/fcn_r50-d8_512x512_20k_voc12aug_20200617_010715.log.json) |
+| FCN | R-101-D8 | 512x512 | 20000 | 9.2 | 14.81 | V100 | 71.16 | 73.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_20k_voc12aug/fcn_r101-d8_512x512_20k_voc12aug_20200617_010842-0bb4e798.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_20k_voc12aug/fcn_r101-d8_512x512_20k_voc12aug_20200617_010842.log.json) |
+| FCN | R-50-D8 | 512x512 | 40000 | - | - | V100 | 66.97 | 69.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_40k_voc12aug/fcn_r50-d8_512x512_40k_voc12aug_20200613_161222-5e2dbf40.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_40k_voc12aug/fcn_r50-d8_512x512_40k_voc12aug_20200613_161222.log.json) |
+| FCN | R-101-D8 | 512x512 | 40000 | - | - | V100 | 69.91 | 72.38 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_40k_voc12aug/fcn_r101-d8_512x512_40k_voc12aug_20200613_161240-4c8bcefd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_40k_voc12aug/fcn_r101-d8_512x512_40k_voc12aug_20200613_161240.log.json) |
### Pascal Context
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| FCN | R-101-D8 | 480x480 | 40000 | - | 9.93 | V100 | 44.43 | 45.63 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb4-40k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context/fcn_r101-d8_480x480_40k_pascal_context_20210421_154757-b5e97937.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context/fcn_r101-d8_480x480_40k_pascal_context-20210421_154757.log.json) |
-| FCN | R-101-D8 | 480x480 | 80000 | - | - | V100 | 44.13 | 45.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb4-80k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context/fcn_r101-d8_480x480_80k_pascal_context_20210421_163310-4711813f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context/fcn_r101-d8_480x480_80k_pascal_context-20210421_163310.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| FCN | R-101-D8 | 480x480 | 40000 | - | 9.93 | V100 | 44.43 | 45.63 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r101-d8_4xb4-40k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context/fcn_r101-d8_480x480_40k_pascal_context_20210421_154757-b5e97937.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context/fcn_r101-d8_480x480_40k_pascal_context-20210421_154757.log.json) |
+| FCN | R-101-D8 | 480x480 | 80000 | - | - | V100 | 44.13 | 45.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r101-d8_4xb4-80k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context/fcn_r101-d8_480x480_80k_pascal_context_20210421_163310-4711813f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context/fcn_r101-d8_480x480_80k_pascal_context-20210421_163310.log.json) |
### Pascal Context 59
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| FCN | R-101-D8 | 480x480 | 40000 | - | - | V100 | 48.42 | 50.4 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb4-40k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context_59/fcn_r101-d8_480x480_40k_pascal_context_59_20210415_230724-8cf83682.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context_59/fcn_r101-d8_480x480_40k_pascal_context_59-20210415_230724.log.json) |
-| FCN | R-101-D8 | 480x480 | 80000 | - | - | V100 | 49.35 | 51.38 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/fcn/fcn_r101-d8_4xb4-80k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context_59/fcn_r101-d8_480x480_80k_pascal_context_59_20210416_110804-9a6f2c94.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context_59/fcn_r101-d8_480x480_80k_pascal_context_59-20210416_110804.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| FCN | R-101-D8 | 480x480 | 40000 | - | - | V100 | 48.42 | 50.4 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r101-d8_4xb4-40k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context_59/fcn_r101-d8_480x480_40k_pascal_context_59_20210415_230724-8cf83682.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context_59/fcn_r101-d8_480x480_40k_pascal_context_59-20210415_230724.log.json) |
+| FCN | R-101-D8 | 480x480 | 80000 | - | - | V100 | 49.35 | 51.38 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/fcn/fcn_r101-d8_4xb4-80k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context_59/fcn_r101-d8_480x480_80k_pascal_context_59_20210416_110804-9a6f2c94.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context_59/fcn_r101-d8_480x480_80k_pascal_context_59-20210416_110804.log.json) |
Note:
diff --git a/configs/gcnet/README.md b/configs/gcnet/README.md
index 26a478808f..ba1a21e851 100644
--- a/configs/gcnet/README.md
+++ b/configs/gcnet/README.md
@@ -26,34 +26,34 @@ The Non-Local Network (NLNet) presents a pioneering approach for capturing long-
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| GCNet | R-50-D8 | 512x1024 | 40000 | 5.8 | 3.93 | V100 | 77.69 | 78.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes/gcnet_r50-d8_512x1024_40k_cityscapes_20200618_074436-4b0fd17b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes/gcnet_r50-d8_512x1024_40k_cityscapes_20200618_074436.log.json) |
-| GCNet | R-101-D8 | 512x1024 | 40000 | 9.2 | 2.61 | V100 | 78.28 | 79.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_40k_cityscapes/gcnet_r101-d8_512x1024_40k_cityscapes_20200618_074436-5e62567f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_40k_cityscapes/gcnet_r101-d8_512x1024_40k_cityscapes_20200618_074436.log.json) |
-| GCNet | R-50-D8 | 769x769 | 40000 | 6.5 | 1.67 | V100 | 78.12 | 80.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_40k_cityscapes/gcnet_r50-d8_769x769_40k_cityscapes_20200618_182814-a26f4471.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_40k_cityscapes/gcnet_r50-d8_769x769_40k_cityscapes_20200618_182814.log.json) |
-| GCNet | R-101-D8 | 769x769 | 40000 | 10.5 | 1.13 | V100 | 78.95 | 80.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_40k_cityscapes/gcnet_r101-d8_769x769_40k_cityscapes_20200619_092550-ca4f0a84.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_40k_cityscapes/gcnet_r101-d8_769x769_40k_cityscapes_20200619_092550.log.json) |
-| GCNet | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 78.48 | 80.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_80k_cityscapes/gcnet_r50-d8_512x1024_80k_cityscapes_20200618_074450-ef8f069b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_80k_cityscapes/gcnet_r50-d8_512x1024_80k_cityscapes_20200618_074450.log.json) |
-| GCNet | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 79.03 | 79.84 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r101-d8_4xb2-80k_cityscapes-512x1024.pyy) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_80k_cityscapes/gcnet_r101-d8_512x1024_80k_cityscapes_20200618_074450-778ebf69.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_80k_cityscapes/gcnet_r101-d8_512x1024_80k_cityscapes_20200618_074450.log.json) |
-| GCNet | R-50-D8 | 769x769 | 80000 | - | - | V100 | 78.68 | 80.66 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_80k_cityscapes/gcnet_r50-d8_769x769_80k_cityscapes_20200619_092516-4839565b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_80k_cityscapes/gcnet_r50-d8_769x769_80k_cityscapes_20200619_092516.log.json) |
-| GCNet | R-101-D8 | 769x769 | 80000 | - | - | V100 | 79.18 | 80.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_80k_cityscapes/gcnet_r101-d8_769x769_80k_cityscapes_20200619_092628-8e043423.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_80k_cityscapes/gcnet_r101-d8_769x769_80k_cityscapes_20200619_092628.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| GCNet | R-50-D8 | 512x1024 | 40000 | 5.8 | 3.93 | V100 | 77.69 | 78.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/gcnet/gcnet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes/gcnet_r50-d8_512x1024_40k_cityscapes_20200618_074436-4b0fd17b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes/gcnet_r50-d8_512x1024_40k_cityscapes_20200618_074436.log.json) |
+| GCNet | R-101-D8 | 512x1024 | 40000 | 9.2 | 2.61 | V100 | 78.28 | 79.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/gcnet/gcnet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_40k_cityscapes/gcnet_r101-d8_512x1024_40k_cityscapes_20200618_074436-5e62567f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_40k_cityscapes/gcnet_r101-d8_512x1024_40k_cityscapes_20200618_074436.log.json) |
+| GCNet | R-50-D8 | 769x769 | 40000 | 6.5 | 1.67 | V100 | 78.12 | 80.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/gcnet/gcnet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_40k_cityscapes/gcnet_r50-d8_769x769_40k_cityscapes_20200618_182814-a26f4471.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_40k_cityscapes/gcnet_r50-d8_769x769_40k_cityscapes_20200618_182814.log.json) |
+| GCNet | R-101-D8 | 769x769 | 40000 | 10.5 | 1.13 | V100 | 78.95 | 80.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/gcnet/gcnet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_40k_cityscapes/gcnet_r101-d8_769x769_40k_cityscapes_20200619_092550-ca4f0a84.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_40k_cityscapes/gcnet_r101-d8_769x769_40k_cityscapes_20200619_092550.log.json) |
+| GCNet | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 78.48 | 80.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/gcnet/gcnet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_80k_cityscapes/gcnet_r50-d8_512x1024_80k_cityscapes_20200618_074450-ef8f069b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_80k_cityscapes/gcnet_r50-d8_512x1024_80k_cityscapes_20200618_074450.log.json) |
+| GCNet | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 79.03 | 79.84 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/gcnet/gcnet_r101-d8_4xb2-80k_cityscapes-512x1024.pyy) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_80k_cityscapes/gcnet_r101-d8_512x1024_80k_cityscapes_20200618_074450-778ebf69.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_80k_cityscapes/gcnet_r101-d8_512x1024_80k_cityscapes_20200618_074450.log.json) |
+| GCNet | R-50-D8 | 769x769 | 80000 | - | - | V100 | 78.68 | 80.66 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/gcnet/gcnet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_80k_cityscapes/gcnet_r50-d8_769x769_80k_cityscapes_20200619_092516-4839565b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_80k_cityscapes/gcnet_r50-d8_769x769_80k_cityscapes_20200619_092516.log.json) |
+| GCNet | R-101-D8 | 769x769 | 80000 | - | - | V100 | 79.18 | 80.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/gcnet/gcnet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_80k_cityscapes/gcnet_r101-d8_769x769_80k_cityscapes_20200619_092628-8e043423.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_80k_cityscapes/gcnet_r101-d8_769x769_80k_cityscapes_20200619_092628.log.json) |
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| GCNet | R-50-D8 | 512x512 | 80000 | 8.5 | 23.38 | V100 | 41.47 | 42.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_80k_ade20k/gcnet_r50-d8_512x512_80k_ade20k_20200614_185146-91a6da41.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_80k_ade20k/gcnet_r50-d8_512x512_80k_ade20k_20200614_185146.log.json) |
-| GCNet | R-101-D8 | 512x512 | 80000 | 12 | 15.20 | V100 | 42.82 | 44.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_80k_ade20k/gcnet_r101-d8_512x512_80k_ade20k_20200615_020811-c3fcb6dd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_80k_ade20k/gcnet_r101-d8_512x512_80k_ade20k_20200615_020811.log.json) |
-| GCNet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 42.37 | 43.52 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_160k_ade20k/gcnet_r50-d8_512x512_160k_ade20k_20200615_224122-d95f3e1f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_160k_ade20k/gcnet_r50-d8_512x512_160k_ade20k_20200615_224122.log.json) |
-| GCNet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 43.69 | 45.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_160k_ade20k/gcnet_r101-d8_512x512_160k_ade20k_20200615_225406-615528d7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_160k_ade20k/gcnet_r101-d8_512x512_160k_ade20k_20200615_225406.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| GCNet | R-50-D8 | 512x512 | 80000 | 8.5 | 23.38 | V100 | 41.47 | 42.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/gcnet/gcnet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_80k_ade20k/gcnet_r50-d8_512x512_80k_ade20k_20200614_185146-91a6da41.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_80k_ade20k/gcnet_r50-d8_512x512_80k_ade20k_20200614_185146.log.json) |
+| GCNet | R-101-D8 | 512x512 | 80000 | 12 | 15.20 | V100 | 42.82 | 44.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/gcnet/gcnet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_80k_ade20k/gcnet_r101-d8_512x512_80k_ade20k_20200615_020811-c3fcb6dd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_80k_ade20k/gcnet_r101-d8_512x512_80k_ade20k_20200615_020811.log.json) |
+| GCNet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 42.37 | 43.52 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/gcnet/gcnet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_160k_ade20k/gcnet_r50-d8_512x512_160k_ade20k_20200615_224122-d95f3e1f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_160k_ade20k/gcnet_r50-d8_512x512_160k_ade20k_20200615_224122.log.json) |
+| GCNet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 43.69 | 45.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/gcnet/gcnet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_160k_ade20k/gcnet_r101-d8_512x512_160k_ade20k_20200615_225406-615528d7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_160k_ade20k/gcnet_r101-d8_512x512_160k_ade20k_20200615_225406.log.json) |
### Pascal VOC 2012 + Aug
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| GCNet | R-50-D8 | 512x512 | 20000 | 5.8 | 23.35 | V100 | 76.42 | 77.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_20k_voc12aug/gcnet_r50-d8_512x512_20k_voc12aug_20200617_165701-3cbfdab1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_20k_voc12aug/gcnet_r50-d8_512x512_20k_voc12aug_20200617_165701.log.json) |
-| GCNet | R-101-D8 | 512x512 | 20000 | 9.2 | 14.80 | V100 | 77.41 | 78.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_20k_voc12aug/gcnet_r101-d8_512x512_20k_voc12aug_20200617_165713-6c720aa9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_20k_voc12aug/gcnet_r101-d8_512x512_20k_voc12aug_20200617_165713.log.json) |
-| GCNet | R-50-D8 | 512x512 | 40000 | - | - | V100 | 76.24 | 77.63 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_40k_voc12aug/gcnet_r50-d8_512x512_40k_voc12aug_20200613_195105-9797336d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_40k_voc12aug/gcnet_r50-d8_512x512_40k_voc12aug_20200613_195105.log.json) |
-| GCNet | R-101-D8 | 512x512 | 40000 | - | - | V100 | 77.84 | 78.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/gcnet/gcnet_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_40k_voc12aug/gcnet_r101-d8_512x512_40k_voc12aug_20200613_185806-1e38208d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_40k_voc12aug/gcnet_r101-d8_512x512_40k_voc12aug_20200613_185806.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| GCNet | R-50-D8 | 512x512 | 20000 | 5.8 | 23.35 | V100 | 76.42 | 77.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/gcnet/gcnet_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_20k_voc12aug/gcnet_r50-d8_512x512_20k_voc12aug_20200617_165701-3cbfdab1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_20k_voc12aug/gcnet_r50-d8_512x512_20k_voc12aug_20200617_165701.log.json) |
+| GCNet | R-101-D8 | 512x512 | 20000 | 9.2 | 14.80 | V100 | 77.41 | 78.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/gcnet/gcnet_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_20k_voc12aug/gcnet_r101-d8_512x512_20k_voc12aug_20200617_165713-6c720aa9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_20k_voc12aug/gcnet_r101-d8_512x512_20k_voc12aug_20200617_165713.log.json) |
+| GCNet | R-50-D8 | 512x512 | 40000 | - | - | V100 | 76.24 | 77.63 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/gcnet/gcnet_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_40k_voc12aug/gcnet_r50-d8_512x512_40k_voc12aug_20200613_195105-9797336d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_40k_voc12aug/gcnet_r50-d8_512x512_40k_voc12aug_20200613_195105.log.json) |
+| GCNet | R-101-D8 | 512x512 | 40000 | - | - | V100 | 77.84 | 78.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/gcnet/gcnet_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_40k_voc12aug/gcnet_r101-d8_512x512_40k_voc12aug_20200613_185806-1e38208d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_40k_voc12aug/gcnet_r101-d8_512x512_40k_voc12aug_20200613_185806.log.json) |
## Citation
diff --git a/configs/hrnet/README.md b/configs/hrnet/README.md
index 38a6bd0e76..b529fc895e 100644
--- a/configs/hrnet/README.md
+++ b/configs/hrnet/README.md
@@ -26,85 +26,85 @@ High-resolution representations are essential for position-sensitive vision prob
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| FCN | HRNetV2p-W18-Small | 512x1024 | 40000 | 1.7 | 23.74 | V100 | 73.86 | 75.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_40k_cityscapes/fcn_hr18s_512x1024_40k_cityscapes_20200601_014216-93db27d0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_40k_cityscapes/fcn_hr18s_512x1024_40k_cityscapes_20200601_014216.log.json) |
-| FCN | HRNetV2p-W18 | 512x1024 | 40000 | 2.9 | 12.97 | V100 | 77.19 | 78.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_40k_cityscapes/fcn_hr18_512x1024_40k_cityscapes_20200601_014216-f196fb4e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_40k_cityscapes/fcn_hr18_512x1024_40k_cityscapes_20200601_014216.log.json) |
-| FCN | HRNetV2p-W48 | 512x1024 | 40000 | 6.2 | 6.42 | V100 | 78.48 | 79.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_40k_cityscapes/fcn_hr48_512x1024_40k_cityscapes_20200601_014240-a989b146.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_40k_cityscapes/fcn_hr48_512x1024_40k_cityscapes_20200601_014240.log.json) |
-| FCN | HRNetV2p-W18-Small | 512x1024 | 80000 | - | - | V100 | 75.31 | 77.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_80k_cityscapes/fcn_hr18s_512x1024_80k_cityscapes_20200601_202700-1462b75d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_80k_cityscapes/fcn_hr18s_512x1024_80k_cityscapes_20200601_202700.log.json) |
-| FCN | HRNetV2p-W18 | 512x1024 | 80000 | - | - | V100 | 78.65 | 80.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_80k_cityscapes/fcn_hr18_512x1024_80k_cityscapes_20200601_223255-4e7b345e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_80k_cityscapes/fcn_hr18_512x1024_80k_cityscapes_20200601_223255.log.json) |
-| FCN | HRNetV2p-W48 | 512x1024 | 80000 | - | - | V100 | 79.93 | 80.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_80k_cityscapes/fcn_hr48_512x1024_80k_cityscapes_20200601_202606-58ea95d6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_80k_cityscapes/fcn_hr48_512x1024_80k_cityscapes_20200601_202606.log.json) |
-| FCN | HRNetV2p-W18-Small | 512x1024 | 160000 | - | - | V100 | 76.31 | 78.31 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_160k_cityscapes/fcn_hr18s_512x1024_160k_cityscapes_20200602_190901-4a0797ea.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_160k_cityscapes/fcn_hr18s_512x1024_160k_cityscapes_20200602_190901.log.json) |
-| FCN | HRNetV2p-W18 | 512x1024 | 160000 | - | - | V100 | 78.80 | 80.74 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_160k_cityscapes/fcn_hr18_512x1024_160k_cityscapes_20200602_190822-221e4a4f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_160k_cityscapes/fcn_hr18_512x1024_160k_cityscapes_20200602_190822.log.json) |
-| FCN | HRNetV2p-W48 | 512x1024 | 160000 | - | - | V100 | 80.65 | 81.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_160k_cityscapes/fcn_hr48_512x1024_160k_cityscapes_20200602_190946-59b7973e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_160k_cityscapes/fcn_hr48_512x1024_160k_cityscapes_20200602_190946.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| FCN | HRNetV2p-W18-Small | 512x1024 | 40000 | 1.7 | 23.74 | V100 | 73.86 | 75.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18s_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_40k_cityscapes/fcn_hr18s_512x1024_40k_cityscapes_20200601_014216-93db27d0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_40k_cityscapes/fcn_hr18s_512x1024_40k_cityscapes_20200601_014216.log.json) |
+| FCN | HRNetV2p-W18 | 512x1024 | 40000 | 2.9 | 12.97 | V100 | 77.19 | 78.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_40k_cityscapes/fcn_hr18_512x1024_40k_cityscapes_20200601_014216-f196fb4e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_40k_cityscapes/fcn_hr18_512x1024_40k_cityscapes_20200601_014216.log.json) |
+| FCN | HRNetV2p-W48 | 512x1024 | 40000 | 6.2 | 6.42 | V100 | 78.48 | 79.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_40k_cityscapes/fcn_hr48_512x1024_40k_cityscapes_20200601_014240-a989b146.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_40k_cityscapes/fcn_hr48_512x1024_40k_cityscapes_20200601_014240.log.json) |
+| FCN | HRNetV2p-W18-Small | 512x1024 | 80000 | - | - | V100 | 75.31 | 77.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18s_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_80k_cityscapes/fcn_hr18s_512x1024_80k_cityscapes_20200601_202700-1462b75d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_80k_cityscapes/fcn_hr18s_512x1024_80k_cityscapes_20200601_202700.log.json) |
+| FCN | HRNetV2p-W18 | 512x1024 | 80000 | - | - | V100 | 78.65 | 80.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_80k_cityscapes/fcn_hr18_512x1024_80k_cityscapes_20200601_223255-4e7b345e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_80k_cityscapes/fcn_hr18_512x1024_80k_cityscapes_20200601_223255.log.json) |
+| FCN | HRNetV2p-W48 | 512x1024 | 80000 | - | - | V100 | 79.93 | 80.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_80k_cityscapes/fcn_hr48_512x1024_80k_cityscapes_20200601_202606-58ea95d6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_80k_cityscapes/fcn_hr48_512x1024_80k_cityscapes_20200601_202606.log.json) |
+| FCN | HRNetV2p-W18-Small | 512x1024 | 160000 | - | - | V100 | 76.31 | 78.31 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18s_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_160k_cityscapes/fcn_hr18s_512x1024_160k_cityscapes_20200602_190901-4a0797ea.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_160k_cityscapes/fcn_hr18s_512x1024_160k_cityscapes_20200602_190901.log.json) |
+| FCN | HRNetV2p-W18 | 512x1024 | 160000 | - | - | V100 | 78.80 | 80.74 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_160k_cityscapes/fcn_hr18_512x1024_160k_cityscapes_20200602_190822-221e4a4f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_160k_cityscapes/fcn_hr18_512x1024_160k_cityscapes_20200602_190822.log.json) |
+| FCN | HRNetV2p-W48 | 512x1024 | 160000 | - | - | V100 | 80.65 | 81.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_160k_cityscapes/fcn_hr48_512x1024_160k_cityscapes_20200602_190946-59b7973e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_160k_cityscapes/fcn_hr48_512x1024_160k_cityscapes_20200602_190946.log.json) |
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| FCN | HRNetV2p-W18-Small | 512x512 | 80000 | 3.8 | 38.66 | V100 | 31.38 | 32.45 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_ade20k/fcn_hr18s_512x512_80k_ade20k_20200614_144345-77fc814a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_ade20k/fcn_hr18s_512x512_80k_ade20k_20200614_144345.log.json) |
-| FCN | HRNetV2p-W18 | 512x512 | 80000 | 4.9 | 22.57 | V100 | 36.27 | 37.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_ade20k/fcn_hr18_512x512_80k_ade20k_20210827_114910-6c9382c0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_ade20k/fcn_hr18_512x512_80k_ade20k_20210827_114910.log.json) |
-| FCN | HRNetV2p-W48 | 512x512 | 80000 | 8.2 | 21.23 | V100 | 41.90 | 43.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_ade20k/fcn_hr48_512x512_80k_ade20k_20200614_193946-7ba5258d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_ade20k/fcn_hr48_512x512_80k_ade20k_20200614_193946.log.json) |
-| FCN | HRNetV2p-W18-Small | 512x512 | 160000 | - | - | V100 | 33.07 | 34.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_160k_ade20k/fcn_hr18s_512x512_160k_ade20k_20210829_174739-f1e7c2e7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_160k_ade20k/fcn_hr18s_512x512_160k_ade20k_20210829_174739.log.json) |
-| FCN | HRNetV2p-W18 | 512x512 | 160000 | - | - | V100 | 36.79 | 38.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_160k_ade20k/fcn_hr18_512x512_160k_ade20k_20200614_214426-ca961836.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_160k_ade20k/fcn_hr18_512x512_160k_ade20k_20200614_214426.log.json) |
-| FCN | HRNetV2p-W48 | 512x512 | 160000 | - | - | V100 | 42.02 | 43.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_160k_ade20k/fcn_hr48_512x512_160k_ade20k_20200614_214407-a52fc02c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_160k_ade20k/fcn_hr48_512x512_160k_ade20k_20200614_214407.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| FCN | HRNetV2p-W18-Small | 512x512 | 80000 | 3.8 | 38.66 | V100 | 31.38 | 32.45 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18s_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_ade20k/fcn_hr18s_512x512_80k_ade20k_20200614_144345-77fc814a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_ade20k/fcn_hr18s_512x512_80k_ade20k_20200614_144345.log.json) |
+| FCN | HRNetV2p-W18 | 512x512 | 80000 | 4.9 | 22.57 | V100 | 36.27 | 37.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_ade20k/fcn_hr18_512x512_80k_ade20k_20210827_114910-6c9382c0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_ade20k/fcn_hr18_512x512_80k_ade20k_20210827_114910.log.json) |
+| FCN | HRNetV2p-W48 | 512x512 | 80000 | 8.2 | 21.23 | V100 | 41.90 | 43.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_ade20k/fcn_hr48_512x512_80k_ade20k_20200614_193946-7ba5258d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_ade20k/fcn_hr48_512x512_80k_ade20k_20200614_193946.log.json) |
+| FCN | HRNetV2p-W18-Small | 512x512 | 160000 | - | - | V100 | 33.07 | 34.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18s_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_160k_ade20k/fcn_hr18s_512x512_160k_ade20k_20210829_174739-f1e7c2e7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_160k_ade20k/fcn_hr18s_512x512_160k_ade20k_20210829_174739.log.json) |
+| FCN | HRNetV2p-W18 | 512x512 | 160000 | - | - | V100 | 36.79 | 38.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_160k_ade20k/fcn_hr18_512x512_160k_ade20k_20200614_214426-ca961836.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_160k_ade20k/fcn_hr18_512x512_160k_ade20k_20200614_214426.log.json) |
+| FCN | HRNetV2p-W48 | 512x512 | 160000 | - | - | V100 | 42.02 | 43.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_160k_ade20k/fcn_hr48_512x512_160k_ade20k_20200614_214407-a52fc02c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_160k_ade20k/fcn_hr48_512x512_160k_ade20k_20200614_214407.log.json) |
### Pascal VOC 2012 + Aug
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| FCN | HRNetV2p-W18-Small | 512x512 | 20000 | 1.8 | 43.36 | V100 | 65.5 | 68.89 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_20k_voc12aug/fcn_hr18s_512x512_20k_voc12aug_20210829_174910-0aceadb4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_20k_voc12aug/fcn_hr18s_512x512_20k_voc12aug_20210829_174910.log.json) |
-| FCN | HRNetV2p-W18 | 512x512 | 20000 | 2.9 | 23.48 | V100 | 72.30 | 74.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_20k_voc12aug/fcn_hr18_512x512_20k_voc12aug_20200617_224503-488d45f7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_20k_voc12aug/fcn_hr18_512x512_20k_voc12aug_20200617_224503.log.json) |
-| FCN | HRNetV2p-W48 | 512x512 | 20000 | 6.2 | 22.05 | V100 | 75.87 | 78.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_20k_voc12aug/fcn_hr48_512x512_20k_voc12aug_20200617_224419-89de05cd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_20k_voc12aug/fcn_hr48_512x512_20k_voc12aug_20200617_224419.log.json) |
-| FCN | HRNetV2p-W18-Small | 512x512 | 40000 | - | - | V100 | 66.61 | 70.00 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_40k_voc12aug/fcn_hr18s_512x512_40k_voc12aug_20200614_000648-4f8d6e7f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_40k_voc12aug/fcn_hr18s_512x512_40k_voc12aug_20200614_000648.log.json) |
-| FCN | HRNetV2p-W18 | 512x512 | 40000 | - | - | V100 | 72.90 | 75.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_40k_voc12aug/fcn_hr18_512x512_40k_voc12aug_20200613_224401-1b4b76cd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_40k_voc12aug/fcn_hr18_512x512_40k_voc12aug_20200613_224401.log.json) |
-| FCN | HRNetV2p-W48 | 512x512 | 40000 | - | - | V100 | 76.24 | 78.49 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_40k_voc12aug/fcn_hr48_512x512_40k_voc12aug_20200613_222111-1b0f18bc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_40k_voc12aug/fcn_hr48_512x512_40k_voc12aug_20200613_222111.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| FCN | HRNetV2p-W18-Small | 512x512 | 20000 | 1.8 | 43.36 | V100 | 65.5 | 68.89 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18s_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_20k_voc12aug/fcn_hr18s_512x512_20k_voc12aug_20210829_174910-0aceadb4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_20k_voc12aug/fcn_hr18s_512x512_20k_voc12aug_20210829_174910.log.json) |
+| FCN | HRNetV2p-W18 | 512x512 | 20000 | 2.9 | 23.48 | V100 | 72.30 | 74.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_20k_voc12aug/fcn_hr18_512x512_20k_voc12aug_20200617_224503-488d45f7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_20k_voc12aug/fcn_hr18_512x512_20k_voc12aug_20200617_224503.log.json) |
+| FCN | HRNetV2p-W48 | 512x512 | 20000 | 6.2 | 22.05 | V100 | 75.87 | 78.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_20k_voc12aug/fcn_hr48_512x512_20k_voc12aug_20200617_224419-89de05cd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_20k_voc12aug/fcn_hr48_512x512_20k_voc12aug_20200617_224419.log.json) |
+| FCN | HRNetV2p-W18-Small | 512x512 | 40000 | - | - | V100 | 66.61 | 70.00 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18s_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_40k_voc12aug/fcn_hr18s_512x512_40k_voc12aug_20200614_000648-4f8d6e7f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_40k_voc12aug/fcn_hr18s_512x512_40k_voc12aug_20200614_000648.log.json) |
+| FCN | HRNetV2p-W18 | 512x512 | 40000 | - | - | V100 | 72.90 | 75.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_40k_voc12aug/fcn_hr18_512x512_40k_voc12aug_20200613_224401-1b4b76cd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_40k_voc12aug/fcn_hr18_512x512_40k_voc12aug_20200613_224401.log.json) |
+| FCN | HRNetV2p-W48 | 512x512 | 40000 | - | - | V100 | 76.24 | 78.49 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_40k_voc12aug/fcn_hr48_512x512_40k_voc12aug_20200613_222111-1b0f18bc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_40k_voc12aug/fcn_hr48_512x512_40k_voc12aug_20200613_222111.log.json) |
### Pascal Context
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | ------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| FCN | HRNetV2p-W48 | 480x480 | 40000 | 6.1 | 8.86 | V100 | 45.14 | 47.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-40k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context/fcn_hr48_480x480_40k_pascal_context_20200911_164852-667d00b0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context/fcn_hr48_480x480_40k_pascal_context-20200911_164852.log.json) |
-| FCN | HRNetV2p-W48 | 480x480 | 80000 | - | - | V100 | 45.84 | 47.84 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-80k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context/fcn_hr48_480x480_80k_pascal_context_20200911_155322-847a6711.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context/fcn_hr48_480x480_80k_pascal_context-20200911_155322.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | ------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| FCN | HRNetV2p-W48 | 480x480 | 40000 | 6.1 | 8.86 | V100 | 45.14 | 47.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb4-40k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context/fcn_hr48_480x480_40k_pascal_context_20200911_164852-667d00b0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context/fcn_hr48_480x480_40k_pascal_context-20200911_164852.log.json) |
+| FCN | HRNetV2p-W48 | 480x480 | 80000 | - | - | V100 | 45.84 | 47.84 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb4-80k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context/fcn_hr48_480x480_80k_pascal_context_20200911_155322-847a6711.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context/fcn_hr48_480x480_80k_pascal_context-20200911_155322.log.json) |
### Pascal Context 59
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | ------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| FCN | HRNetV2p-W48 | 480x480 | 40000 | - | - | V100 | 50.33 | 52.83 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-40k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context_59/fcn_hr48_480x480_40k_pascal_context_59_20210410_122738-b808b8b2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context_59/fcn_hr48_480x480_40k_pascal_context_59-20210410_122738.log.json) |
-| FCN | HRNetV2p-W48 | 480x480 | 80000 | - | - | V100 | 51.12 | 53.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-80k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context_59/fcn_hr48_480x480_80k_pascal_context_59_20210411_003240-3ae7081e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context_59/fcn_hr48_480x480_80k_pascal_context_59-20210411_003240.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | ------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| FCN | HRNetV2p-W48 | 480x480 | 40000 | - | - | V100 | 50.33 | 52.83 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb4-40k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context_59/fcn_hr48_480x480_40k_pascal_context_59_20210410_122738-b808b8b2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context_59/fcn_hr48_480x480_40k_pascal_context_59-20210410_122738.log.json) |
+| FCN | HRNetV2p-W48 | 480x480 | 80000 | - | - | V100 | 51.12 | 53.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb4-80k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context_59/fcn_hr48_480x480_80k_pascal_context_59_20210411_003240-3ae7081e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context_59/fcn_hr48_480x480_80k_pascal_context_59-20210411_003240.log.json) |
### LoveDA
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| FCN | HRNetV2p-W18-Small | 512x512 | 80000 | 1.59 | 24.87 | V100 | 49.28 | 49.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb4-80k_loveda-512x512.pyy) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_loveda/fcn_hr18s_512x512_80k_loveda_20211210_203228-60a86a7a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_loveda/fcn_hr18s_512x512_80k_loveda_20211210_203228.log.json) |
-| FCN | HRNetV2p-W18 | 512x512 | 80000 | 2.76 | 12.92 | V100 | 50.81 | 50.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_loveda/fcn_hr18_512x512_80k_loveda_20211210_203952-93d9c3b3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_loveda/fcn_hr18_512x512_80k_loveda_20211210_203952.log.json) |
-| FCN | HRNetV2p-W48 | 512x512 | 80000 | 6.20 | 9.61 | V100 | 51.42 | 51.64 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_loveda/fcn_hr48_512x512_80k_loveda_20211211_044756-67072f55.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_loveda/fcn_hr48_512x512_80k_loveda_20211211_044756.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| FCN | HRNetV2p-W18-Small | 512x512 | 80000 | 1.59 | 24.87 | V100 | 49.28 | 49.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18s_4xb4-80k_loveda-512x512.pyy) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_loveda/fcn_hr18s_512x512_80k_loveda_20211210_203228-60a86a7a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_loveda/fcn_hr18s_512x512_80k_loveda_20211210_203228.log.json) |
+| FCN | HRNetV2p-W18 | 512x512 | 80000 | 2.76 | 12.92 | V100 | 50.81 | 50.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_loveda/fcn_hr18_512x512_80k_loveda_20211210_203952-93d9c3b3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_loveda/fcn_hr18_512x512_80k_loveda_20211210_203952.log.json) |
+| FCN | HRNetV2p-W48 | 512x512 | 80000 | 6.20 | 9.61 | V100 | 51.42 | 51.64 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_loveda/fcn_hr48_512x512_80k_loveda_20211211_044756-67072f55.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_loveda/fcn_hr48_512x512_80k_loveda_20211211_044756.log.json) |
### Potsdam
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| FCN | HRNetV2p-W18-Small | 512x512 | 80000 | 1.58 | 36.00 | V100 | 77.64 | 78.8 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_potsdam/fcn_hr18s_512x512_80k_potsdam_20211218_205517-ba32af63.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_potsdam/fcn_hr18s_512x512_80k_potsdam_20211218_205517.log.json) |
-| FCN | HRNetV2p-W18 | 512x512 | 80000 | 2.76 | 19.25 | V100 | 78.26 | 79.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_potsdam/fcn_hr18_512x512_80k_potsdam_20211218_205517-5d0387ad.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_potsdam/fcn_hr18_512x512_80k_potsdam_20211218_205517.log.json) |
-| FCN | HRNetV2p-W48 | 512x512 | 80000 | 6.20 | 16.42 | V100 | 78.39 | 79.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_potsdam/fcn_hr48_512x512_80k_potsdam_20211219_020601-97434c78.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_potsdam/fcn_hr48_512x512_80k_potsdam_20211219_020601.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| FCN | HRNetV2p-W18-Small | 512x512 | 80000 | 1.58 | 36.00 | V100 | 77.64 | 78.8 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18s_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_potsdam/fcn_hr18s_512x512_80k_potsdam_20211218_205517-ba32af63.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_potsdam/fcn_hr18s_512x512_80k_potsdam_20211218_205517.log.json) |
+| FCN | HRNetV2p-W18 | 512x512 | 80000 | 2.76 | 19.25 | V100 | 78.26 | 79.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_potsdam/fcn_hr18_512x512_80k_potsdam_20211218_205517-5d0387ad.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_potsdam/fcn_hr18_512x512_80k_potsdam_20211218_205517.log.json) |
+| FCN | HRNetV2p-W48 | 512x512 | 80000 | 6.20 | 16.42 | V100 | 78.39 | 79.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_potsdam/fcn_hr48_512x512_80k_potsdam_20211219_020601-97434c78.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_potsdam/fcn_hr48_512x512_80k_potsdam_20211219_020601.log.json) |
### Vaihingen
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| FCN | HRNetV2p-W18-Small | 512x512 | 80000 | 1.58 | 38.11 | V100 | 71.81 | 73.1 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_512x512_80k_vaihingen/fcn_hr18s_4x4_512x512_80k_vaihingen_20211231_230909-b23aae02.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_512x512_80k_vaihingen/fcn_hr18s_4x4_512x512_80k_vaihingen_20211231_230909.log.json) |
-| FCN | HRNetV2p-W18 | 512x512 | 80000 | 2.76 | 19.55 | V100 | 72.57 | 74.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_512x512_80k_vaihingen/fcn_hr18_4x4_512x512_80k_vaihingen_20211231_231216-2ec3ae8a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_512x512_80k_vaihingen/fcn_hr18_4x4_512x512_80k_vaihingen_20211231_231216.log.json) |
-| FCN | HRNetV2p-W48 | 512x512 | 80000 | 6.20 | 17.25 | V100 | 72.50 | 73.52 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_512x512_80k_vaihingen/fcn_hr48_4x4_512x512_80k_vaihingen_20211231_231244-7133cb22.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_512x512_80k_vaihingen/fcn_hr48_4x4_512x512_80k_vaihingen_20211231_231244.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| FCN | HRNetV2p-W18-Small | 512x512 | 80000 | 1.58 | 38.11 | V100 | 71.81 | 73.1 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18s_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_512x512_80k_vaihingen/fcn_hr18s_4x4_512x512_80k_vaihingen_20211231_230909-b23aae02.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_512x512_80k_vaihingen/fcn_hr18s_4x4_512x512_80k_vaihingen_20211231_230909.log.json) |
+| FCN | HRNetV2p-W18 | 512x512 | 80000 | 2.76 | 19.55 | V100 | 72.57 | 74.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_512x512_80k_vaihingen/fcn_hr18_4x4_512x512_80k_vaihingen_20211231_231216-2ec3ae8a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_512x512_80k_vaihingen/fcn_hr18_4x4_512x512_80k_vaihingen_20211231_231216.log.json) |
+| FCN | HRNetV2p-W48 | 512x512 | 80000 | 6.20 | 17.25 | V100 | 72.50 | 73.52 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_512x512_80k_vaihingen/fcn_hr48_4x4_512x512_80k_vaihingen_20211231_231244-7133cb22.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_512x512_80k_vaihingen/fcn_hr48_4x4_512x512_80k_vaihingen_20211231_231244.log.json) |
### iSAID
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| FCN | HRNetV2p-W18-Small | 896x896 | 80000 | 4.95 | 13.84 | V100 | 62.30 | 62.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18s_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_896x896_80k_isaid/fcn_hr18s_4x4_896x896_80k_isaid_20220118_001603-3cc0769b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_896x896_80k_isaid/fcn_hr18s_4x4_896x896_80k_isaid_20220118_001603.log.json) |
-| FCN | HRNetV2p-W18 | 896x896 | 80000 | 8.30 | 7.71 | V100 | 65.06 | 65.60 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr18_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_896x896_80k_isaid/fcn_hr18_4x4_896x896_80k_isaid_20220110_182230-49bf752e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_896x896_80k_isaid/fcn_hr18_4x4_896x896_80k_isaid_20220110_182230.log.json) |
-| FCN | HRNetV2p-W48 | 896x896 | 80000 | 16.89 | 7.34 | V100 | 67.80 | 68.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/hrnet/fcn_hr48_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_896x896_80k_isaid/fcn_hr48_4x4_896x896_80k_isaid_20220114_174643-547fc420.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_896x896_80k_isaid/fcn_hr48_4x4_896x896_80k_isaid_20220114_174643.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| FCN | HRNetV2p-W18-Small | 896x896 | 80000 | 4.95 | 13.84 | V100 | 62.30 | 62.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18s_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_896x896_80k_isaid/fcn_hr18s_4x4_896x896_80k_isaid_20220118_001603-3cc0769b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_896x896_80k_isaid/fcn_hr18s_4x4_896x896_80k_isaid_20220118_001603.log.json) |
+| FCN | HRNetV2p-W18 | 896x896 | 80000 | 8.30 | 7.71 | V100 | 65.06 | 65.60 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_896x896_80k_isaid/fcn_hr18_4x4_896x896_80k_isaid_20220110_182230-49bf752e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_896x896_80k_isaid/fcn_hr18_4x4_896x896_80k_isaid_20220110_182230.log.json) |
+| FCN | HRNetV2p-W48 | 896x896 | 80000 | 16.89 | 7.34 | V100 | 67.80 | 68.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_896x896_80k_isaid/fcn_hr48_4x4_896x896_80k_isaid_20220114_174643-547fc420.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_896x896_80k_isaid/fcn_hr48_4x4_896x896_80k_isaid_20220114_174643.log.json) |
Note:
diff --git a/configs/icnet/README.md b/configs/icnet/README.md
index 2b58c2eed8..fa2327fc39 100644
--- a/configs/icnet/README.md
+++ b/configs/icnet/README.md
@@ -26,20 +26,20 @@ We focus on the challenging task of real-time semantic segmentation in this pape
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ---------------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| ICNet | R-18-D8 | 832x832 | 80000 | 1.70 | 27.12 | V100 | 68.14 | 70.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r18-d8_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_80k_cityscapes/icnet_r18-d8_832x832_80k_cityscapes_20210925_225521-2e36638d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_80k_cityscapes/icnet_r18-d8_832x832_80k_cityscapes_20210925_225521.log.json) |
-| ICNet | R-18-D8 | 832x832 | 160000 | - | - | V100 | 71.64 | 74.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r18-d8_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_160k_cityscapes/icnet_r18-d8_832x832_160k_cityscapes_20210925_230153-2c6eb6e0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_160k_cityscapes/icnet_r18-d8_832x832_160k_cityscapes_20210925_230153.log.json) |
-| ICNet (in1k-pre) | R-18-D8 | 832x832 | 80000 | - | - | V100 | 72.51 | 74.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r18-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes_20210925_230354-1cbe3022.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes_20210925_230354.log.json) |
-| ICNet (in1k-pre) | R-18-D8 | 832x832 | 160000 | - | - | V100 | 74.43 | 76.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r18-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes_20210926_052702-619c8ae1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes_20210926_052702.log.json) |
-| ICNet | R-50-D8 | 832x832 | 80000 | 2.53 | 20.08 | V100 | 68.91 | 69.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r50-d8_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_80k_cityscapes/icnet_r50-d8_832x832_80k_cityscapes_20210926_044625-c6407341.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_80k_cityscapes/icnet_r50-d8_832x832_80k_cityscapes_20210926_044625.log.json) |
-| ICNet | R-50-D8 | 832x832 | 160000 | - | - | V100 | 73.82 | 75.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r50-d8_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_160k_cityscapes/icnet_r50-d8_832x832_160k_cityscapes_20210925_232612-a95f0d4e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_160k_cityscapes/icnet_r50-d8_832x832_160k_cityscapes_20210925_232612.log.json) |
-| ICNet (in1k-pre) | R-50-D8 | 832x832 | 80000 | - | - | V100 | 74.58 | 76.41 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r50-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes_20210926_032943-1743dc7b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes_20210926_032943.log.json) |
-| ICNet (in1k-pre) | R-50-D8 | 832x832 | 160000 | - | - | V100 | 76.29 | 78.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r50-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes_20210926_042715-ce310aea.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes_20210926_042715.log.json) |
-| ICNet | R-101-D8 | 832x832 | 80000 | 3.08 | 16.95 | V100 | 70.28 | 71.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r101-d8_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_80k_cityscapes/icnet_r101-d8_832x832_80k_cityscapes_20210926_072447-b52f936e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_80k_cityscapes/icnet_r101-d8_832x832_80k_cityscapes_20210926_072447.log.json) |
-| ICNet | R-101-D8 | 832x832 | 160000 | - | - | V100 | 73.80 | 76.10 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r101-d8_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_160k_cityscapes/icnet_r101-d8_832x832_160k_cityscapes_20210926_092350-3a1ebf1a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_160k_cityscapes/icnet_r101-d8_832x832_160k_cityscapes_20210926_092350.log.json) |
-| ICNet (in1k-pre) | R-101-D8 | 832x832 | 80000 | - | - | V100 | 75.57 | 77.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r101-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes_20210926_020414-7ceb12c5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes_20210926_020414.log.json) |
-| ICNet (in1k-pre) | R-101-D8 | 832x832 | 160000 | - | - | V100 | 76.15 | 77.98 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/icnet/icnet_r101-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes_20210925_232612-9484ae8a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes_20210925_232612.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ---------------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| ICNet | R-18-D8 | 832x832 | 80000 | 1.70 | 27.12 | V100 | 68.14 | 70.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/icnet/icnet_r18-d8_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_80k_cityscapes/icnet_r18-d8_832x832_80k_cityscapes_20210925_225521-2e36638d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_80k_cityscapes/icnet_r18-d8_832x832_80k_cityscapes_20210925_225521.log.json) |
+| ICNet | R-18-D8 | 832x832 | 160000 | - | - | V100 | 71.64 | 74.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/icnet/icnet_r18-d8_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_160k_cityscapes/icnet_r18-d8_832x832_160k_cityscapes_20210925_230153-2c6eb6e0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_160k_cityscapes/icnet_r18-d8_832x832_160k_cityscapes_20210925_230153.log.json) |
+| ICNet (in1k-pre) | R-18-D8 | 832x832 | 80000 | - | - | V100 | 72.51 | 74.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/icnet/icnet_r18-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes_20210925_230354-1cbe3022.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes_20210925_230354.log.json) |
+| ICNet (in1k-pre) | R-18-D8 | 832x832 | 160000 | - | - | V100 | 74.43 | 76.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/icnet/icnet_r18-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes_20210926_052702-619c8ae1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes_20210926_052702.log.json) |
+| ICNet | R-50-D8 | 832x832 | 80000 | 2.53 | 20.08 | V100 | 68.91 | 69.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/icnet/icnet_r50-d8_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_80k_cityscapes/icnet_r50-d8_832x832_80k_cityscapes_20210926_044625-c6407341.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_80k_cityscapes/icnet_r50-d8_832x832_80k_cityscapes_20210926_044625.log.json) |
+| ICNet | R-50-D8 | 832x832 | 160000 | - | - | V100 | 73.82 | 75.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/icnet/icnet_r50-d8_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_160k_cityscapes/icnet_r50-d8_832x832_160k_cityscapes_20210925_232612-a95f0d4e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_160k_cityscapes/icnet_r50-d8_832x832_160k_cityscapes_20210925_232612.log.json) |
+| ICNet (in1k-pre) | R-50-D8 | 832x832 | 80000 | - | - | V100 | 74.58 | 76.41 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/icnet/icnet_r50-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes_20210926_032943-1743dc7b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes_20210926_032943.log.json) |
+| ICNet (in1k-pre) | R-50-D8 | 832x832 | 160000 | - | - | V100 | 76.29 | 78.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/icnet/icnet_r50-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes_20210926_042715-ce310aea.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes_20210926_042715.log.json) |
+| ICNet | R-101-D8 | 832x832 | 80000 | 3.08 | 16.95 | V100 | 70.28 | 71.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/icnet/icnet_r101-d8_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_80k_cityscapes/icnet_r101-d8_832x832_80k_cityscapes_20210926_072447-b52f936e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_80k_cityscapes/icnet_r101-d8_832x832_80k_cityscapes_20210926_072447.log.json) |
+| ICNet | R-101-D8 | 832x832 | 160000 | - | - | V100 | 73.80 | 76.10 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/icnet/icnet_r101-d8_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_160k_cityscapes/icnet_r101-d8_832x832_160k_cityscapes_20210926_092350-3a1ebf1a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_160k_cityscapes/icnet_r101-d8_832x832_160k_cityscapes_20210926_092350.log.json) |
+| ICNet (in1k-pre) | R-101-D8 | 832x832 | 80000 | - | - | V100 | 75.57 | 77.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/icnet/icnet_r101-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes_20210926_020414-7ceb12c5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes_20210926_020414.log.json) |
+| ICNet (in1k-pre) | R-101-D8 | 832x832 | 160000 | - | - | V100 | 76.15 | 77.98 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/icnet/icnet_r101-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes_20210925_232612-9484ae8a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes_20210925_232612.log.json) |
Note: `in1k-pre` means pretrained model is used.
diff --git a/configs/isanet/README.md b/configs/isanet/README.md
index da9f0104c5..c11744ffef 100644
--- a/configs/isanet/README.md
+++ b/configs/isanet/README.md
@@ -26,34 +26,34 @@ In this paper, we present a so-called interlaced sparse self-attention approach
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------- | -------: | -------------- | ------ | ----- | ------------: | --------------------------------------------------------------------------------------------------------------------------------: | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| ISANet | R-50-D8 | 512x1024 | 40000 | 5.869 | 2.91 | V100 | 78.49 | 79.44 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_40k_cityscapes/isanet_r50-d8_512x1024_40k_cityscapes_20210901_054739-981bd763.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_40k_cityscapes/isanet_r50-d8_512x1024_40k_cityscapes_20210901_054739.log.json) |
-| ISANet | R-50-D8 | 512x1024 | 80000 | 5.869 | 2.91 | V100 | 78.68 | 80.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_80k_cityscapes/isanet_r50-d8_512x1024_80k_cityscapes_20210901_074202-89384497.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_80k_cityscapes/isanet_r50-d8_512x1024_80k_cityscapes_20210901_074202.log.json) |
-| ISANet | R-50-D8 | 769x769 | 40000 | 6.759 | 1.54 | V100 | 78.70 | 80.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_40k_cityscapes/isanet_r50-d8_769x769_40k_cityscapes_20210903_050200-4ae7e65b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_40k_cityscapes/isanet_r50-d8_769x769_40k_cityscapes_20210903_050200.log.json) |
-| ISANet | R-50-D8 | 769x769 | 80000 | 6.759 | 1.54 | V100 | 79.29 | 80.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_80k_cityscapes/isanet_r50-d8_769x769_80k_cityscapes_20210903_101126-99b54519.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_80k_cityscapes/isanet_r50-d8_769x769_80k_cityscapes_20210903_101126.log.json) |
-| ISANet | R-101-D8 | 512x1024 | 40000 | 9.425 | 2.35 | V100 | 79.58 | 81.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_40k_cityscapes/isanet_r101-d8_512x1024_40k_cityscapes_20210901_145553-293e6bd6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_40k_cityscapes/isanet_r101-d8_512x1024_40k_cityscapes_20210901_145553.log.json) |
-| ISANet | R-101-D8 | 512x1024 | 80000 | 9.425 | 2.35 | V100 | 80.32 | 81.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_80k_cityscapes/isanet_r101-d8_512x1024_80k_cityscapes_20210901_145243-5b99c9b2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_80k_cityscapes/isanet_r101-d8_512x1024_80k_cityscapes_20210901_145243.log.json) |
-| ISANet | R-101-D8 | 769x769 | 40000 | 10.815 | 0.92 | V100 | 79.68 | 80.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_40k_cityscapes/isanet_r101-d8_769x769_40k_cityscapes_20210903_111320-509e7224.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_40k_cityscapes/isanet_r101-d8_769x769_40k_cityscapes_20210903_111320.log.json) |
-| ISANet | R-101-D8 | 769x769 | 80000 | 10.815 | 0.92 | V100 | 80.61 | 81.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_80k_cityscapes/isanet_r101-d8_769x769_80k_cityscapes_20210903_111319-24f71dfa.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_80k_cityscapes/isanet_r101-d8_769x769_80k_cityscapes_20210903_111319.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------- | -------: | -------------- | ------ | ----- | ------------: | -----------------------------------------------------------------------------------------------------------------------------: | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| ISANet | R-50-D8 | 512x1024 | 40000 | 5.869 | 2.91 | V100 | 78.49 | 79.44 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/isanet/isanet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_40k_cityscapes/isanet_r50-d8_512x1024_40k_cityscapes_20210901_054739-981bd763.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_40k_cityscapes/isanet_r50-d8_512x1024_40k_cityscapes_20210901_054739.log.json) |
+| ISANet | R-50-D8 | 512x1024 | 80000 | 5.869 | 2.91 | V100 | 78.68 | 80.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/isanet/isanet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_80k_cityscapes/isanet_r50-d8_512x1024_80k_cityscapes_20210901_074202-89384497.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_80k_cityscapes/isanet_r50-d8_512x1024_80k_cityscapes_20210901_074202.log.json) |
+| ISANet | R-50-D8 | 769x769 | 40000 | 6.759 | 1.54 | V100 | 78.70 | 80.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/isanet/isanet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_40k_cityscapes/isanet_r50-d8_769x769_40k_cityscapes_20210903_050200-4ae7e65b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_40k_cityscapes/isanet_r50-d8_769x769_40k_cityscapes_20210903_050200.log.json) |
+| ISANet | R-50-D8 | 769x769 | 80000 | 6.759 | 1.54 | V100 | 79.29 | 80.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/isanet/isanet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_80k_cityscapes/isanet_r50-d8_769x769_80k_cityscapes_20210903_101126-99b54519.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_80k_cityscapes/isanet_r50-d8_769x769_80k_cityscapes_20210903_101126.log.json) |
+| ISANet | R-101-D8 | 512x1024 | 40000 | 9.425 | 2.35 | V100 | 79.58 | 81.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/isanet/isanet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_40k_cityscapes/isanet_r101-d8_512x1024_40k_cityscapes_20210901_145553-293e6bd6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_40k_cityscapes/isanet_r101-d8_512x1024_40k_cityscapes_20210901_145553.log.json) |
+| ISANet | R-101-D8 | 512x1024 | 80000 | 9.425 | 2.35 | V100 | 80.32 | 81.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/isanet/isanet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_80k_cityscapes/isanet_r101-d8_512x1024_80k_cityscapes_20210901_145243-5b99c9b2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_80k_cityscapes/isanet_r101-d8_512x1024_80k_cityscapes_20210901_145243.log.json) |
+| ISANet | R-101-D8 | 769x769 | 40000 | 10.815 | 0.92 | V100 | 79.68 | 80.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/isanet/isanet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_40k_cityscapes/isanet_r101-d8_769x769_40k_cityscapes_20210903_111320-509e7224.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_40k_cityscapes/isanet_r101-d8_769x769_40k_cityscapes_20210903_111320.log.json) |
+| ISANet | R-101-D8 | 769x769 | 80000 | 10.815 | 0.92 | V100 | 80.61 | 81.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/isanet/isanet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_80k_cityscapes/isanet_r101-d8_769x769_80k_cityscapes_20210903_111319-24f71dfa.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_80k_cityscapes/isanet_r101-d8_769x769_80k_cityscapes_20210903_111319.log.json) |
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------- | -------: | -------------- | ------ | ----- | ------------: | ----------------------------------------------------------------------------------------------------------------------------: | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| ISANet | R-50-D8 | 512x512 | 80000 | 9.0 | 22.55 | V100 | 41.12 | 42.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_80k_ade20k/isanet_r50-d8_512x512_80k_ade20k_20210903_124557-6ed83a0c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_80k_ade20k/isanet_r50-d8_512x512_80k_ade20k_20210903_124557.log.json) |
-| ISANet | R-50-D8 | 512x512 | 160000 | 9.0 | 22.55 | V100 | 42.59 | 43.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_160k_ade20k/isanet_r50-d8_512x512_160k_ade20k_20210903_104850-f752d0a3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_160k_ade20k/isanet_r50-d8_512x512_160k_ade20k_20210903_104850.log.json) |
-| ISANet | R-101-D8 | 512x512 | 80000 | 12.562 | 10.56 | V100 | 43.51 | 44.38 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_80k_ade20k/isanet_r101-d8_512x512_80k_ade20k_20210903_162056-68b235c2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_80k_ade20k/isanet_r101-d8_512x512_80k_ade20k_20210903_162056.log.json) |
-| ISANet | R-101-D8 | 512x512 | 160000 | 12.562 | 10.56 | V100 | 43.80 | 45.4 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_160k_ade20k/isanet_r101-d8_512x512_160k_ade20k_20210903_211431-a7879dcd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_160k_ade20k/isanet_r101-d8_512x512_160k_ade20k_20210903_211431.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------- | -------: | -------------- | ------ | ----- | ------------: | -------------------------------------------------------------------------------------------------------------------------: | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| ISANet | R-50-D8 | 512x512 | 80000 | 9.0 | 22.55 | V100 | 41.12 | 42.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/isanet/isanet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_80k_ade20k/isanet_r50-d8_512x512_80k_ade20k_20210903_124557-6ed83a0c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_80k_ade20k/isanet_r50-d8_512x512_80k_ade20k_20210903_124557.log.json) |
+| ISANet | R-50-D8 | 512x512 | 160000 | 9.0 | 22.55 | V100 | 42.59 | 43.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/isanet/isanet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_160k_ade20k/isanet_r50-d8_512x512_160k_ade20k_20210903_104850-f752d0a3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_160k_ade20k/isanet_r50-d8_512x512_160k_ade20k_20210903_104850.log.json) |
+| ISANet | R-101-D8 | 512x512 | 80000 | 12.562 | 10.56 | V100 | 43.51 | 44.38 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/isanet/isanet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_80k_ade20k/isanet_r101-d8_512x512_80k_ade20k_20210903_162056-68b235c2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_80k_ade20k/isanet_r101-d8_512x512_80k_ade20k_20210903_162056.log.json) |
+| ISANet | R-101-D8 | 512x512 | 160000 | 12.562 | 10.56 | V100 | 43.80 | 45.4 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/isanet/isanet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_160k_ade20k/isanet_r101-d8_512x512_160k_ade20k_20210903_211431-a7879dcd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_160k_ade20k/isanet_r101-d8_512x512_160k_ade20k_20210903_211431.log.json) |
### Pascal VOC 2012 + Aug
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------- | -------: | -------------- | ------ | ----- | ------------: | -----------------------------------------------------------------------------------------------------------------------------: | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| ISANet | R-50-D8 | 512x512 | 20000 | 5.9 | 23.08 | V100 | 76.78 | 77.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_20k_voc12aug/isanet_r50-d8_512x512_20k_voc12aug_20210901_164838-79d59b80.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_20k_voc12aug/isanet_r50-d8_512x512_20k_voc12aug_20210901_164838.log.json) |
-| ISANet | R-50-D8 | 512x512 | 40000 | 5.9 | 23.08 | V100 | 76.20 | 77.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_40k_voc12aug/isanet_r50-d8_512x512_40k_voc12aug_20210901_151349-7d08a54e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_40k_voc12aug/isanet_r50-d8_512x512_40k_voc12aug_20210901_151349.log.json) |
-| ISANet | R-101-D8 | 512x512 | 20000 | 9.465 | 7.42 | V100 | 78.46 | 79.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_20k_voc12aug/isanet_r101-d8_512x512_20k_voc12aug_20210901_115805-3ccbf355.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_20k_voc12aug/isanet_r101-d8_512x512_20k_voc12aug_20210901_115805.log.json) |
-| ISANet | R-101-D8 | 512x512 | 40000 | 9.465 | 7.42 | V100 | 78.12 | 79.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/isanet/isanet_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_40k_voc12aug/isanet_r101-d8_512x512_40k_voc12aug_20210901_145814-bc71233b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_40k_voc12aug/isanet_r101-d8_512x512_40k_voc12aug_20210901_145814.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------- | -------: | -------------- | ------ | ----- | ------------: | --------------------------------------------------------------------------------------------------------------------------: | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| ISANet | R-50-D8 | 512x512 | 20000 | 5.9 | 23.08 | V100 | 76.78 | 77.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/isanet/isanet_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_20k_voc12aug/isanet_r50-d8_512x512_20k_voc12aug_20210901_164838-79d59b80.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_20k_voc12aug/isanet_r50-d8_512x512_20k_voc12aug_20210901_164838.log.json) |
+| ISANet | R-50-D8 | 512x512 | 40000 | 5.9 | 23.08 | V100 | 76.20 | 77.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/isanet/isanet_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_40k_voc12aug/isanet_r50-d8_512x512_40k_voc12aug_20210901_151349-7d08a54e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_40k_voc12aug/isanet_r50-d8_512x512_40k_voc12aug_20210901_151349.log.json) |
+| ISANet | R-101-D8 | 512x512 | 20000 | 9.465 | 7.42 | V100 | 78.46 | 79.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/isanet/isanet_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_20k_voc12aug/isanet_r101-d8_512x512_20k_voc12aug_20210901_115805-3ccbf355.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_20k_voc12aug/isanet_r101-d8_512x512_20k_voc12aug_20210901_115805.log.json) |
+| ISANet | R-101-D8 | 512x512 | 40000 | 9.465 | 7.42 | V100 | 78.12 | 79.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/isanet/isanet_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_40k_voc12aug/isanet_r101-d8_512x512_40k_voc12aug_20210901_145814-bc71233b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_40k_voc12aug/isanet_r101-d8_512x512_40k_voc12aug_20210901_145814.log.json) |
## Citation
diff --git a/configs/knet/README.md b/configs/knet/README.md
index 070c7256da..1f3f2ae268 100644
--- a/configs/knet/README.md
+++ b/configs/knet/README.md
@@ -26,15 +26,15 @@ Semantic, instance, and panoptic segmentations have been addressed using differe
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ---------------- | -------- | --------- | ------- | -------- | -------------- | ------ | ----- | ------------- | ------------------------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| KNet + FCN | R-50-D8 | 512x512 | 80000 | 7.01 | 19.24 | V100 | 43.60 | 45.12 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/knet/knet-s3_r50-d8_fcn_8xb2-adamw-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_043751-abcab920.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_043751.log.json) |
-| KNet + PSPNet | R-50-D8 | 512x512 | 80000 | 6.98 | 20.04 | V100 | 44.18 | 45.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/knet/knet-s3_r50-d8_pspnet_8xb2-adamw-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_054634-d2c72240.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_054634.log.json) |
-| KNet + DeepLabV3 | R-50-D8 | 512x512 | 80000 | 7.42 | 12.10 | V100 | 45.06 | 46.11 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/knet/knet-s3_r50-d8_deeplabv3_8xb2-adamw-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_041642-00c8fbeb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_041642.log.json) |
-| KNet + UperNet | R-50-D8 | 512x512 | 80000 | 7.34 | 17.11 | V100 | 43.45 | 44.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/knet/knet-s3_r50-d8_upernet_8xb2-adamw-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220304_125657-215753b0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220304_125657.log.json) |
-| KNet + UperNet | Swin-T | 512x512 | 80000 | 7.57 | 15.56 | V100 | 45.84 | 46.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/knet/knet-s3_swin-t_upernet_8xb2-adamw-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k_20220303_133059-7545e1dc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k_20220303_133059.log.json) |
-| KNet + UperNet | Swin-L | 512x512 | 80000 | 13.5 | 8.29 | V100 | 52.05 | 53.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/knet/knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k_20220303_154559-d8da9a90.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k_20220303_154559.log.json) |
-| KNet + UperNet | Swin-L | 640x640 | 80000 | 13.54 | 8.29 | V100 | 52.21 | 53.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/knet/knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k_20220301_220747-8787fc71.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k_20220301_220747.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ---------------- | -------- | --------- | ------- | -------- | -------------- | ------ | ----- | ------------- | --------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| KNet + FCN | R-50-D8 | 512x512 | 80000 | 7.01 | 19.24 | V100 | 43.60 | 45.12 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/knet/knet-s3_r50-d8_fcn_8xb2-adamw-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_043751-abcab920.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_043751.log.json) |
+| KNet + PSPNet | R-50-D8 | 512x512 | 80000 | 6.98 | 20.04 | V100 | 44.18 | 45.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/knet/knet-s3_r50-d8_pspnet_8xb2-adamw-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_054634-d2c72240.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_054634.log.json) |
+| KNet + DeepLabV3 | R-50-D8 | 512x512 | 80000 | 7.42 | 12.10 | V100 | 45.06 | 46.11 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/knet/knet-s3_r50-d8_deeplabv3_8xb2-adamw-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_041642-00c8fbeb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_041642.log.json) |
+| KNet + UperNet | R-50-D8 | 512x512 | 80000 | 7.34 | 17.11 | V100 | 43.45 | 44.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/knet/knet-s3_r50-d8_upernet_8xb2-adamw-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220304_125657-215753b0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220304_125657.log.json) |
+| KNet + UperNet | Swin-T | 512x512 | 80000 | 7.57 | 15.56 | V100 | 45.84 | 46.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/knet/knet-s3_swin-t_upernet_8xb2-adamw-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k_20220303_133059-7545e1dc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k_20220303_133059.log.json) |
+| KNet + UperNet | Swin-L | 512x512 | 80000 | 13.5 | 8.29 | V100 | 52.05 | 53.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/knet/knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k_20220303_154559-d8da9a90.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k_20220303_154559.log.json) |
+| KNet + UperNet | Swin-L | 640x640 | 80000 | 13.54 | 8.29 | V100 | 52.21 | 53.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/knet/knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k_20220301_220747-8787fc71.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k_20220301_220747.log.json) |
Note:
diff --git a/configs/mae/README.md b/configs/mae/README.md
index 94ade08823..d14e3830be 100644
--- a/configs/mae/README.md
+++ b/configs/mae/README.md
@@ -66,9 +66,9 @@ upernet_mae-base_fp16_8x2_512x512_160k_ade20k_20220426_174752-f92a2975.pth $GPUS
### ADE20K
-| Method | Backbone | Crop Size | pretrain | pretrain img size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------- | -------- | --------- | ----------- | ----------------- | ---------- | ------- | -------- | -------------- | ------ | ----- | ------------: | -------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| UPerNet | ViT-B | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 9.96 | 7.14 | V100 | 48.13 | 48.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mae/mae-base_upernet_8xb2-amp-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mae/upernet_mae-base_fp16_8x2_512x512_160k_ade20k/upernet_mae-base_fp16_8x2_512x512_160k_ade20k_20220426_174752-f92a2975.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mae/upernet_mae-base_fp16_8x2_512x512_160k_ade20k/upernet_mae-base_fp16_8x2_512x512_160k_ade20k_20220426_174752.log.json) |
+| Method | Backbone | Crop Size | pretrain | pretrain img size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------- | -------- | --------- | ----------- | ----------------- | ---------- | ------- | -------- | -------------- | ------ | ----- | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| UPerNet | ViT-B | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 9.96 | 7.14 | V100 | 48.13 | 48.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mae/mae-base_upernet_8xb2-amp-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mae/upernet_mae-base_fp16_8x2_512x512_160k_ade20k/upernet_mae-base_fp16_8x2_512x512_160k_ade20k_20220426_174752-f92a2975.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mae/upernet_mae-base_fp16_8x2_512x512_160k_ade20k/upernet_mae-base_fp16_8x2_512x512_160k_ade20k_20220426_174752.log.json) |
## Citation
diff --git a/configs/mask2former/README.md b/configs/mask2former/README.md
index 02639bef58..c21ab0d0c6 100644
--- a/configs/mask2former/README.md
+++ b/configs/mask2former/README.md
@@ -28,26 +28,26 @@ pip install "mmdet>=3.0.0rc4"
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ----------- | -------------- | --------- | ------- | -------: | -------------- | ------ | ----- | ------------: | -----------------------------------------------------------------------------------------------------------------------------------------------------------: | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| Mask2Former | R-50-D32 | 512x1024 | 90000 | 5.67 | 9.17 | A100 | 80.44 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_r50_8xb2-90k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r50_8xb2-90k_cityscapes-512x1024/mask2former_r50_8xb2-90k_cityscapes-512x1024_20221202_140802-ffd9d750.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r50_8xb2-90k_cityscapes-512x1024/mask2former_r50_8xb2-90k_cityscapes-512x1024_20221202_140802.json) |
-| Mask2Former | R-101-D32 | 512x1024 | 90000 | 6.81 | 7.11 | A100 | 80.80 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_r101_8xb2-90k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r101_8xb2-90k_cityscapes-512x1024/mask2former_r101_8xb2-90k_cityscapes-512x1024_20221130_031628-43e68666.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r101_8xb2-90k_cityscapes-512x1024/mask2former_r101_8xb2-90k_cityscapes-512x1024_20221130_031628.json)) |
-| Mask2Former | Swin-T | 512x1024 | 90000 | 6.36 | 7.18 | A100 | 81.71 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_swin-t_8xb2-90k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-t_8xb2-90k_cityscapes-512x1024/mask2former_swin-t_8xb2-90k_cityscapes-512x1024_20221127_144501-36c59341.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-t_8xb2-90k_cityscapes-512x1024/mask2former_swin-t_8xb2-90k_cityscapes-512x1024_20221127_144501.json)) |
-| Mask2Former | Swin-S | 512x1024 | 90000 | 8.09 | 5.57 | A100 | 82.57 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_swin-s_8xb2-90k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-s_8xb2-90k_cityscapes-512x1024/mask2former_swin-s_8xb2-90k_cityscapes-512x1024_20221127_143802-9ab177f6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-s_8xb2-90k_cityscapes-512x1024/mask2former_swin-s_8xb2-90k_cityscapes-512x1024_20221127_143802.json)) |
-| Mask2Former | Swin-B (in22k) | 512x1024 | 90000 | 10.89 | 4.32 | A100 | 83.52 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024_20221203_045030-9a86a225.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024_20221203_045030.json)) |
-| Mask2Former | Swin-L (in22k) | 512x1024 | 90000 | 15.83 | 2.86 | A100 | 83.65 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024_20221202_141901-28ad20f1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024_20221202_141901.json)) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ----------- | -------------- | --------- | ------- | -------: | -------------- | ------ | ----- | ------------: | --------------------------------------------------------------------------------------------------------------------------------------------------------: | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| Mask2Former | R-50-D32 | 512x1024 | 90000 | 5.67 | 9.17 | A100 | 80.44 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mask2former/mask2former_r50_8xb2-90k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r50_8xb2-90k_cityscapes-512x1024/mask2former_r50_8xb2-90k_cityscapes-512x1024_20221202_140802-ffd9d750.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r50_8xb2-90k_cityscapes-512x1024/mask2former_r50_8xb2-90k_cityscapes-512x1024_20221202_140802.json) |
+| Mask2Former | R-101-D32 | 512x1024 | 90000 | 6.81 | 7.11 | A100 | 80.80 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mask2former/mask2former_r101_8xb2-90k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r101_8xb2-90k_cityscapes-512x1024/mask2former_r101_8xb2-90k_cityscapes-512x1024_20221130_031628-43e68666.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r101_8xb2-90k_cityscapes-512x1024/mask2former_r101_8xb2-90k_cityscapes-512x1024_20221130_031628.json)) |
+| Mask2Former | Swin-T | 512x1024 | 90000 | 6.36 | 7.18 | A100 | 81.71 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mask2former/mask2former_swin-t_8xb2-90k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-t_8xb2-90k_cityscapes-512x1024/mask2former_swin-t_8xb2-90k_cityscapes-512x1024_20221127_144501-36c59341.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-t_8xb2-90k_cityscapes-512x1024/mask2former_swin-t_8xb2-90k_cityscapes-512x1024_20221127_144501.json)) |
+| Mask2Former | Swin-S | 512x1024 | 90000 | 8.09 | 5.57 | A100 | 82.57 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mask2former/mask2former_swin-s_8xb2-90k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-s_8xb2-90k_cityscapes-512x1024/mask2former_swin-s_8xb2-90k_cityscapes-512x1024_20221127_143802-9ab177f6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-s_8xb2-90k_cityscapes-512x1024/mask2former_swin-s_8xb2-90k_cityscapes-512x1024_20221127_143802.json)) |
+| Mask2Former | Swin-B (in22k) | 512x1024 | 90000 | 10.89 | 4.32 | A100 | 83.52 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024_20221203_045030-9a86a225.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024/mask2former_swin-b-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024_20221203_045030.json)) |
+| Mask2Former | Swin-L (in22k) | 512x1024 | 90000 | 15.83 | 2.86 | A100 | 83.65 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024_20221202_141901-28ad20f1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024/mask2former_swin-l-in22k-384x384-pre_8xb2-90k_cityscapes-512x1024_20221202_141901.json)) |
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ----------- | -------------- | --------- | ------- | -------: | -------------- | ------ | ----- | ------------: | -------------------------------------------------------------------------------------------------------------------------------------------------------: | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| Mask2Former | R-50-D32 | 512x512 | 160000 | 3.31 | 26.59 | A100 | 47.87 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_r50_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r50_8xb2-160k_ade20k-512x512/mask2former_r50_8xb2-160k_ade20k-512x512_20221204_000055-2d1f55f1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r50_8xb2-160k_ade20k-512x512/mask2former_r50_8xb2-160k_ade20k-512x512_20221204_000055.json)) |
-| Mask2Former | R-101-D32 | 512x512 | 160000 | 4.09 | 22.97 | A100 | 48.60 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_r101_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r101_8xb2-160k_ade20k-512x512/mask2former_r101_8xb2-160k_ade20k-512x512_20221203_233905-b7135890.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r101_8xb2-160k_ade20k-512x512/mask2former_r101_8xb2-160k_ade20k-512x512_20221203_233905.json)) |
-| Mask2Former | Swin-T | 512x512 | 160000 | 3826 | 23.82 | A100 | 48.66 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_swin-t_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-t_8xb2-160k_ade20k-512x512/mask2former_swin-t_8xb2-160k_ade20k-512x512_20221203_234230-7d64e5dd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-t_8xb2-160k_ade20k-512x512/mask2former_swin-t_8xb2-160k_ade20k-512x512_20221203_234230.json)) |
-| Mask2Former | Swin-S | 512x512 | 160000 | 3.74 | 19.69 | A100 | 51.24 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_swin-s_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-s_8xb2-160k_ade20k-512x512/mask2former_swin-s_8xb2-160k_ade20k-512x512_20221204_143905-e715144e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-s_8xb2-160k_ade20k-512x512/mask2former_swin-s_8xb2-160k_ade20k-512x512_20221204_143905.json)) |
-| Mask2Former | Swin-B | 640x640 | 160000 | 5.66 | 12.48 | A100 | 52.44 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640_20221129_125118-a4a086d2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640_20221129_125118.json)) |
-| Mask2Former | Swin-B (in22k) | 640x640 | 160000 | 5.66 | 12.43 | A100 | 53.90 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640_20221203_235230-7ec0f569.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640_20221203_235230.json)) |
-| Mask2Former | Swin-L (in22k) | 640x640 | 160000 | 8.86 | 8.81 | A100 | 56.01 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640_20221203_235933-7120c214.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640_20221203_235933.json)) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ----------- | -------------- | --------- | ------- | -------: | -------------- | ------ | ----- | ------------: | ----------------------------------------------------------------------------------------------------------------------------------------------------: | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| Mask2Former | R-50-D32 | 512x512 | 160000 | 3.31 | 26.59 | A100 | 47.87 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mask2former/mask2former_r50_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r50_8xb2-160k_ade20k-512x512/mask2former_r50_8xb2-160k_ade20k-512x512_20221204_000055-2d1f55f1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r50_8xb2-160k_ade20k-512x512/mask2former_r50_8xb2-160k_ade20k-512x512_20221204_000055.json)) |
+| Mask2Former | R-101-D32 | 512x512 | 160000 | 4.09 | 22.97 | A100 | 48.60 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mask2former/mask2former_r101_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r101_8xb2-160k_ade20k-512x512/mask2former_r101_8xb2-160k_ade20k-512x512_20221203_233905-b7135890.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_r101_8xb2-160k_ade20k-512x512/mask2former_r101_8xb2-160k_ade20k-512x512_20221203_233905.json)) |
+| Mask2Former | Swin-T | 512x512 | 160000 | 3826 | 23.82 | A100 | 48.66 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mask2former/mask2former_swin-t_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-t_8xb2-160k_ade20k-512x512/mask2former_swin-t_8xb2-160k_ade20k-512x512_20221203_234230-7d64e5dd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-t_8xb2-160k_ade20k-512x512/mask2former_swin-t_8xb2-160k_ade20k-512x512_20221203_234230.json)) |
+| Mask2Former | Swin-S | 512x512 | 160000 | 3.74 | 19.69 | A100 | 51.24 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mask2former/mask2former_swin-s_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-s_8xb2-160k_ade20k-512x512/mask2former_swin-s_8xb2-160k_ade20k-512x512_20221204_143905-e715144e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-s_8xb2-160k_ade20k-512x512/mask2former_swin-s_8xb2-160k_ade20k-512x512_20221204_143905.json)) |
+| Mask2Former | Swin-B | 640x640 | 160000 | 5.66 | 12.48 | A100 | 52.44 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mask2former/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640_20221129_125118-a4a086d2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640_20221129_125118.json)) |
+| Mask2Former | Swin-B (in22k) | 640x640 | 160000 | 5.66 | 12.43 | A100 | 53.90 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640_20221203_235230-7ec0f569.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640_20221203_235230.json)) |
+| Mask2Former | Swin-L (in22k) | 640x640 | 160000 | 8.86 | 8.81 | A100 | 56.01 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640_20221203_235933-7120c214.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mask2former/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640/mask2former_swin-l-in22k-384x384-pre_8xb2-160k_ade20k-640x640_20221203_235933.json)) |
Note:
diff --git a/configs/maskformer/README.md b/configs/maskformer/README.md
index aa54a27088..a899bac090 100644
--- a/configs/maskformer/README.md
+++ b/configs/maskformer/README.md
@@ -34,12 +34,12 @@ pip install "mmdet>=3.0.0rc4"
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ---------- | --------- | --------- | ------- | -------- | -------------- | ------ | ----- | ------------- | -------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| MaskFormer | R-50-D32 | 512x512 | 160000 | 3.29 | A100 | 42.20 | 44.29 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/maskformer/maskformer_r50-d32_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_r50-d32_8xb2-160k_ade20k-512x512/maskformer_r50-d32_8xb2-160k_ade20k-512x512_20221030_182724-3a9cfe45.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_r50-d32_8xb2-160k_ade20k-512x512/maskformer_r50-d32_8xb2-160k_ade20k-512x512_20221030_182724.json) |
-| MaskFormer | R-101-D32 | 512x512 | 160000 | 4.12 | A100 | 34.90 | 45.11 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/maskformer/maskformer_r101-d32_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_r101-d32_8xb2-160k_ade20k-512x512/maskformer_r101-d32_8xb2-160k_ade20k-512x512_20221031_223053-84adbfcb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_r101-d32_8xb2-160k_ade20k-512x512/maskformer_r101-d32_8xb2-160k_ade20k-512x512_20221031_223053.json) |
-| MaskFormer | Swin-T | 512x512 | 160000 | 3.73 | A100 | 40.53 | 46.69 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/maskformer/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512_20221114_232813-f14e7ce0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512_20221114_232813.json) |
-| MaskFormer | Swin-S | 512x512 | 160000 | 5.33 | A100 | 26.98 | 49.36 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/maskformer/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512_20221115_114710-723512c7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512_20221115_114710.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ---------- | --------- | --------- | ------- | -------- | -------------- | ------ | ----- | ------------- | ----------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| MaskFormer | R-50-D32 | 512x512 | 160000 | 3.29 | A100 | 42.20 | 44.29 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/maskformer/maskformer_r50-d32_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_r50-d32_8xb2-160k_ade20k-512x512/maskformer_r50-d32_8xb2-160k_ade20k-512x512_20221030_182724-3a9cfe45.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_r50-d32_8xb2-160k_ade20k-512x512/maskformer_r50-d32_8xb2-160k_ade20k-512x512_20221030_182724.json) |
+| MaskFormer | R-101-D32 | 512x512 | 160000 | 4.12 | A100 | 34.90 | 45.11 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/maskformer/maskformer_r101-d32_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_r101-d32_8xb2-160k_ade20k-512x512/maskformer_r101-d32_8xb2-160k_ade20k-512x512_20221031_223053-84adbfcb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_r101-d32_8xb2-160k_ade20k-512x512/maskformer_r101-d32_8xb2-160k_ade20k-512x512_20221031_223053.json) |
+| MaskFormer | Swin-T | 512x512 | 160000 | 3.73 | A100 | 40.53 | 46.69 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/maskformer/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512_20221114_232813-f14e7ce0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512_20221114_232813.json) |
+| MaskFormer | Swin-S | 512x512 | 160000 | 5.33 | A100 | 26.98 | 49.36 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/maskformer/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512_20221115_114710-723512c7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512_20221115_114710.json) |
Note:
diff --git a/configs/mobilenet_v2/README.md b/configs/mobilenet_v2/README.md
index 6d8e5945cb..bff5259129 100644
--- a/configs/mobilenet_v2/README.md
+++ b/configs/mobilenet_v2/README.md
@@ -27,21 +27,21 @@ The MobileNetV2 architecture is based on an inverted residual structure where th
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ---------- | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| FCN | M-V2-D8 | 512x1024 | 80000 | 3.4 | 14.2 | A100 | 71.19 | 73.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024-20230224_185436-13fef4ea.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024_20230224_185436.json) |
-| PSPNet | M-V2-D8 | 512x1024 | 80000 | 3.6 | 11.2 | V100 | 70.23 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_pspnet_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x1024_80k_cityscapes/pspnet_m-v2-d8_512x1024_80k_cityscapes_20200825_124817-19e81d51.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x1024_80k_cityscapes/pspnet_m-v2-d8_512x1024_80k_cityscapes-20200825_124817.log.json) |
-| DeepLabV3 | M-V2-D8 | 512x1024 | 80000 | 3.9 | 8.4 | V100 | 73.84 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_deeplabv3_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x1024_80k_cityscapes/deeplabv3_m-v2-d8_512x1024_80k_cityscapes_20200825_124836-bef03590.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x1024_80k_cityscapes/deeplabv3_m-v2-d8_512x1024_80k_cityscapes-20200825_124836.log.json) |
-| DeepLabV3+ | M-V2-D8 | 512x1024 | 80000 | 5.1 | 8.4 | V100 | 75.20 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes_20200825_124836-d256dd4b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes-20200825_124836.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ---------- | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | --------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| FCN | M-V2-D8 | 512x1024 | 80000 | 3.4 | 14.2 | A100 | 71.19 | 73.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mobilenet_v2/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024-20230224_185436-13fef4ea.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024_20230224_185436.json) |
+| PSPNet | M-V2-D8 | 512x1024 | 80000 | 3.6 | 11.2 | V100 | 70.23 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mobilenet_v2/mobilenet-v2-d8_pspnet_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x1024_80k_cityscapes/pspnet_m-v2-d8_512x1024_80k_cityscapes_20200825_124817-19e81d51.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x1024_80k_cityscapes/pspnet_m-v2-d8_512x1024_80k_cityscapes-20200825_124817.log.json) |
+| DeepLabV3 | M-V2-D8 | 512x1024 | 80000 | 3.9 | 8.4 | V100 | 73.84 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mobilenet_v2/mobilenet-v2-d8_deeplabv3_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x1024_80k_cityscapes/deeplabv3_m-v2-d8_512x1024_80k_cityscapes_20200825_124836-bef03590.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x1024_80k_cityscapes/deeplabv3_m-v2-d8_512x1024_80k_cityscapes-20200825_124836.log.json) |
+| DeepLabV3+ | M-V2-D8 | 512x1024 | 80000 | 5.1 | 8.4 | V100 | 75.20 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mobilenet_v2/mobilenet-v2-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes_20200825_124836-d256dd4b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes-20200825_124836.log.json) |
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ---------- | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | -------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| FCN | M-V2-D8 | 512x512 | 160000 | 6.5 | 64.4 | V100 | 19.71 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_fcn_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/fcn_m-v2-d8_512x512_160k_ade20k/fcn_m-v2-d8_512x512_160k_ade20k_20200825_214953-c40e1095.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/fcn_m-v2-d8_512x512_160k_ade20k/fcn_m-v2-d8_512x512_160k_ade20k-20200825_214953.log.json) |
-| PSPNet | M-V2-D8 | 512x512 | 160000 | 6.5 | 57.7 | V100 | 29.68 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_pspnet_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x512_160k_ade20k/pspnet_m-v2-d8_512x512_160k_ade20k_20200825_214953-f5942f7a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x512_160k_ade20k/pspnet_m-v2-d8_512x512_160k_ade20k-20200825_214953.log.json) |
-| DeepLabV3 | M-V2-D8 | 512x512 | 160000 | 6.8 | 39.9 | V100 | 34.08 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_deeplabv3_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x512_160k_ade20k/deeplabv3_m-v2-d8_512x512_160k_ade20k_20200825_223255-63986343.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x512_160k_ade20k/deeplabv3_m-v2-d8_512x512_160k_ade20k-20200825_223255.log.json) |
-| DeepLabV3+ | M-V2-D8 | 512x512 | 160000 | 8.2 | 43.1 | V100 | 34.02 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_deeplabv3plus_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x512_160k_ade20k/deeplabv3plus_m-v2-d8_512x512_160k_ade20k_20200825_223255-465a01d4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x512_160k_ade20k/deeplabv3plus_m-v2-d8_512x512_160k_ade20k-20200825_223255.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ---------- | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | ----------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| FCN | M-V2-D8 | 512x512 | 160000 | 6.5 | 64.4 | V100 | 19.71 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mobilenet_v2/mobilenet-v2-d8_fcn_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/fcn_m-v2-d8_512x512_160k_ade20k/fcn_m-v2-d8_512x512_160k_ade20k_20200825_214953-c40e1095.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/fcn_m-v2-d8_512x512_160k_ade20k/fcn_m-v2-d8_512x512_160k_ade20k-20200825_214953.log.json) |
+| PSPNet | M-V2-D8 | 512x512 | 160000 | 6.5 | 57.7 | V100 | 29.68 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mobilenet_v2/mobilenet-v2-d8_pspnet_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x512_160k_ade20k/pspnet_m-v2-d8_512x512_160k_ade20k_20200825_214953-f5942f7a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x512_160k_ade20k/pspnet_m-v2-d8_512x512_160k_ade20k-20200825_214953.log.json) |
+| DeepLabV3 | M-V2-D8 | 512x512 | 160000 | 6.8 | 39.9 | V100 | 34.08 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mobilenet_v2/mobilenet-v2-d8_deeplabv3_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x512_160k_ade20k/deeplabv3_m-v2-d8_512x512_160k_ade20k_20200825_223255-63986343.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x512_160k_ade20k/deeplabv3_m-v2-d8_512x512_160k_ade20k-20200825_223255.log.json) |
+| DeepLabV3+ | M-V2-D8 | 512x512 | 160000 | 8.2 | 43.1 | V100 | 34.02 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mobilenet_v2/mobilenet-v2-d8_deeplabv3plus_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x512_160k_ade20k/deeplabv3plus_m-v2-d8_512x512_160k_ade20k_20200825_223255-465a01d4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x512_160k_ade20k/deeplabv3plus_m-v2-d8_512x512_160k_ade20k-20200825_223255.log.json) |
## Citation
diff --git a/configs/mobilenet_v3/README.md b/configs/mobilenet_v3/README.md
index 3b63db7e50..8ed0a5692a 100644
--- a/configs/mobilenet_v3/README.md
+++ b/configs/mobilenet_v3/README.md
@@ -28,12 +28,12 @@ We present the next generation of MobileNets based on a combination of complemen
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | ------------------ | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| LRASPP | M-V3-D8 | 512x1024 | 320000 | 8.9 | 15.22 | V100 | 69.54 | 70.89 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v3/mobilenet-v3-d8_lraspp_4xb4-320k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3-d8_512x1024_320k_cityscapes/lraspp_m-v3-d8_512x1024_320k_cityscapes_20201224_220337-cfe8fb07.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3-d8_512x1024_320k_cityscapes/lraspp_m-v3-d8_512x1024_320k_cityscapes-20201224_220337.log.json) |
-| LRASPP | M-V3-D8 (scratch) | 512x1024 | 320000 | 8.9 | 14.77 | V100 | 67.87 | 69.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v3/mobilenet-v3-d8-scratch_lraspp_4xb4-320k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes/lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes_20201224_220337-9f29cd72.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes/lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes-20201224_220337.log.json) |
-| LRASPP | M-V3s-D8 | 512x1024 | 320000 | 5.3 | 23.64 | V100 | 64.11 | 66.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v3/mobilenet-v3-d8-s_lraspp_4xb4-320k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3s-d8_512x1024_320k_cityscapes/lraspp_m-v3s-d8_512x1024_320k_cityscapes_20201224_223935-61565b34.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3s-d8_512x1024_320k_cityscapes/lraspp_m-v3s-d8_512x1024_320k_cityscapes-20201224_223935.log.json) |
-| LRASPP | M-V3s-D8 (scratch) | 512x1024 | 320000 | 5.3 | 24.50 | V100 | 62.74 | 65.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v3/mobilenet-v3-d8-scratch-s_lraspp_4xb4-320k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes/lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes_20201224_223935-03daeabb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes/lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes-20201224_223935.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | ------------------ | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| LRASPP | M-V3-D8 | 512x1024 | 320000 | 8.9 | 15.22 | V100 | 69.54 | 70.89 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mobilenet_v3/mobilenet-v3-d8_lraspp_4xb4-320k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3-d8_512x1024_320k_cityscapes/lraspp_m-v3-d8_512x1024_320k_cityscapes_20201224_220337-cfe8fb07.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3-d8_512x1024_320k_cityscapes/lraspp_m-v3-d8_512x1024_320k_cityscapes-20201224_220337.log.json) |
+| LRASPP | M-V3-D8 (scratch) | 512x1024 | 320000 | 8.9 | 14.77 | V100 | 67.87 | 69.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mobilenet_v3/mobilenet-v3-d8-scratch_lraspp_4xb4-320k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes/lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes_20201224_220337-9f29cd72.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes/lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes-20201224_220337.log.json) |
+| LRASPP | M-V3s-D8 | 512x1024 | 320000 | 5.3 | 23.64 | V100 | 64.11 | 66.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mobilenet_v3/mobilenet-v3-d8-s_lraspp_4xb4-320k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3s-d8_512x1024_320k_cityscapes/lraspp_m-v3s-d8_512x1024_320k_cityscapes_20201224_223935-61565b34.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3s-d8_512x1024_320k_cityscapes/lraspp_m-v3s-d8_512x1024_320k_cityscapes-20201224_223935.log.json) |
+| LRASPP | M-V3s-D8 (scratch) | 512x1024 | 320000 | 5.3 | 24.50 | V100 | 62.74 | 65.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mobilenet_v3/mobilenet-v3-d8-scratch-s_lraspp_4xb4-320k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes/lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes_20201224_223935-03daeabb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v3/lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes/lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes-20201224_223935.log.json) |
## Citation
diff --git a/configs/nonlocal_net/README.md b/configs/nonlocal_net/README.md
index 0a0fcf3725..4c3f49f981 100644
--- a/configs/nonlocal_net/README.md
+++ b/configs/nonlocal_net/README.md
@@ -26,34 +26,34 @@ Both convolutional and recurrent operations are building blocks that process one
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ----------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------- | ----------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| NonLocalNet | R-50-D8 | 512x1024 | 40000 | 7.4 | 2.72 | V100 | 78.24 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x1024_40k_cityscapes/nonlocal_r50-d8_512x1024_40k_cityscapes_20200605_210748-c75e81e3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x1024_40k_cityscapes/nonlocal_r50-d8_512x1024_40k_cityscapes_20200605_210748.log.json) |
-| NonLocalNet | R-101-D8 | 512x1024 | 40000 | 10.9 | 1.95 | V100 | 78.66 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x1024_40k_cityscapes/nonlocal_r101-d8_512x1024_40k_cityscapes_20200605_210748-d63729fa.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x1024_40k_cityscapes/nonlocal_r101-d8_512x1024_40k_cityscapes_20200605_210748.log.json) |
-| NonLocalNet | R-50-D8 | 769x769 | 40000 | 8.9 | 1.52 | V100 | 78.33 | 79.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_769x769_40k_cityscapes/nonlocal_r50-d8_769x769_40k_cityscapes_20200530_045243-82ef6749.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_769x769_40k_cityscapes/nonlocal_r50-d8_769x769_40k_cityscapes_20200530_045243.log.json) |
-| NonLocalNet | R-101-D8 | 769x769 | 40000 | 12.8 | 1.05 | V100 | 78.57 | 80.29 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_769x769_40k_cityscapes/nonlocal_r101-d8_769x769_40k_cityscapes_20200530_045348-8fe9a9dc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_769x769_40k_cityscapes/nonlocal_r101-d8_769x769_40k_cityscapes_20200530_045348.log.json) |
-| NonLocalNet | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 78.01 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x1024_80k_cityscapes/nonlocal_r50-d8_512x1024_80k_cityscapes_20200607_193518-d6839fae.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x1024_80k_cityscapes/nonlocal_r50-d8_512x1024_80k_cityscapes_20200607_193518.log.json) |
-| NonLocalNet | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 78.93 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x1024_80k_cityscapes/nonlocal_r101-d8_512x1024_80k_cityscapes_20200607_183411-32700183.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x1024_80k_cityscapes/nonlocal_r101-d8_512x1024_80k_cityscapes_20200607_183411.log.json) |
-| NonLocalNet | R-50-D8 | 769x769 | 80000 | - | - | V100 | 79.05 | 80.68 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_769x769_80k_cityscapes/nonlocal_r50-d8_769x769_80k_cityscapes_20200607_193506-1f9792f6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_769x769_80k_cityscapes/nonlocal_r50-d8_769x769_80k_cityscapes_20200607_193506.log.json) |
-| NonLocalNet | R-101-D8 | 769x769 | 80000 | - | - | V100 | 79.40 | 80.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_769x769_80k_cityscapes/nonlocal_r101-d8_769x769_80k_cityscapes_20200607_183428-0e1fa4f9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_769x769_80k_cityscapes/nonlocal_r101-d8_769x769_80k_cityscapes_20200607_183428.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ----------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------- | -------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| NonLocalNet | R-50-D8 | 512x1024 | 40000 | 7.4 | 2.72 | V100 | 78.24 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/nonlocal_net/nonlocal_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x1024_40k_cityscapes/nonlocal_r50-d8_512x1024_40k_cityscapes_20200605_210748-c75e81e3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x1024_40k_cityscapes/nonlocal_r50-d8_512x1024_40k_cityscapes_20200605_210748.log.json) |
+| NonLocalNet | R-101-D8 | 512x1024 | 40000 | 10.9 | 1.95 | V100 | 78.66 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/nonlocal_net/nonlocal_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x1024_40k_cityscapes/nonlocal_r101-d8_512x1024_40k_cityscapes_20200605_210748-d63729fa.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x1024_40k_cityscapes/nonlocal_r101-d8_512x1024_40k_cityscapes_20200605_210748.log.json) |
+| NonLocalNet | R-50-D8 | 769x769 | 40000 | 8.9 | 1.52 | V100 | 78.33 | 79.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/nonlocal_net/nonlocal_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_769x769_40k_cityscapes/nonlocal_r50-d8_769x769_40k_cityscapes_20200530_045243-82ef6749.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_769x769_40k_cityscapes/nonlocal_r50-d8_769x769_40k_cityscapes_20200530_045243.log.json) |
+| NonLocalNet | R-101-D8 | 769x769 | 40000 | 12.8 | 1.05 | V100 | 78.57 | 80.29 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/nonlocal_net/nonlocal_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_769x769_40k_cityscapes/nonlocal_r101-d8_769x769_40k_cityscapes_20200530_045348-8fe9a9dc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_769x769_40k_cityscapes/nonlocal_r101-d8_769x769_40k_cityscapes_20200530_045348.log.json) |
+| NonLocalNet | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 78.01 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/nonlocal_net/nonlocal_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x1024_80k_cityscapes/nonlocal_r50-d8_512x1024_80k_cityscapes_20200607_193518-d6839fae.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x1024_80k_cityscapes/nonlocal_r50-d8_512x1024_80k_cityscapes_20200607_193518.log.json) |
+| NonLocalNet | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 78.93 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/nonlocal_net/nonlocal_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x1024_80k_cityscapes/nonlocal_r101-d8_512x1024_80k_cityscapes_20200607_183411-32700183.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x1024_80k_cityscapes/nonlocal_r101-d8_512x1024_80k_cityscapes_20200607_183411.log.json) |
+| NonLocalNet | R-50-D8 | 769x769 | 80000 | - | - | V100 | 79.05 | 80.68 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/nonlocal_net/nonlocal_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_769x769_80k_cityscapes/nonlocal_r50-d8_769x769_80k_cityscapes_20200607_193506-1f9792f6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_769x769_80k_cityscapes/nonlocal_r50-d8_769x769_80k_cityscapes_20200607_193506.log.json) |
+| NonLocalNet | R-101-D8 | 769x769 | 80000 | - | - | V100 | 79.40 | 80.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/nonlocal_net/nonlocal_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_769x769_80k_cityscapes/nonlocal_r101-d8_769x769_80k_cityscapes_20200607_183428-0e1fa4f9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_769x769_80k_cityscapes/nonlocal_r101-d8_769x769_80k_cityscapes_20200607_183428.log.json) |
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ----------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| NonLocalNet | R-50-D8 | 512x512 | 80000 | 9.1 | 21.37 | V100 | 40.75 | 42.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_80k_ade20k/nonlocal_r50-d8_512x512_80k_ade20k_20200615_015801-5ae0aa33.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_80k_ade20k/nonlocal_r50-d8_512x512_80k_ade20k_20200615_015801.log.json) |
-| NonLocalNet | R-101-D8 | 512x512 | 80000 | 12.6 | 13.97 | V100 | 42.90 | 44.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_80k_ade20k/nonlocal_r101-d8_512x512_80k_ade20k_20200615_015758-24105919.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_80k_ade20k/nonlocal_r101-d8_512x512_80k_ade20k_20200615_015758.log.json) |
-| NonLocalNet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 42.03 | 43.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_160k_ade20k/nonlocal_r50-d8_512x512_160k_ade20k_20200616_005410-baef45e3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_160k_ade20k/nonlocal_r50-d8_512x512_160k_ade20k_20200616_005410.log.json) |
-| NonLocalNet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 44.63 | 45.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_160k_ade20k/nonlocal_r101-d8_512x512_160k_ade20k_20210827_221502-7881aa1a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_160k_ade20k/nonlocal_r101-d8_512x512_160k_ade20k_20210827_221502.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ----------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| NonLocalNet | R-50-D8 | 512x512 | 80000 | 9.1 | 21.37 | V100 | 40.75 | 42.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/nonlocal_net/nonlocal_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_80k_ade20k/nonlocal_r50-d8_512x512_80k_ade20k_20200615_015801-5ae0aa33.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_80k_ade20k/nonlocal_r50-d8_512x512_80k_ade20k_20200615_015801.log.json) |
+| NonLocalNet | R-101-D8 | 512x512 | 80000 | 12.6 | 13.97 | V100 | 42.90 | 44.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/nonlocal_net/nonlocal_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_80k_ade20k/nonlocal_r101-d8_512x512_80k_ade20k_20200615_015758-24105919.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_80k_ade20k/nonlocal_r101-d8_512x512_80k_ade20k_20200615_015758.log.json) |
+| NonLocalNet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 42.03 | 43.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/nonlocal_net/nonlocal_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_160k_ade20k/nonlocal_r50-d8_512x512_160k_ade20k_20200616_005410-baef45e3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_160k_ade20k/nonlocal_r50-d8_512x512_160k_ade20k_20200616_005410.log.json) |
+| NonLocalNet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 44.63 | 45.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/nonlocal_net/nonlocal_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_160k_ade20k/nonlocal_r101-d8_512x512_160k_ade20k_20210827_221502-7881aa1a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_160k_ade20k/nonlocal_r101-d8_512x512_160k_ade20k_20210827_221502.log.json) |
### Pascal VOC 2012 + Aug
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ----------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| NonLocalNet | R-50-D8 | 512x512 | 20000 | 6.4 | 21.21 | V100 | 76.20 | 77.12 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_20k_voc12aug/nonlocal_r50-d8_512x512_20k_voc12aug_20200617_222613-07f2a57c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_20k_voc12aug/nonlocal_r50-d8_512x512_20k_voc12aug_20200617_222613.log.json) |
-| NonLocalNet | R-101-D8 | 512x512 | 20000 | 9.8 | 14.01 | V100 | 78.15 | 78.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_20k_voc12aug/nonlocal_r101-d8_512x512_20k_voc12aug_20200617_222615-948c68ab.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_20k_voc12aug/nonlocal_r101-d8_512x512_20k_voc12aug_20200617_222615.log.json) |
-| NonLocalNet | R-50-D8 | 512x512 | 40000 | - | - | V100 | 76.65 | 77.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_40k_voc12aug/nonlocal_r50-d8_512x512_40k_voc12aug_20200614_000028-0139d4a9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_40k_voc12aug/nonlocal_r50-d8_512x512_40k_voc12aug_20200614_000028.log.json) |
-| NonLocalNet | R-101-D8 | 512x512 | 40000 | - | - | V100 | 78.27 | 79.12 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/nonlocal_net/nonlocal_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_40k_voc12aug/nonlocal_r101-d8_512x512_40k_voc12aug_20200614_000028-7e5ff470.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_40k_voc12aug/nonlocal_r101-d8_512x512_40k_voc12aug_20200614_000028.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ----------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| NonLocalNet | R-50-D8 | 512x512 | 20000 | 6.4 | 21.21 | V100 | 76.20 | 77.12 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/nonlocal_net/nonlocal_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_20k_voc12aug/nonlocal_r50-d8_512x512_20k_voc12aug_20200617_222613-07f2a57c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_20k_voc12aug/nonlocal_r50-d8_512x512_20k_voc12aug_20200617_222613.log.json) |
+| NonLocalNet | R-101-D8 | 512x512 | 20000 | 9.8 | 14.01 | V100 | 78.15 | 78.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/nonlocal_net/nonlocal_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_20k_voc12aug/nonlocal_r101-d8_512x512_20k_voc12aug_20200617_222615-948c68ab.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_20k_voc12aug/nonlocal_r101-d8_512x512_20k_voc12aug_20200617_222615.log.json) |
+| NonLocalNet | R-50-D8 | 512x512 | 40000 | - | - | V100 | 76.65 | 77.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/nonlocal_net/nonlocal_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_40k_voc12aug/nonlocal_r50-d8_512x512_40k_voc12aug_20200614_000028-0139d4a9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_40k_voc12aug/nonlocal_r50-d8_512x512_40k_voc12aug_20200614_000028.log.json) |
+| NonLocalNet | R-101-D8 | 512x512 | 40000 | - | - | V100 | 78.27 | 79.12 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/nonlocal_net/nonlocal_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_40k_voc12aug/nonlocal_r101-d8_512x512_40k_voc12aug_20200614_000028-7e5ff470.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_40k_voc12aug/nonlocal_r101-d8_512x512_40k_voc12aug_20200614_000028.log.json) |
## Citation
diff --git a/configs/ocrnet/README.md b/configs/ocrnet/README.md
index 5b078f59c2..628a3b1597 100644
--- a/configs/ocrnet/README.md
+++ b/configs/ocrnet/README.md
@@ -28,47 +28,47 @@ In this paper, we address the problem of semantic segmentation and focus on the
#### HRNet backbone
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| OCRNet | HRNetV2p-W18-Small | 512x1024 | 40000 | 3.5 | 10.45 | A100 | 76.61 | 78.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024_20230227_145026-6c052a14.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024_20230227_145026.json) |
-| OCRNet | HRNetV2p-W18 | 512x1024 | 40000 | 4.7 | 7.50 | V100 | 77.72 | 79.49 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes/ocrnet_hr18_512x1024_40k_cityscapes_20200601_033320-401c5bdd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes/ocrnet_hr18_512x1024_40k_cityscapes_20200601_033320.log.json) |
-| OCRNet | HRNetV2p-W48 | 512x1024 | 40000 | 8 | 4.22 | V100 | 80.58 | 81.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr48_4xb2-40k_cityscapes-512x1024.pyy) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes/ocrnet_hr48_512x1024_40k_cityscapes_20200601_033336-55b32491.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes/ocrnet_hr48_512x1024_40k_cityscapes_20200601_033336.log.json) |
-| OCRNet | HRNetV2p-W18-Small | 512x1024 | 80000 | - | - | V100 | 77.16 | 78.66 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18s_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_80k_cityscapes/ocrnet_hr18s_512x1024_80k_cityscapes_20200601_222735-55979e63.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_80k_cityscapes/ocrnet_hr18s_512x1024_80k_cityscapes_20200601_222735.log.json) |
-| OCRNet | HRNetV2p-W18 | 512x1024 | 80000 | - | - | V100 | 78.57 | 80.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes/ocrnet_hr18_512x1024_80k_cityscapes_20200614_230521-c2e1dd4a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes/ocrnet_hr18_512x1024_80k_cityscapes_20200614_230521.log.json) |
-| OCRNet | HRNetV2p-W48 | 512x1024 | 80000 | - | - | V100 | 80.70 | 81.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr48_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_80k_cityscapes/ocrnet_hr48_512x1024_80k_cityscapes_20200601_222752-9076bcdf.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_80k_cityscapes/ocrnet_hr48_512x1024_80k_cityscapes_20200601_222752.log.json) |
-| OCRNet | HRNetV2p-W18-Small | 512x1024 | 160000 | - | - | V100 | 78.45 | 79.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18s_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_160k_cityscapes/ocrnet_hr18s_512x1024_160k_cityscapes_20200602_191005-f4a7af28.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_160k_cityscapes/ocrnet_hr18s_512x1024_160k_cityscapes_20200602_191005.log.json) |
-| OCRNet | HRNetV2p-W18 | 512x1024 | 160000 | - | - | V100 | 79.47 | 80.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes/ocrnet_hr18_512x1024_160k_cityscapes_20200602_191001-b9172d0c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes/ocrnet_hr18_512x1024_160k_cityscapes_20200602_191001.log.json) |
-| OCRNet | HRNetV2p-W48 | 512x1024 | 160000 | - | - | V100 | 81.35 | 82.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr48_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_160k_cityscapes/ocrnet_hr48_512x1024_160k_cityscapes_20200602_191037-dfbf1b0c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_160k_cityscapes/ocrnet_hr48_512x1024_160k_cityscapes_20200602_191037.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| OCRNet | HRNetV2p-W18-Small | 512x1024 | 40000 | 3.5 | 10.45 | A100 | 76.61 | 78.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024_20230227_145026-6c052a14.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024_20230227_145026.json) |
+| OCRNet | HRNetV2p-W18 | 512x1024 | 40000 | 4.7 | 7.50 | V100 | 77.72 | 79.49 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr18_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes/ocrnet_hr18_512x1024_40k_cityscapes_20200601_033320-401c5bdd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes/ocrnet_hr18_512x1024_40k_cityscapes_20200601_033320.log.json) |
+| OCRNet | HRNetV2p-W48 | 512x1024 | 40000 | 8 | 4.22 | V100 | 80.58 | 81.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr48_4xb2-40k_cityscapes-512x1024.pyy) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes/ocrnet_hr48_512x1024_40k_cityscapes_20200601_033336-55b32491.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes/ocrnet_hr48_512x1024_40k_cityscapes_20200601_033336.log.json) |
+| OCRNet | HRNetV2p-W18-Small | 512x1024 | 80000 | - | - | V100 | 77.16 | 78.66 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr18s_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_80k_cityscapes/ocrnet_hr18s_512x1024_80k_cityscapes_20200601_222735-55979e63.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_80k_cityscapes/ocrnet_hr18s_512x1024_80k_cityscapes_20200601_222735.log.json) |
+| OCRNet | HRNetV2p-W18 | 512x1024 | 80000 | - | - | V100 | 78.57 | 80.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr18_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes/ocrnet_hr18_512x1024_80k_cityscapes_20200614_230521-c2e1dd4a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes/ocrnet_hr18_512x1024_80k_cityscapes_20200614_230521.log.json) |
+| OCRNet | HRNetV2p-W48 | 512x1024 | 80000 | - | - | V100 | 80.70 | 81.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr48_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_80k_cityscapes/ocrnet_hr48_512x1024_80k_cityscapes_20200601_222752-9076bcdf.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_80k_cityscapes/ocrnet_hr48_512x1024_80k_cityscapes_20200601_222752.log.json) |
+| OCRNet | HRNetV2p-W18-Small | 512x1024 | 160000 | - | - | V100 | 78.45 | 79.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr18s_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_160k_cityscapes/ocrnet_hr18s_512x1024_160k_cityscapes_20200602_191005-f4a7af28.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_160k_cityscapes/ocrnet_hr18s_512x1024_160k_cityscapes_20200602_191005.log.json) |
+| OCRNet | HRNetV2p-W18 | 512x1024 | 160000 | - | - | V100 | 79.47 | 80.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr18_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes/ocrnet_hr18_512x1024_160k_cityscapes_20200602_191001-b9172d0c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes/ocrnet_hr18_512x1024_160k_cityscapes_20200602_191001.log.json) |
+| OCRNet | HRNetV2p-W48 | 512x1024 | 160000 | - | - | V100 | 81.35 | 82.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr48_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_160k_cityscapes/ocrnet_hr48_512x1024_160k_cityscapes_20200602_191037-dfbf1b0c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_160k_cityscapes/ocrnet_hr48_512x1024_160k_cityscapes_20200602_191037.log.json) |
#### ResNet backbone
-| Method | Backbone | Crop Size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ---------- | ------- | -------- | -------------- | ------ | ----- | ------------: | --------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| OCRNet | R-101-D8 | 512x1024 | 8 | 40000 | - | - | V100 | 80.09 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes/ocrnet_r101-d8_512x1024_40k_b8_cityscapes_20200717_110721-02ac0f13.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes/ocrnet_r101-d8_512x1024_40k_b8_cityscapes_20200717_110721.log.json) |
-| OCRNet | R-101-D8 | 512x1024 | 16 | 40000 | 8.8 | 3.02 | V100 | 80.30 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_r101-d8_8xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes/ocrnet_r101-d8_512x1024_40k_b16_cityscapes_20200723_193726-db500f80.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes/ocrnet_r101-d8_512x1024_40k_b16_cityscapes_20200723_193726.log.json) |
-| OCRNet | R-101-D8 | 512x1024 | 16 | 80000 | 8.8 | 3.02 | V100 | 80.81 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_r101-d8_8xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes/ocrnet_r101-d8_512x1024_80k_b16_cityscapes_20200723_192421-78688424.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes/ocrnet_r101-d8_512x1024_80k_b16_cityscapes_20200723_192421.log.json) |
+| Method | Backbone | Crop Size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ---------- | ------- | -------- | -------------- | ------ | ----- | ------------: | ------------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| OCRNet | R-101-D8 | 512x1024 | 8 | 40000 | - | - | V100 | 80.09 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes/ocrnet_r101-d8_512x1024_40k_b8_cityscapes_20200717_110721-02ac0f13.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes/ocrnet_r101-d8_512x1024_40k_b8_cityscapes_20200717_110721.log.json) |
+| OCRNet | R-101-D8 | 512x1024 | 16 | 40000 | 8.8 | 3.02 | V100 | 80.30 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_r101-d8_8xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes/ocrnet_r101-d8_512x1024_40k_b16_cityscapes_20200723_193726-db500f80.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes/ocrnet_r101-d8_512x1024_40k_b16_cityscapes_20200723_193726.log.json) |
+| OCRNet | R-101-D8 | 512x1024 | 16 | 80000 | 8.8 | 3.02 | V100 | 80.81 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_r101-d8_8xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes/ocrnet_r101-d8_512x1024_80k_b16_cityscapes_20200723_192421-78688424.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes/ocrnet_r101-d8_512x1024_80k_b16_cityscapes_20200723_192421.log.json) |
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| OCRNet | HRNetV2p-W18-Small | 512x512 | 80000 | 6.7 | 28.98 | V100 | 35.06 | 35.80 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18s_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_80k_ade20k/ocrnet_hr18s_512x512_80k_ade20k_20200615_055600-e80b62af.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_80k_ade20k/ocrnet_hr18s_512x512_80k_ade20k_20200615_055600.log.json) |
-| OCRNet | HRNetV2p-W18 | 512x512 | 80000 | 7.9 | 18.93 | V100 | 37.79 | 39.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_80k_ade20k/ocrnet_hr18_512x512_80k_ade20k_20200615_053157-d173d83b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_80k_ade20k/ocrnet_hr18_512x512_80k_ade20k_20200615_053157.log.json) |
-| OCRNet | HRNetV2p-W48 | 512x512 | 80000 | 11.2 | 16.99 | V100 | 43.00 | 44.30 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr48_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_80k_ade20k/ocrnet_hr48_512x512_80k_ade20k_20200615_021518-d168c2d1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_80k_ade20k/ocrnet_hr48_512x512_80k_ade20k_20200615_021518.log.json) |
-| OCRNet | HRNetV2p-W18-Small | 512x512 | 160000 | - | - | V100 | 37.19 | 38.40 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18s_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_160k_ade20k/ocrnet_hr18s_512x512_160k_ade20k_20200615_184505-8e913058.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_160k_ade20k/ocrnet_hr18s_512x512_160k_ade20k_20200615_184505.log.json) |
-| OCRNet | HRNetV2p-W18 | 512x512 | 160000 | - | - | V100 | 39.32 | 40.80 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_160k_ade20k/ocrnet_hr18_512x512_160k_ade20k_20200615_200940-d8fcd9d1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_160k_ade20k/ocrnet_hr18_512x512_160k_ade20k_20200615_200940.log.json) |
-| OCRNet | HRNetV2p-W48 | 512x512 | 160000 | - | - | V100 | 43.25 | 44.88 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr48_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_160k_ade20k/ocrnet_hr48_512x512_160k_ade20k_20200615_184705-a073726d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_160k_ade20k/ocrnet_hr48_512x512_160k_ade20k_20200615_184705.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| OCRNet | HRNetV2p-W18-Small | 512x512 | 80000 | 6.7 | 28.98 | V100 | 35.06 | 35.80 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr18s_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_80k_ade20k/ocrnet_hr18s_512x512_80k_ade20k_20200615_055600-e80b62af.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_80k_ade20k/ocrnet_hr18s_512x512_80k_ade20k_20200615_055600.log.json) |
+| OCRNet | HRNetV2p-W18 | 512x512 | 80000 | 7.9 | 18.93 | V100 | 37.79 | 39.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr18_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_80k_ade20k/ocrnet_hr18_512x512_80k_ade20k_20200615_053157-d173d83b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_80k_ade20k/ocrnet_hr18_512x512_80k_ade20k_20200615_053157.log.json) |
+| OCRNet | HRNetV2p-W48 | 512x512 | 80000 | 11.2 | 16.99 | V100 | 43.00 | 44.30 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr48_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_80k_ade20k/ocrnet_hr48_512x512_80k_ade20k_20200615_021518-d168c2d1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_80k_ade20k/ocrnet_hr48_512x512_80k_ade20k_20200615_021518.log.json) |
+| OCRNet | HRNetV2p-W18-Small | 512x512 | 160000 | - | - | V100 | 37.19 | 38.40 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr18s_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_160k_ade20k/ocrnet_hr18s_512x512_160k_ade20k_20200615_184505-8e913058.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_160k_ade20k/ocrnet_hr18s_512x512_160k_ade20k_20200615_184505.log.json) |
+| OCRNet | HRNetV2p-W18 | 512x512 | 160000 | - | - | V100 | 39.32 | 40.80 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr18_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_160k_ade20k/ocrnet_hr18_512x512_160k_ade20k_20200615_200940-d8fcd9d1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_160k_ade20k/ocrnet_hr18_512x512_160k_ade20k_20200615_200940.log.json) |
+| OCRNet | HRNetV2p-W48 | 512x512 | 160000 | - | - | V100 | 43.25 | 44.88 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr48_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_160k_ade20k/ocrnet_hr48_512x512_160k_ade20k_20200615_184705-a073726d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_160k_ade20k/ocrnet_hr48_512x512_160k_ade20k_20200615_184705.log.json) |
### Pascal VOC 2012 + Aug
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| OCRNet | HRNetV2p-W18-Small | 512x512 | 20000 | 3.5 | 31.55 | V100 | 71.70 | 73.84 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18s_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_20k_voc12aug/ocrnet_hr18s_512x512_20k_voc12aug_20200617_233913-02b04fcb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_20k_voc12aug/ocrnet_hr18s_512x512_20k_voc12aug_20200617_233913.log.json) |
-| OCRNet | HRNetV2p-W18 | 512x512 | 20000 | 4.7 | 19.91 | V100 | 74.75 | 77.11 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_20k_voc12aug/ocrnet_hr18_512x512_20k_voc12aug_20200617_233932-8954cbb7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_20k_voc12aug/ocrnet_hr18_512x512_20k_voc12aug_20200617_233932.log.json) |
-| OCRNet | HRNetV2p-W48 | 512x512 | 20000 | 8.1 | 17.83 | V100 | 77.72 | 79.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr48_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_20k_voc12aug/ocrnet_hr48_512x512_20k_voc12aug_20200617_233932-9e82080a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_20k_voc12aug/ocrnet_hr48_512x512_20k_voc12aug_20200617_233932.log.json) |
-| OCRNet | HRNetV2p-W18-Small | 512x512 | 40000 | - | - | V100 | 72.76 | 74.60 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18s_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_40k_voc12aug/ocrnet_hr18s_512x512_40k_voc12aug_20200614_002025-42b587ac.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_40k_voc12aug/ocrnet_hr18s_512x512_40k_voc12aug_20200614_002025.log.json) |
-| OCRNet | HRNetV2p-W18 | 512x512 | 40000 | - | - | V100 | 74.98 | 77.40 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_40k_voc12aug/ocrnet_hr18_512x512_40k_voc12aug_20200614_015958-714302be.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_40k_voc12aug/ocrnet_hr18_512x512_40k_voc12aug_20200614_015958.log.json) |
-| OCRNet | HRNetV2p-W48 | 512x512 | 40000 | - | - | V100 | 77.14 | 79.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr48_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_40k_voc12aug/ocrnet_hr48_512x512_40k_voc12aug_20200614_015958-255bc5ce.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_40k_voc12aug/ocrnet_hr48_512x512_40k_voc12aug_20200614_015958.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| OCRNet | HRNetV2p-W18-Small | 512x512 | 20000 | 3.5 | 31.55 | V100 | 71.70 | 73.84 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr18s_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_20k_voc12aug/ocrnet_hr18s_512x512_20k_voc12aug_20200617_233913-02b04fcb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_20k_voc12aug/ocrnet_hr18s_512x512_20k_voc12aug_20200617_233913.log.json) |
+| OCRNet | HRNetV2p-W18 | 512x512 | 20000 | 4.7 | 19.91 | V100 | 74.75 | 77.11 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr18_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_20k_voc12aug/ocrnet_hr18_512x512_20k_voc12aug_20200617_233932-8954cbb7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_20k_voc12aug/ocrnet_hr18_512x512_20k_voc12aug_20200617_233932.log.json) |
+| OCRNet | HRNetV2p-W48 | 512x512 | 20000 | 8.1 | 17.83 | V100 | 77.72 | 79.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr48_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_20k_voc12aug/ocrnet_hr48_512x512_20k_voc12aug_20200617_233932-9e82080a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_20k_voc12aug/ocrnet_hr48_512x512_20k_voc12aug_20200617_233932.log.json) |
+| OCRNet | HRNetV2p-W18-Small | 512x512 | 40000 | - | - | V100 | 72.76 | 74.60 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr18s_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_40k_voc12aug/ocrnet_hr18s_512x512_40k_voc12aug_20200614_002025-42b587ac.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_40k_voc12aug/ocrnet_hr18s_512x512_40k_voc12aug_20200614_002025.log.json) |
+| OCRNet | HRNetV2p-W18 | 512x512 | 40000 | - | - | V100 | 74.98 | 77.40 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr18_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_40k_voc12aug/ocrnet_hr18_512x512_40k_voc12aug_20200614_015958-714302be.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_40k_voc12aug/ocrnet_hr18_512x512_40k_voc12aug_20200614_015958.log.json) |
+| OCRNet | HRNetV2p-W48 | 512x512 | 40000 | - | - | V100 | 77.14 | 79.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr48_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_40k_voc12aug/ocrnet_hr48_512x512_40k_voc12aug_20200614_015958-255bc5ce.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_40k_voc12aug/ocrnet_hr48_512x512_40k_voc12aug_20200614_015958.log.json) |
## Citation
diff --git a/configs/pidnet/README.md b/configs/pidnet/README.md
index c8c3f24799..e23efbd3f3 100644
--- a/configs/pidnet/README.md
+++ b/configs/pidnet/README.md
@@ -8,7 +8,7 @@
Official Repo
-Code Snippet
+Code Snippet
## Abstract
@@ -26,11 +26,11 @@ Two-branch network architecture has shown its efficiency and effectiveness for r
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------- | -------- | -------------- | ------ | ----- | ------------- | ----------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| PIDNet | PIDNet-S | 1024x1024 | 120000 | 3.38 | 80.82 | A100 | 78.74 | 80.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pidnet/pidnet-s_2xb6-120k_1024x1024-cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-s_2xb6-120k_1024x1024-cityscapes/pidnet-s_2xb6-120k_1024x1024-cityscapes_20230302_191700-bb8e3bcc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-s_2xb6-120k_1024x1024-cityscapes/pidnet-s_2xb6-120k_1024x1024-cityscapes_20230302_191700.json) |
-| PIDNet | PIDNet-M | 1024x1024 | 120000 | 5.14 | 71.98 | A100 | 80.22 | 82.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes/pidnet-m_2xb6-120k_1024x1024-cityscapes_20230301_143452-f9bcdbf3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes/pidnet-m_2xb6-120k_1024x1024-cityscapes_20230301_143452.json) |
-| PIDNet | PIDNet-L | 1024x1024 | 120000 | 5.83 | 60.06 | A100 | 80.89 | 82.37 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes/pidnet-l_2xb6-120k_1024x1024-cityscapes_20230303_114514-0783ca6b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes/pidnet-l_2xb6-120k_1024x1024-cityscapes_20230303_114514.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------- | -------- | -------------- | ------ | ----- | ------------- | -------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| PIDNet | PIDNet-S | 1024x1024 | 120000 | 3.38 | 80.82 | A100 | 78.74 | 80.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pidnet/pidnet-s_2xb6-120k_1024x1024-cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-s_2xb6-120k_1024x1024-cityscapes/pidnet-s_2xb6-120k_1024x1024-cityscapes_20230302_191700-bb8e3bcc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-s_2xb6-120k_1024x1024-cityscapes/pidnet-s_2xb6-120k_1024x1024-cityscapes_20230302_191700.json) |
+| PIDNet | PIDNet-M | 1024x1024 | 120000 | 5.14 | 71.98 | A100 | 80.22 | 82.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes/pidnet-m_2xb6-120k_1024x1024-cityscapes_20230301_143452-f9bcdbf3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes/pidnet-m_2xb6-120k_1024x1024-cityscapes_20230301_143452.json) |
+| PIDNet | PIDNet-L | 1024x1024 | 120000 | 5.83 | 60.06 | A100 | 80.89 | 82.37 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes/pidnet-l_2xb6-120k_1024x1024-cityscapes_20230303_114514-0783ca6b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes/pidnet-l_2xb6-120k_1024x1024-cityscapes_20230303_114514.json) |
## Notes
diff --git a/configs/pidnet/metafile.yaml b/configs/pidnet/metafile.yaml
index 9102ec51c5..51b514a487 100644
--- a/configs/pidnet/metafile.yaml
+++ b/configs/pidnet/metafile.yaml
@@ -33,7 +33,7 @@ Models:
Paper:
Title: 'PIDNet: A Real-time Semantic Segmentation Network Inspired from PID Controller'
URL: https://arxiv.org/pdf/2206.02066.pdf
- Code: https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/models/backbones/pidnet.py
+ Code: https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/backbones/pidnet.py
Framework: PyTorch
- Name: pidnet-m_2xb6-120k_1024x1024-cityscapes
In Collection: PIDNet
@@ -57,7 +57,7 @@ Models:
Paper:
Title: 'PIDNet: A Real-time Semantic Segmentation Network Inspired from PID Controller'
URL: https://arxiv.org/pdf/2206.02066.pdf
- Code: https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/models/backbones/pidnet.py
+ Code: https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/backbones/pidnet.py
Framework: PyTorch
- Name: pidnet-l_2xb6-120k_1024x1024-cityscapes
In Collection: PIDNet
@@ -81,5 +81,5 @@ Models:
Paper:
Title: 'PIDNet: A Real-time Semantic Segmentation Network Inspired from PID Controller'
URL: https://arxiv.org/pdf/2206.02066.pdf
- Code: https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/models/backbones/pidnet.py
+ Code: https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/backbones/pidnet.py
Framework: PyTorch
diff --git a/configs/point_rend/README.md b/configs/point_rend/README.md
index 9aab8e03ee..487d3bcc7f 100644
--- a/configs/point_rend/README.md
+++ b/configs/point_rend/README.md
@@ -26,17 +26,17 @@ We present a new method for efficient high-quality image segmentation of objects
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| --------- | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | ------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| PointRend | R-50 | 512x1024 | 80000 | 3.1 | 8.48 | V100 | 76.47 | 78.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/point_rend/pointrend_r50_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x1024_80k_cityscapes/pointrend_r50_512x1024_80k_cityscapes_20200711_015821-bb1ff523.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x1024_80k_cityscapes/pointrend_r50_512x1024_80k_cityscapes-20200715_214714.log.json) |
-| PointRend | R-101 | 512x1024 | 80000 | 4.2 | 7.00 | V100 | 78.30 | 79.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/point_rend/pointrend_r101_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x1024_80k_cityscapes/pointrend_r101_512x1024_80k_cityscapes_20200711_170850-d0ca84be.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x1024_80k_cityscapes/pointrend_r101_512x1024_80k_cityscapes-20200715_214824.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| --------- | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | ---------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| PointRend | R-50 | 512x1024 | 80000 | 3.1 | 8.48 | V100 | 76.47 | 78.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/point_rend/pointrend_r50_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x1024_80k_cityscapes/pointrend_r50_512x1024_80k_cityscapes_20200711_015821-bb1ff523.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x1024_80k_cityscapes/pointrend_r50_512x1024_80k_cityscapes-20200715_214714.log.json) |
+| PointRend | R-101 | 512x1024 | 80000 | 4.2 | 7.00 | V100 | 78.30 | 79.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/point_rend/pointrend_r101_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x1024_80k_cityscapes/pointrend_r101_512x1024_80k_cityscapes_20200711_170850-d0ca84be.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x1024_80k_cityscapes/pointrend_r101_512x1024_80k_cityscapes-20200715_214824.log.json) |
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| --------- | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | --------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| PointRend | R-50 | 512x512 | 160000 | 5.1 | 17.31 | V100 | 37.64 | 39.17 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/point_rend/pointrend_r50_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x512_160k_ade20k/pointrend_r50_512x512_160k_ade20k_20200807_232644-ac3febf2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x512_160k_ade20k/pointrend_r50_512x512_160k_ade20k-20200807_232644.log.json) |
-| PointRend | R-101 | 512x512 | 160000 | 6.1 | 15.50 | V100 | 40.02 | 41.60 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/point_rend/pointrend_r101_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x512_160k_ade20k/pointrend_r101_512x512_160k_ade20k_20200808_030852-8834902a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x512_160k_ade20k/pointrend_r101_512x512_160k_ade20k-20200808_030852.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| --------- | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | ------------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| PointRend | R-50 | 512x512 | 160000 | 5.1 | 17.31 | V100 | 37.64 | 39.17 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/point_rend/pointrend_r50_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x512_160k_ade20k/pointrend_r50_512x512_160k_ade20k_20200807_232644-ac3febf2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x512_160k_ade20k/pointrend_r50_512x512_160k_ade20k-20200807_232644.log.json) |
+| PointRend | R-101 | 512x512 | 160000 | 6.1 | 15.50 | V100 | 40.02 | 41.60 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/point_rend/pointrend_r101_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x512_160k_ade20k/pointrend_r101_512x512_160k_ade20k_20200808_030852-8834902a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x512_160k_ade20k/pointrend_r101_512x512_160k_ade20k-20200808_030852.log.json) |
## Citation
diff --git a/configs/poolformer/README.md b/configs/poolformer/README.md
index ba563a9928..987db33d98 100644
--- a/configs/poolformer/README.md
+++ b/configs/poolformer/README.md
@@ -48,13 +48,13 @@ pip install "mmcls>=1.0.0rc0"
### ADE20K
-| Method | Backbone | Crop Size | pretrain | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | mIoU\* | mIoU\*(ms+flip) | config | download |
-| ------ | -------------- | --------- | ----------- | ---------- | ------- | -------- | -------------- | ------ | ----- | ------------: | ------ | --------------: | ------------------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| FPN | PoolFormer-S12 | 512x512 | ImageNet-1K | 32 | 40000 | 4.17 | 23.48 | V100 | 36.68 | - | 37.07 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/poolformer/fpn_poolformer_s12_8xb4-40k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s12_8x4_512x512_40k_ade20k/fpn_poolformer_s12_8x4_512x512_40k_ade20k_20220501_115154-b5aa2f49.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s12_8x4_512x512_40k_ade20k/fpn_poolformer_s12_8x4_512x512_40k_ade20k_20220501_115154.log.json) |
-| FPN | PoolFormer-S24 | 512x512 | ImageNet-1K | 32 | 40000 | 5.47 | 15.74 | V100 | 40.12 | - | 40.36 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/poolformer/fpn_poolformer_s24_8xb4-40k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s24_8x4_512x512_40k_ade20k/fpn_poolformer_s24_8x4_512x512_40k_ade20k_20220503_222049-394a7cf7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s24_8x4_512x512_40k_ade20k/fpn_poolformer_s24_8x4_512x512_40k_ade20k_20220503_222049.log.json) |
-| FPN | PoolFormer-S36 | 512x512 | ImageNet-1K | 32 | 40000 | 6.77 | 11.34 | V100 | 41.61 | - | 41.81 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/poolformer/fpn_poolformer_s36_8xb4-40k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s36_8x4_512x512_40k_ade20k/fpn_poolformer_s36_8x4_512x512_40k_ade20k_20220501_151122-b47e607d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s36_8x4_512x512_40k_ade20k/fpn_poolformer_s36_8x4_512x512_40k_ade20k_20220501_151122.log.json) |
-| FPN | PoolFormer-M36 | 512x512 | ImageNet-1K | 32 | 40000 | 8.59 | 8.97 | V100 | 41.95 | - | 42.35 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/poolformer/fpn_poolformer_m36_8xb4-40k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m36_8x4_512x512_40k_ade20k/fpn_poolformer_m36_8x4_512x512_40k_ade20k_20220501_164230-3dc83921.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m36_8x4_512x512_40k_ade20k/fpn_poolformer_m36_8x4_512x512_40k_ade20k_20220501_164230.log.json) |
-| FPN | PoolFormer-M48 | 512x512 | ImageNet-1K | 32 | 40000 | 10.48 | 6.69 | V100 | 42.43 | - | 42.76 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/poolformer/fpn_poolformer_m48_8xb4-40k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m48_8x4_512x512_40k_ade20k/fpn_poolformer_m48_8x4_512x512_40k_ade20k_20220504_003923-64168d3b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m48_8x4_512x512_40k_ade20k/fpn_poolformer_m48_8x4_512x512_40k_ade20k_20220504_003923.log.json) |
+| Method | Backbone | Crop Size | pretrain | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | mIoU\* | mIoU\*(ms+flip) | config | download |
+| ------ | -------------- | --------- | ----------- | ---------- | ------- | -------- | -------------- | ------ | ----- | ------------: | ------ | --------------: | --------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| FPN | PoolFormer-S12 | 512x512 | ImageNet-1K | 32 | 40000 | 4.17 | 23.48 | V100 | 36.68 | - | 37.07 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/poolformer/fpn_poolformer_s12_8xb4-40k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s12_8x4_512x512_40k_ade20k/fpn_poolformer_s12_8x4_512x512_40k_ade20k_20220501_115154-b5aa2f49.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s12_8x4_512x512_40k_ade20k/fpn_poolformer_s12_8x4_512x512_40k_ade20k_20220501_115154.log.json) |
+| FPN | PoolFormer-S24 | 512x512 | ImageNet-1K | 32 | 40000 | 5.47 | 15.74 | V100 | 40.12 | - | 40.36 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/poolformer/fpn_poolformer_s24_8xb4-40k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s24_8x4_512x512_40k_ade20k/fpn_poolformer_s24_8x4_512x512_40k_ade20k_20220503_222049-394a7cf7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s24_8x4_512x512_40k_ade20k/fpn_poolformer_s24_8x4_512x512_40k_ade20k_20220503_222049.log.json) |
+| FPN | PoolFormer-S36 | 512x512 | ImageNet-1K | 32 | 40000 | 6.77 | 11.34 | V100 | 41.61 | - | 41.81 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/poolformer/fpn_poolformer_s36_8xb4-40k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s36_8x4_512x512_40k_ade20k/fpn_poolformer_s36_8x4_512x512_40k_ade20k_20220501_151122-b47e607d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s36_8x4_512x512_40k_ade20k/fpn_poolformer_s36_8x4_512x512_40k_ade20k_20220501_151122.log.json) |
+| FPN | PoolFormer-M36 | 512x512 | ImageNet-1K | 32 | 40000 | 8.59 | 8.97 | V100 | 41.95 | - | 42.35 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/poolformer/fpn_poolformer_m36_8xb4-40k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m36_8x4_512x512_40k_ade20k/fpn_poolformer_m36_8x4_512x512_40k_ade20k_20220501_164230-3dc83921.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m36_8x4_512x512_40k_ade20k/fpn_poolformer_m36_8x4_512x512_40k_ade20k_20220501_164230.log.json) |
+| FPN | PoolFormer-M48 | 512x512 | ImageNet-1K | 32 | 40000 | 10.48 | 6.69 | V100 | 42.43 | - | 42.76 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/poolformer/fpn_poolformer_m48_8xb4-40k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m48_8x4_512x512_40k_ade20k/fpn_poolformer_m48_8x4_512x512_40k_ade20k_20220504_003923-64168d3b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m48_8x4_512x512_40k_ade20k/fpn_poolformer_m48_8x4_512x512_40k_ade20k_20220504_003923.log.json) |
Note:
diff --git a/configs/psanet/README.md b/configs/psanet/README.md
index d657326120..1f5680fbab 100644
--- a/configs/psanet/README.md
+++ b/configs/psanet/README.md
@@ -26,34 +26,34 @@ We notice information flow in convolutional neural networksis restricted insid
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| PSANet | R-50-D8 | 512x1024 | 40000 | 7 | 3.17 | V100 | 77.63 | 79.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_40k_cityscapes/psanet_r50-d8_512x1024_40k_cityscapes_20200606_103117-99fac37c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_40k_cityscapes/psanet_r50-d8_512x1024_40k_cityscapes_20200606_103117.log.json) |
-| PSANet | R-101-D8 | 512x1024 | 40000 | 10.5 | 2.20 | V100 | 79.14 | 80.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_40k_cityscapes/psanet_r101-d8_512x1024_40k_cityscapes_20200606_001418-27b9cfa7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_40k_cityscapes/psanet_r101-d8_512x1024_40k_cityscapes_20200606_001418.log.json) |
-| PSANet | R-50-D8 | 769x769 | 40000 | 7.9 | 1.40 | V100 | 77.99 | 79.64 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_40k_cityscapes/psanet_r50-d8_769x769_40k_cityscapes_20200530_033717-d5365506.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_40k_cityscapes/psanet_r50-d8_769x769_40k_cityscapes_20200530_033717.log.json) |
-| PSANet | R-101-D8 | 769x769 | 40000 | 11.9 | 0.98 | V100 | 78.43 | 80.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_40k_cityscapes/psanet_r101-d8_769x769_40k_cityscapes_20200530_035107-997da1e6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_40k_cityscapes/psanet_r101-d8_769x769_40k_cityscapes_20200530_035107.log.json) |
-| PSANet | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 77.24 | 78.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_80k_cityscapes/psanet_r50-d8_512x1024_80k_cityscapes_20200606_161842-ab60a24f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_80k_cityscapes/psanet_r50-d8_512x1024_80k_cityscapes_20200606_161842.log.json) |
-| PSANet | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 79.31 | 80.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_80k_cityscapes/psanet_r101-d8_512x1024_80k_cityscapes_20200606_161823-0f73a169.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_80k_cityscapes/psanet_r101-d8_512x1024_80k_cityscapes_20200606_161823.log.json) |
-| PSANet | R-50-D8 | 769x769 | 80000 | - | - | V100 | 79.31 | 80.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_80k_cityscapes/psanet_r50-d8_769x769_80k_cityscapes_20200606_225134-fe42f49e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_80k_cityscapes/psanet_r50-d8_769x769_80k_cityscapes_20200606_225134.log.json) |
-| PSANet | R-101-D8 | 769x769 | 80000 | - | - | V100 | 79.69 | 80.89 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_80k_cityscapes/psanet_r101-d8_769x769_80k_cityscapes_20200606_214550-7665827b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_80k_cityscapes/psanet_r101-d8_769x769_80k_cityscapes_20200606_214550.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| PSANet | R-50-D8 | 512x1024 | 40000 | 7 | 3.17 | V100 | 77.63 | 79.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_40k_cityscapes/psanet_r50-d8_512x1024_40k_cityscapes_20200606_103117-99fac37c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_40k_cityscapes/psanet_r50-d8_512x1024_40k_cityscapes_20200606_103117.log.json) |
+| PSANet | R-101-D8 | 512x1024 | 40000 | 10.5 | 2.20 | V100 | 79.14 | 80.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_40k_cityscapes/psanet_r101-d8_512x1024_40k_cityscapes_20200606_001418-27b9cfa7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_40k_cityscapes/psanet_r101-d8_512x1024_40k_cityscapes_20200606_001418.log.json) |
+| PSANet | R-50-D8 | 769x769 | 40000 | 7.9 | 1.40 | V100 | 77.99 | 79.64 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_40k_cityscapes/psanet_r50-d8_769x769_40k_cityscapes_20200530_033717-d5365506.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_40k_cityscapes/psanet_r50-d8_769x769_40k_cityscapes_20200530_033717.log.json) |
+| PSANet | R-101-D8 | 769x769 | 40000 | 11.9 | 0.98 | V100 | 78.43 | 80.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_40k_cityscapes/psanet_r101-d8_769x769_40k_cityscapes_20200530_035107-997da1e6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_40k_cityscapes/psanet_r101-d8_769x769_40k_cityscapes_20200530_035107.log.json) |
+| PSANet | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 77.24 | 78.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_80k_cityscapes/psanet_r50-d8_512x1024_80k_cityscapes_20200606_161842-ab60a24f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_80k_cityscapes/psanet_r50-d8_512x1024_80k_cityscapes_20200606_161842.log.json) |
+| PSANet | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 79.31 | 80.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_80k_cityscapes/psanet_r101-d8_512x1024_80k_cityscapes_20200606_161823-0f73a169.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_80k_cityscapes/psanet_r101-d8_512x1024_80k_cityscapes_20200606_161823.log.json) |
+| PSANet | R-50-D8 | 769x769 | 80000 | - | - | V100 | 79.31 | 80.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_80k_cityscapes/psanet_r50-d8_769x769_80k_cityscapes_20200606_225134-fe42f49e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_80k_cityscapes/psanet_r50-d8_769x769_80k_cityscapes_20200606_225134.log.json) |
+| PSANet | R-101-D8 | 769x769 | 80000 | - | - | V100 | 79.69 | 80.89 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_80k_cityscapes/psanet_r101-d8_769x769_80k_cityscapes_20200606_214550-7665827b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_80k_cityscapes/psanet_r101-d8_769x769_80k_cityscapes_20200606_214550.log.json) |
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| PSANet | R-50-D8 | 512x512 | 80000 | 9 | 18.91 | V100 | 41.14 | 41.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_80k_ade20k/psanet_r50-d8_512x512_80k_ade20k_20200614_144141-835e4b97.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_80k_ade20k/psanet_r50-d8_512x512_80k_ade20k_20200614_144141.log.json) |
-| PSANet | R-101-D8 | 512x512 | 80000 | 12.5 | 13.13 | V100 | 43.80 | 44.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_80k_ade20k/psanet_r101-d8_512x512_80k_ade20k_20200614_185117-1fab60d4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_80k_ade20k/psanet_r101-d8_512x512_80k_ade20k_20200614_185117.log.json) |
-| PSANet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 41.67 | 42.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_160k_ade20k/psanet_r50-d8_512x512_160k_ade20k_20200615_161258-148077dd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_160k_ade20k/psanet_r50-d8_512x512_160k_ade20k_20200615_161258.log.json) |
-| PSANet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 43.74 | 45.38 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_160k_ade20k/psanet_r101-d8_512x512_160k_ade20k_20200615_161537-dbfa564c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_160k_ade20k/psanet_r101-d8_512x512_160k_ade20k_20200615_161537.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| PSANet | R-50-D8 | 512x512 | 80000 | 9 | 18.91 | V100 | 41.14 | 41.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_80k_ade20k/psanet_r50-d8_512x512_80k_ade20k_20200614_144141-835e4b97.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_80k_ade20k/psanet_r50-d8_512x512_80k_ade20k_20200614_144141.log.json) |
+| PSANet | R-101-D8 | 512x512 | 80000 | 12.5 | 13.13 | V100 | 43.80 | 44.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_80k_ade20k/psanet_r101-d8_512x512_80k_ade20k_20200614_185117-1fab60d4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_80k_ade20k/psanet_r101-d8_512x512_80k_ade20k_20200614_185117.log.json) |
+| PSANet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 41.67 | 42.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_160k_ade20k/psanet_r50-d8_512x512_160k_ade20k_20200615_161258-148077dd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_160k_ade20k/psanet_r50-d8_512x512_160k_ade20k_20200615_161258.log.json) |
+| PSANet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 43.74 | 45.38 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_160k_ade20k/psanet_r101-d8_512x512_160k_ade20k_20200615_161537-dbfa564c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_160k_ade20k/psanet_r101-d8_512x512_160k_ade20k_20200615_161537.log.json) |
### Pascal VOC 2012 + Aug
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| PSANet | R-50-D8 | 512x512 | 20000 | 6.9 | 18.24 | V100 | 76.39 | 77.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_20k_voc12aug/psanet_r50-d8_512x512_20k_voc12aug_20200617_102413-2f1bbaa1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_20k_voc12aug/psanet_r50-d8_512x512_20k_voc12aug_20200617_102413.log.json) |
-| PSANet | R-101-D8 | 512x512 | 20000 | 10.4 | 12.63 | V100 | 77.91 | 79.30 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_20k_voc12aug/psanet_r101-d8_512x512_20k_voc12aug_20200617_110624-946fef11.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_20k_voc12aug/psanet_r101-d8_512x512_20k_voc12aug_20200617_110624.log.json) |
-| PSANet | R-50-D8 | 512x512 | 40000 | - | - | V100 | 76.30 | 77.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_40k_voc12aug/psanet_r50-d8_512x512_40k_voc12aug_20200613_161946-f596afb5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_40k_voc12aug/psanet_r50-d8_512x512_40k_voc12aug_20200613_161946.log.json) |
-| PSANet | R-101-D8 | 512x512 | 40000 | - | - | V100 | 77.73 | 79.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/psanet/psanet_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_40k_voc12aug/psanet_r101-d8_512x512_40k_voc12aug_20200613_161946-1f560f9e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_40k_voc12aug/psanet_r101-d8_512x512_40k_voc12aug_20200613_161946.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| PSANet | R-50-D8 | 512x512 | 20000 | 6.9 | 18.24 | V100 | 76.39 | 77.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_20k_voc12aug/psanet_r50-d8_512x512_20k_voc12aug_20200617_102413-2f1bbaa1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_20k_voc12aug/psanet_r50-d8_512x512_20k_voc12aug_20200617_102413.log.json) |
+| PSANet | R-101-D8 | 512x512 | 20000 | 10.4 | 12.63 | V100 | 77.91 | 79.30 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_20k_voc12aug/psanet_r101-d8_512x512_20k_voc12aug_20200617_110624-946fef11.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_20k_voc12aug/psanet_r101-d8_512x512_20k_voc12aug_20200617_110624.log.json) |
+| PSANet | R-50-D8 | 512x512 | 40000 | - | - | V100 | 76.30 | 77.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_40k_voc12aug/psanet_r50-d8_512x512_40k_voc12aug_20200613_161946-f596afb5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_40k_voc12aug/psanet_r50-d8_512x512_40k_voc12aug_20200613_161946.log.json) |
+| PSANet | R-101-D8 | 512x512 | 40000 | - | - | V100 | 77.73 | 79.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_40k_voc12aug/psanet_r101-d8_512x512_40k_voc12aug_20200613_161946-1f560f9e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_40k_voc12aug/psanet_r101-d8_512x512_40k_voc12aug_20200613_161946.log.json) |
## Citation
diff --git a/configs/pspnet/README.md b/configs/pspnet/README.md
index e1c2c112cb..4209d259b7 100644
--- a/configs/pspnet/README.md
+++ b/configs/pspnet/README.md
@@ -31,128 +31,128 @@ PSPNet-R50 D8 model structure
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------------- | ------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| PSPNet | R-50-D8 | 512x1024 | 40000 | 6.1 | 4.07 | V100 | 77.85 | 79.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338.log.json) |
-| PSPNet | R-101-D8 | 512x1024 | 40000 | 9.6 | 2.68 | V100 | 78.34 | 79.74 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751-467e7cf4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751.log.json) |
-| PSPNet | R-50-D8 | 769x769 | 40000 | 6.9 | 1.76 | V100 | 78.26 | 79.88 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_40k_cityscapes/pspnet_r50-d8_769x769_40k_cityscapes_20200606_112725-86638686.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_40k_cityscapes/pspnet_r50-d8_769x769_40k_cityscapes_20200606_112725.log.json) |
-| PSPNet | R-101-D8 | 769x769 | 40000 | 10.9 | 1.15 | V100 | 79.08 | 80.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_40k_cityscapes/pspnet_r101-d8_769x769_40k_cityscapes_20200606_112753-61c6f5be.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_40k_cityscapes/pspnet_r101-d8_769x769_40k_cityscapes_20200606_112753.log.json) |
-| PSPNet | R-18-D8 | 512x1024 | 80000 | 1.7 | 15.71 | V100 | 74.87 | 76.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r18-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x1024_80k_cityscapes/pspnet_r18-d8_512x1024_80k_cityscapes_20201225_021458-09ffa746.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x1024_80k_cityscapes/pspnet_r18-d8_512x1024_80k_cityscapes-20201225_021458.log.json) |
-| PSPNet | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 78.55 | 79.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_512x1024_80k_cityscapes_20200606_112131-2376f12b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_512x1024_80k_cityscapes_20200606_112131.log.json) |
-| PSPNet | R-50b-D8 rsb | 512x1024 | 80000 | 6.2 | 3.82 | V100 | 78.47 | 79.45 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8-rsb_4xb2-adamw-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_rsb-pretrain_512x1024_adamw_80k_cityscapes_20220315_123238-588c30be.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_rsb-pretrain_512x1024_adamw_80k_cityscapes_20220315_123238.log.json) |
-| PSPNet | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 79.76 | 81.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes/pspnet_r101-d8_512x1024_80k_cityscapes_20200606_112211-e1e1100f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes/pspnet_r101-d8_512x1024_80k_cityscapes_20200606_112211.log.json) |
-| PSPNet (FP16) | R-101-D8 | 512x1024 | 80000 | 5.34 | 8.77 | V100 | 79.46 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_fp16_512x1024_80k_cityscapes/pspnet_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230919-a0875e5c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_fp16_512x1024_80k_cityscapes/pspnet_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230919.log.json) |
-| PSPNet | R-18-D8 | 769x769 | 80000 | 1.9 | 6.20 | V100 | 75.90 | 77.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r18-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_769x769_80k_cityscapes/pspnet_r18-d8_769x769_80k_cityscapes_20201225_021458-3deefc62.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_769x769_80k_cityscapes/pspnet_r18-d8_769x769_80k_cityscapes-20201225_021458.log.json) |
-| PSPNet | R-50-D8 | 769x769 | 80000 | - | - | V100 | 79.59 | 80.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_80k_cityscapes/pspnet_r50-d8_769x769_80k_cityscapes_20200606_210121-5ccf03dd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_80k_cityscapes/pspnet_r50-d8_769x769_80k_cityscapes_20200606_210121.log.json) |
-| PSPNet | R-101-D8 | 769x769 | 80000 | - | - | V100 | 79.77 | 81.06 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.oz1z1penmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_80k_cityscapes/pspnet_r101-d8_769x769_80k_cityscapes_20200606_225055-dba412fa.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_80k_cityscapes/pspnet_r101-d8_769x769_80k_cityscapes_20200606_225055.log.json) |
-| PSPNet | R-18b-D8 | 512x1024 | 80000 | 1.5 | 16.28 | V100 | 74.23 | 75.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r18b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_512x1024_80k_cityscapes/pspnet_r18b-d8_512x1024_80k_cityscapes_20201226_063116-26928a60.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_512x1024_80k_cityscapes/pspnet_r18b-d8_512x1024_80k_cityscapes-20201226_063116.log.json) |
-| PSPNet | R-50b-D8 | 512x1024 | 80000 | 6.0 | 4.30 | V100 | 78.22 | 79.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_512x1024_80k_cityscapes/pspnet_r50b-d8_512x1024_80k_cityscapes_20201225_094315-6344287a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_512x1024_80k_cityscapes/pspnet_r50b-d8_512x1024_80k_cityscapes-20201225_094315.log.json) |
-| PSPNet | R-101b-D8 | 512x1024 | 80000 | 9.5 | 2.76 | V100 | 79.69 | 80.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes_20201226_170012-3a4d38ab.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes-20201226_170012.log.json) |
-| PSPNet | R-18b-D8 | 769x769 | 80000 | 1.7 | 6.41 | V100 | 74.92 | 76.90 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r18b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_769x769_80k_cityscapes/pspnet_r18b-d8_769x769_80k_cityscapes_20201226_080942-bf98d186.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_769x769_80k_cityscapes/pspnet_r18b-d8_769x769_80k_cityscapes-20201226_080942.log.json) |
-| PSPNet | R-50b-D8 | 769x769 | 80000 | 6.8 | 1.88 | V100 | 78.50 | 79.96 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_769x769_80k_cityscapes/pspnet_r50b-d8_769x769_80k_cityscapes_20201225_094316-4c643cf6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_769x769_80k_cityscapes/pspnet_r50b-d8_769x769_80k_cityscapes-20201225_094316.log.json) |
-| PSPNet | R-101b-D8 | 769x769 | 80000 | 10.8 | 1.17 | V100 | 78.87 | 80.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_769x769_80k_cityscapes/pspnet_r101b-d8_769x769_80k_cityscapes_20201226_171823-f0e7c293.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_769x769_80k_cityscapes/pspnet_r101b-d8_769x769_80k_cityscapes-20201226_171823.log.json) |
-| PSPNet | R-50-D32 | 512x1024 | 80000 | 3.0 | 15.21 | V100 | 73.88 | 76.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50b-d32_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d32_512x1024_80k_cityscapes/pspnet_r50-d32_512x1024_80k_cityscapes_20220316_224840-9092b254.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d32_512x1024_80k_cityscapes/pspnet_r50-d32_512x1024_80k_cityscapes_20220316_224840.log.json) |
-| PSPNet | R-50b-D32 rsb | 512x1024 | 80000 | 3.1 | 16.08 | V100 | 74.09 | 77.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d32_rsb_4xb2-adamw-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d32_rsb-pretrain_512x1024_adamw_80k_cityscapes/pspnet_r50-d32_rsb-pretrain_512x1024_adamw_80k_cityscapes_20220316_141229-dd9c9610.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d32_rsb-pretrain_512x1024_adamw_80k_cityscapes/pspnet_r50-d32_rsb-pretrain_512x1024_adamw_80k_cityscapes_20220316_141229.log.json) |
-| PSPNet | R-50b-D32 | 512x1024 | 80000 | 2.9 | 15.41 | V100 | 72.61 | 75.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50b-d32_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d32_512x1024_80k_cityscapes/pspnet_r50b-d32_512x1024_80k_cityscapes_20220311_152152-23bcaf8c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d32_512x1024_80k_cityscapes/pspnet_r50b-d32_512x1024_80k_cityscapes_20220311_152152.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------------- | ------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| PSPNet | R-50-D8 | 512x1024 | 40000 | 6.1 | 4.07 | V100 | 77.85 | 79.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338.log.json) |
+| PSPNet | R-101-D8 | 512x1024 | 40000 | 9.6 | 2.68 | V100 | 78.34 | 79.74 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751-467e7cf4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751.log.json) |
+| PSPNet | R-50-D8 | 769x769 | 40000 | 6.9 | 1.76 | V100 | 78.26 | 79.88 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_40k_cityscapes/pspnet_r50-d8_769x769_40k_cityscapes_20200606_112725-86638686.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_40k_cityscapes/pspnet_r50-d8_769x769_40k_cityscapes_20200606_112725.log.json) |
+| PSPNet | R-101-D8 | 769x769 | 40000 | 10.9 | 1.15 | V100 | 79.08 | 80.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_40k_cityscapes/pspnet_r101-d8_769x769_40k_cityscapes_20200606_112753-61c6f5be.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_40k_cityscapes/pspnet_r101-d8_769x769_40k_cityscapes_20200606_112753.log.json) |
+| PSPNet | R-18-D8 | 512x1024 | 80000 | 1.7 | 15.71 | V100 | 74.87 | 76.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r18-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x1024_80k_cityscapes/pspnet_r18-d8_512x1024_80k_cityscapes_20201225_021458-09ffa746.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x1024_80k_cityscapes/pspnet_r18-d8_512x1024_80k_cityscapes-20201225_021458.log.json) |
+| PSPNet | R-50-D8 | 512x1024 | 80000 | - | - | V100 | 78.55 | 79.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_512x1024_80k_cityscapes_20200606_112131-2376f12b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_512x1024_80k_cityscapes_20200606_112131.log.json) |
+| PSPNet | R-50b-D8 rsb | 512x1024 | 80000 | 6.2 | 3.82 | V100 | 78.47 | 79.45 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8-rsb_4xb2-adamw-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_rsb-pretrain_512x1024_adamw_80k_cityscapes_20220315_123238-588c30be.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_rsb-pretrain_512x1024_adamw_80k_cityscapes_20220315_123238.log.json) |
+| PSPNet | R-101-D8 | 512x1024 | 80000 | - | - | V100 | 79.76 | 81.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes/pspnet_r101-d8_512x1024_80k_cityscapes_20200606_112211-e1e1100f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes/pspnet_r101-d8_512x1024_80k_cityscapes_20200606_112211.log.json) |
+| PSPNet (FP16) | R-101-D8 | 512x1024 | 80000 | 5.34 | 8.77 | V100 | 79.46 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_fp16_512x1024_80k_cityscapes/pspnet_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230919-a0875e5c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_fp16_512x1024_80k_cityscapes/pspnet_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230919.log.json) |
+| PSPNet | R-18-D8 | 769x769 | 80000 | 1.9 | 6.20 | V100 | 75.90 | 77.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r18-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_769x769_80k_cityscapes/pspnet_r18-d8_769x769_80k_cityscapes_20201225_021458-3deefc62.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_769x769_80k_cityscapes/pspnet_r18-d8_769x769_80k_cityscapes-20201225_021458.log.json) |
+| PSPNet | R-50-D8 | 769x769 | 80000 | - | - | V100 | 79.59 | 80.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_80k_cityscapes/pspnet_r50-d8_769x769_80k_cityscapes_20200606_210121-5ccf03dd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_80k_cityscapes/pspnet_r50-d8_769x769_80k_cityscapes_20200606_210121.log.json) |
+| PSPNet | R-101-D8 | 769x769 | 80000 | - | - | V100 | 79.77 | 81.06 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.oz1z1penmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_80k_cityscapes/pspnet_r101-d8_769x769_80k_cityscapes_20200606_225055-dba412fa.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_80k_cityscapes/pspnet_r101-d8_769x769_80k_cityscapes_20200606_225055.log.json) |
+| PSPNet | R-18b-D8 | 512x1024 | 80000 | 1.5 | 16.28 | V100 | 74.23 | 75.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r18b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_512x1024_80k_cityscapes/pspnet_r18b-d8_512x1024_80k_cityscapes_20201226_063116-26928a60.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_512x1024_80k_cityscapes/pspnet_r18b-d8_512x1024_80k_cityscapes-20201226_063116.log.json) |
+| PSPNet | R-50b-D8 | 512x1024 | 80000 | 6.0 | 4.30 | V100 | 78.22 | 79.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_512x1024_80k_cityscapes/pspnet_r50b-d8_512x1024_80k_cityscapes_20201225_094315-6344287a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_512x1024_80k_cityscapes/pspnet_r50b-d8_512x1024_80k_cityscapes-20201225_094315.log.json) |
+| PSPNet | R-101b-D8 | 512x1024 | 80000 | 9.5 | 2.76 | V100 | 79.69 | 80.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes_20201226_170012-3a4d38ab.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes-20201226_170012.log.json) |
+| PSPNet | R-18b-D8 | 769x769 | 80000 | 1.7 | 6.41 | V100 | 74.92 | 76.90 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r18b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_769x769_80k_cityscapes/pspnet_r18b-d8_769x769_80k_cityscapes_20201226_080942-bf98d186.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_769x769_80k_cityscapes/pspnet_r18b-d8_769x769_80k_cityscapes-20201226_080942.log.json) |
+| PSPNet | R-50b-D8 | 769x769 | 80000 | 6.8 | 1.88 | V100 | 78.50 | 79.96 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_769x769_80k_cityscapes/pspnet_r50b-d8_769x769_80k_cityscapes_20201225_094316-4c643cf6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_769x769_80k_cityscapes/pspnet_r50b-d8_769x769_80k_cityscapes-20201225_094316.log.json) |
+| PSPNet | R-101b-D8 | 769x769 | 80000 | 10.8 | 1.17 | V100 | 78.87 | 80.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_769x769_80k_cityscapes/pspnet_r101b-d8_769x769_80k_cityscapes_20201226_171823-f0e7c293.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_769x769_80k_cityscapes/pspnet_r101b-d8_769x769_80k_cityscapes-20201226_171823.log.json) |
+| PSPNet | R-50-D32 | 512x1024 | 80000 | 3.0 | 15.21 | V100 | 73.88 | 76.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50b-d32_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d32_512x1024_80k_cityscapes/pspnet_r50-d32_512x1024_80k_cityscapes_20220316_224840-9092b254.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d32_512x1024_80k_cityscapes/pspnet_r50-d32_512x1024_80k_cityscapes_20220316_224840.log.json) |
+| PSPNet | R-50b-D32 rsb | 512x1024 | 80000 | 3.1 | 16.08 | V100 | 74.09 | 77.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d32_rsb_4xb2-adamw-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d32_rsb-pretrain_512x1024_adamw_80k_cityscapes/pspnet_r50-d32_rsb-pretrain_512x1024_adamw_80k_cityscapes_20220316_141229-dd9c9610.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d32_rsb-pretrain_512x1024_adamw_80k_cityscapes/pspnet_r50-d32_rsb-pretrain_512x1024_adamw_80k_cityscapes_20220316_141229.log.json) |
+| PSPNet | R-50b-D32 | 512x1024 | 80000 | 2.9 | 15.41 | V100 | 72.61 | 75.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50b-d32_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d32_512x1024_80k_cityscapes/pspnet_r50b-d32_512x1024_80k_cityscapes_20220311_152152-23bcaf8c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d32_512x1024_80k_cityscapes/pspnet_r50b-d32_512x1024_80k_cityscapes_20220311_152152.log.json) |
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| PSPNet | R-50-D8 | 512x512 | 80000 | 8.5 | 23.53 | V100 | 41.13 | 41.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_ade20k/pspnet_r50-d8_512x512_80k_ade20k_20200615_014128-15a8b914.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_ade20k/pspnet_r50-d8_512x512_80k_ade20k_20200615_014128.log.json) |
-| PSPNet | R-101-D8 | 512x512 | 80000 | 12 | 15.30 | V100 | 43.57 | 44.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_ade20k/pspnet_r101-d8_512x512_80k_ade20k_20200614_031423-b6e782f0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_ade20k/pspnet_r101-d8_512x512_80k_ade20k_20200614_031423.log.json) |
-| PSPNet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 42.48 | 43.44 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_160k_ade20k/pspnet_r50-d8_512x512_160k_ade20k_20200615_184358-1890b0bd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_160k_ade20k/pspnet_r50-d8_512x512_160k_ade20k_20200615_184358.log.json) |
-| PSPNet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 44.39 | 45.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_160k_ade20k/pspnet_r101-d8_512x512_160k_ade20k_20200615_100650-967c316f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_160k_ade20k/pspnet_r101-d8_512x512_160k_ade20k_20200615_100650.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| PSPNet | R-50-D8 | 512x512 | 80000 | 8.5 | 23.53 | V100 | 41.13 | 41.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_ade20k/pspnet_r50-d8_512x512_80k_ade20k_20200615_014128-15a8b914.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_ade20k/pspnet_r50-d8_512x512_80k_ade20k_20200615_014128.log.json) |
+| PSPNet | R-101-D8 | 512x512 | 80000 | 12 | 15.30 | V100 | 43.57 | 44.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_ade20k/pspnet_r101-d8_512x512_80k_ade20k_20200614_031423-b6e782f0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_ade20k/pspnet_r101-d8_512x512_80k_ade20k_20200614_031423.log.json) |
+| PSPNet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 42.48 | 43.44 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_160k_ade20k/pspnet_r50-d8_512x512_160k_ade20k_20200615_184358-1890b0bd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_160k_ade20k/pspnet_r50-d8_512x512_160k_ade20k_20200615_184358.log.json) |
+| PSPNet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 44.39 | 45.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_160k_ade20k/pspnet_r101-d8_512x512_160k_ade20k_20200615_100650-967c316f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_160k_ade20k/pspnet_r101-d8_512x512_160k_ade20k_20200615_100650.log.json) |
### Pascal VOC 2012 + Aug
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| PSPNet | R-50-D8 | 512x512 | 20000 | 6.1 | 23.59 | V100 | 76.78 | 77.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_20k_voc12aug/pspnet_r50-d8_512x512_20k_voc12aug_20200617_101958-ed5dfbd9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_20k_voc12aug/pspnet_r50-d8_512x512_20k_voc12aug_20200617_101958.log.json) |
-| PSPNet | R-101-D8 | 512x512 | 20000 | 9.6 | 15.02 | V100 | 78.47 | 79.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_20k_voc12aug/pspnet_r101-d8_512x512_20k_voc12aug_20200617_102003-4aef3c9a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_20k_voc12aug/pspnet_r101-d8_512x512_20k_voc12aug_20200617_102003.log.json) |
-| PSPNet | R-50-D8 | 512x512 | 40000 | - | - | V100 | 77.29 | 78.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_40k_voc12aug/pspnet_r50-d8_512x512_40k_voc12aug_20200613_161222-ae9c1b8c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_40k_voc12aug/pspnet_r50-d8_512x512_40k_voc12aug_20200613_161222.log.json) |
-| PSPNet | R-101-D8 | 512x512 | 40000 | - | - | V100 | 78.52 | 79.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_40k_voc12aug/pspnet_r101-d8_512x512_40k_voc12aug_20200613_161222-bc933b18.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_40k_voc12aug/pspnet_r101-d8_512x512_40k_voc12aug_20200613_161222.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| PSPNet | R-50-D8 | 512x512 | 20000 | 6.1 | 23.59 | V100 | 76.78 | 77.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_20k_voc12aug/pspnet_r50-d8_512x512_20k_voc12aug_20200617_101958-ed5dfbd9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_20k_voc12aug/pspnet_r50-d8_512x512_20k_voc12aug_20200617_101958.log.json) |
+| PSPNet | R-101-D8 | 512x512 | 20000 | 9.6 | 15.02 | V100 | 78.47 | 79.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_20k_voc12aug/pspnet_r101-d8_512x512_20k_voc12aug_20200617_102003-4aef3c9a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_20k_voc12aug/pspnet_r101-d8_512x512_20k_voc12aug_20200617_102003.log.json) |
+| PSPNet | R-50-D8 | 512x512 | 40000 | - | - | V100 | 77.29 | 78.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_40k_voc12aug/pspnet_r50-d8_512x512_40k_voc12aug_20200613_161222-ae9c1b8c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_40k_voc12aug/pspnet_r50-d8_512x512_40k_voc12aug_20200613_161222.log.json) |
+| PSPNet | R-101-D8 | 512x512 | 40000 | - | - | V100 | 78.52 | 79.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_40k_voc12aug/pspnet_r101-d8_512x512_40k_voc12aug_20200613_161222-bc933b18.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_40k_voc12aug/pspnet_r101-d8_512x512_40k_voc12aug_20200613_161222.log.json) |
### Pascal Context
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| PSPNet | R-101-D8 | 480x480 | 40000 | 8.8 | 9.68 | V100 | 46.60 | 47.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-40k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context/pspnet_r101-d8_480x480_40k_pascal_context_20200911_211210-bf0f5d7c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context/pspnet_r101-d8_480x480_40k_pascal_context-20200911_211210.log.json) |
-| PSPNet | R-101-D8 | 480x480 | 80000 | - | - | V100 | 46.03 | 47.15 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-80k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context/pspnet_r101-d8_480x480_80k_pascal_context_20200911_190530-c86d6233.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context/pspnet_r101-d8_480x480_80k_pascal_context-20200911_190530.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| PSPNet | R-101-D8 | 480x480 | 40000 | 8.8 | 9.68 | V100 | 46.60 | 47.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-40k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context/pspnet_r101-d8_480x480_40k_pascal_context_20200911_211210-bf0f5d7c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context/pspnet_r101-d8_480x480_40k_pascal_context-20200911_211210.log.json) |
+| PSPNet | R-101-D8 | 480x480 | 80000 | - | - | V100 | 46.03 | 47.15 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-80k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context/pspnet_r101-d8_480x480_80k_pascal_context_20200911_190530-c86d6233.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context/pspnet_r101-d8_480x480_80k_pascal_context-20200911_190530.log.json) |
### Pascal Context 59
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| PSPNet | R-101-D8 | 480x480 | 40000 | - | - | V100 | 52.02 | 53.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-40k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context_59/pspnet_r101-d8_480x480_40k_pascal_context_59_20210416_114524-86d44cd4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context_59/pspnet_r101-d8_480x480_40k_pascal_context_59-20210416_114524.log.json) |
-| PSPNet | R-101-D8 | 480x480 | 80000 | - | - | V100 | 52.47 | 53.99 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-80k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context_59/pspnet_r101-d8_480x480_80k_pascal_context_59_20210416_114418-fa6caaa2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context_59/pspnet_r101-d8_480x480_80k_pascal_context_59-20210416_114418.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| PSPNet | R-101-D8 | 480x480 | 40000 | - | - | V100 | 52.02 | 53.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-40k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context_59/pspnet_r101-d8_480x480_40k_pascal_context_59_20210416_114524-86d44cd4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context_59/pspnet_r101-d8_480x480_40k_pascal_context_59-20210416_114524.log.json) |
+| PSPNet | R-101-D8 | 480x480 | 80000 | - | - | V100 | 52.47 | 53.99 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-80k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context_59/pspnet_r101-d8_480x480_80k_pascal_context_59_20210416_114418-fa6caaa2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context_59/pspnet_r101-d8_480x480_80k_pascal_context_59-20210416_114418.log.json) |
### Dark Zurich and Nighttime Driving
We support evaluation results on these two datasets using models above trained on Cityscapes training set.
-| Method | Backbone | Training Dataset | Test Dataset | mIoU | config | evaluation checkpoint |
-| ------ | --------- | ----------------------- | ------------------------- | ----- | ---------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| PSPNet | R-50-D8 | Cityscapes Training set | Dark Zurich | 10.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024_dark-zurich-1920x1080.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338.log.json) |
-| PSPNet | R-50-D8 | Cityscapes Training set | Nighttime Driving | 23.02 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024_night-driving-1920x1080.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338.log.json) |
-| PSPNet | R-50-D8 | Cityscapes Training set | Cityscapes Validation set | 77.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338.log.json) |
-| PSPNet | R-101-D8 | Cityscapes Training set | Dark Zurich | 10.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-512x1024_dark-zurich-1920x1080.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751-467e7cf4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751.log.json) |
-| PSPNet | R-101-D8 | Cityscapes Training set | Nighttime Driving | 20.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-512x1024_night-driving-1920x1080.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751-467e7cf4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751.log.json) |
-| PSPNet | R-101-D8 | Cityscapes Training set | Cityscapes Validation set | 78.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751-467e7cf4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751.log.json) |
-| PSPNet | R-101b-D8 | Cityscapes Training set | Dark Zurich | 15.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024_dark-zurich-1920x1080.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes_20201226_170012-3a4d38ab.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes-20201226_170012.log.json) |
-| PSPNet | R-101b-D8 | Cityscapes Training set | Nighttime Driving | 22.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024_night-driving-1920x1080.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes_20201226_170012-3a4d38ab.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes-20201226_170012.log.json) |
-| PSPNet | R-101b-D8 | Cityscapes Training set | Cityscapes Validation set | 79.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes_20201226_170012-3a4d38ab.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes-20201226_170012.log.json) |
+| Method | Backbone | Training Dataset | Test Dataset | mIoU | config | evaluation checkpoint |
+| ------ | --------- | ----------------------- | ------------------------- | ----- | ------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| PSPNet | R-50-D8 | Cityscapes Training set | Dark Zurich | 10.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024_dark-zurich-1920x1080.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338.log.json) |
+| PSPNet | R-50-D8 | Cityscapes Training set | Nighttime Driving | 23.02 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024_night-driving-1920x1080.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338.log.json) |
+| PSPNet | R-50-D8 | Cityscapes Training set | Cityscapes Validation set | 77.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338.log.json) |
+| PSPNet | R-101-D8 | Cityscapes Training set | Dark Zurich | 10.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-512x1024_dark-zurich-1920x1080.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751-467e7cf4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751.log.json) |
+| PSPNet | R-101-D8 | Cityscapes Training set | Nighttime Driving | 20.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-512x1024_night-driving-1920x1080.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751-467e7cf4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751.log.json) |
+| PSPNet | R-101-D8 | Cityscapes Training set | Cityscapes Validation set | 78.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751-467e7cf4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751.log.json) |
+| PSPNet | R-101b-D8 | Cityscapes Training set | Dark Zurich | 15.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024_dark-zurich-1920x1080.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes_20201226_170012-3a4d38ab.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes-20201226_170012.log.json) |
+| PSPNet | R-101b-D8 | Cityscapes Training set | Nighttime Driving | 22.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024_night-driving-1920x1080.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes_20201226_170012-3a4d38ab.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes-20201226_170012.log.json) |
+| PSPNet | R-101b-D8 | Cityscapes Training set | Cityscapes Validation set | 79.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes_20201226_170012-3a4d38ab.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes-20201226_170012.log.json) |
### COCO-Stuff 10k
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| PSPNet | R-50-D8 | 512x512 | 20000 | 9.6 | 20.5 | V100 | 35.69 | 36.62 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-20k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k_20210820_203258-b88df27f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k_20210820_203258.log.json) |
-| PSPNet | R-101-D8 | 512x512 | 20000 | 13.2 | 11.1 | V100 | 37.26 | 38.52 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-20k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k_20210820_232135-76aae482.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k_20210820_232135.log.json) |
-| PSPNet | R-50-D8 | 512x512 | 40000 | - | - | V100 | 36.33 | 37.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-40k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_030857-92e2902b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_030857.log.json) |
-| PSPNet | R-101-D8 | 512x512 | 40000 | - | - | V100 | 37.76 | 38.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-40k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_014022-831aec95.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_014022.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| PSPNet | R-50-D8 | 512x512 | 20000 | 9.6 | 20.5 | V100 | 35.69 | 36.62 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb4-20k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k_20210820_203258-b88df27f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k_20210820_203258.log.json) |
+| PSPNet | R-101-D8 | 512x512 | 20000 | 13.2 | 11.1 | V100 | 37.26 | 38.52 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-20k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k_20210820_232135-76aae482.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k_20210820_232135.log.json) |
+| PSPNet | R-50-D8 | 512x512 | 40000 | - | - | V100 | 36.33 | 37.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb4-40k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_030857-92e2902b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_030857.log.json) |
+| PSPNet | R-101-D8 | 512x512 | 40000 | - | - | V100 | 37.76 | 38.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-40k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_014022-831aec95.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_014022.log.json) |
### COCO-Stuff 164k
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| PSPNet | R-50-D8 | 512x512 | 80000 | 9.6 | 20.5 | V100 | 38.80 | 39.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-80k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034-0e41b2db.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034.log.json) |
-| PSPNet | R-101-D8 | 512x512 | 80000 | 13.2 | 11.1 | V100 | 40.34 | 40.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-80k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034-7eb41789.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034.log.json) |
-| PSPNet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 39.64 | 39.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004-51276a57.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004.log.json) |
-| PSPNet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 41.28 | 41.66 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004-4af9621b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004.log.json) |
-| PSPNet | R-50-D8 | 512x512 | 320000 | - | - | V100 | 40.53 | 40.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-320k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004-be9610cc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004.log.json) |
-| PSPNet | R-101-D8 | 512x512 | 320000 | - | - | V100 | 41.95 | 42.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-320k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004-72220c60.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| PSPNet | R-50-D8 | 512x512 | 80000 | 9.6 | 20.5 | V100 | 38.80 | 39.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb4-80k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034-0e41b2db.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034.log.json) |
+| PSPNet | R-101-D8 | 512x512 | 80000 | 13.2 | 11.1 | V100 | 40.34 | 40.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-80k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034-7eb41789.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034.log.json) |
+| PSPNet | R-50-D8 | 512x512 | 160000 | - | - | V100 | 39.64 | 39.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004-51276a57.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004.log.json) |
+| PSPNet | R-101-D8 | 512x512 | 160000 | - | - | V100 | 41.28 | 41.66 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004-4af9621b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004.log.json) |
+| PSPNet | R-50-D8 | 512x512 | 320000 | - | - | V100 | 40.53 | 40.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb4-320k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004-be9610cc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004.log.json) |
+| PSPNet | R-101-D8 | 512x512 | 320000 | - | - | V100 | 41.95 | 42.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-320k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004-72220c60.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004.log.json) |
### LoveDA
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| PSPNet | R-18-D8 | 512x512 | 80000 | 1.45 | 26.87 | V100 | 48.62 | 47.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r18-d8_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x512_80k_loveda/pspnet_r18-d8_512x512_80k_loveda_20211105_052100-b97697f1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x512_80k_loveda/pspnet_r18-d8_512x512_80k_loveda_20211105_052100.log.json) |
-| PSPNet | R-50-D8 | 512x512 | 80000 | 6.14 | 6.60 | V100 | 50.46 | 50.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_loveda/pspnet_r50-d8_512x512_80k_loveda_20211104_155728-88610f9f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_loveda/pspnet_r50-d8_512x512_80k_loveda_20211104_155728.log.json) |
-| PSPNet | R-101-D8 | 512x512 | 80000 | 9.61 | 4.58 | V100 | 51.86 | 51.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_loveda/pspnet_r101-d8_512x512_80k_loveda_20211104_153212-1c06c6a8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_loveda/pspnet_r101-d8_512x512_80k_loveda_20211104_153212.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| PSPNet | R-18-D8 | 512x512 | 80000 | 1.45 | 26.87 | V100 | 48.62 | 47.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r18-d8_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x512_80k_loveda/pspnet_r18-d8_512x512_80k_loveda_20211105_052100-b97697f1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x512_80k_loveda/pspnet_r18-d8_512x512_80k_loveda_20211105_052100.log.json) |
+| PSPNet | R-50-D8 | 512x512 | 80000 | 6.14 | 6.60 | V100 | 50.46 | 50.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_loveda/pspnet_r50-d8_512x512_80k_loveda_20211104_155728-88610f9f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_loveda/pspnet_r50-d8_512x512_80k_loveda_20211104_155728.log.json) |
+| PSPNet | R-101-D8 | 512x512 | 80000 | 9.61 | 4.58 | V100 | 51.86 | 51.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_loveda/pspnet_r101-d8_512x512_80k_loveda_20211104_153212-1c06c6a8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_loveda/pspnet_r101-d8_512x512_80k_loveda_20211104_153212.log.json) |
### Potsdam
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| PSPNet | R-18-D8 | 512x512 | 80000 | 1.50 | 85.12 | V100 | 77.09 | 78.30 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r18-d8_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_512x512_80k_potsdam/pspnet_r18-d8_4x4_512x512_80k_potsdam_20211220_125612-7cd046e1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_512x512_80k_potsdam/pspnet_r18-d8_4x4_512x512_80k_potsdam_20211220_125612.log.json) |
-| PSPNet | R-50-D8 | 512x512 | 80000 | 6.14 | 30.21 | V100 | 78.12 | 78.98 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_512x512_80k_potsdam/pspnet_r50-d8_4x4_512x512_80k_potsdam_20211219_043541-2dd5fe67.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_512x512_80k_potsdam/pspnet_r50-d8_4x4_512x512_80k_potsdam_20211219_043541.log.json) |
-| PSPNet | R-101-D8 | 512x512 | 80000 | 9.61 | 19.40 | V100 | 78.62 | 79.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_4x4_512x512_80k_potsdam/pspnet_r101-d8_4x4_512x512_80k_potsdam_20211220_125612-aed036c4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_4x4_512x512_80k_potsdam/pspnet_r101-d8_4x4_512x512_80k_potsdam_20211220_125612.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| PSPNet | R-18-D8 | 512x512 | 80000 | 1.50 | 85.12 | V100 | 77.09 | 78.30 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r18-d8_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_512x512_80k_potsdam/pspnet_r18-d8_4x4_512x512_80k_potsdam_20211220_125612-7cd046e1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_512x512_80k_potsdam/pspnet_r18-d8_4x4_512x512_80k_potsdam_20211220_125612.log.json) |
+| PSPNet | R-50-D8 | 512x512 | 80000 | 6.14 | 30.21 | V100 | 78.12 | 78.98 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_512x512_80k_potsdam/pspnet_r50-d8_4x4_512x512_80k_potsdam_20211219_043541-2dd5fe67.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_512x512_80k_potsdam/pspnet_r50-d8_4x4_512x512_80k_potsdam_20211219_043541.log.json) |
+| PSPNet | R-101-D8 | 512x512 | 80000 | 9.61 | 19.40 | V100 | 78.62 | 79.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_4x4_512x512_80k_potsdam/pspnet_r101-d8_4x4_512x512_80k_potsdam_20211220_125612-aed036c4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_4x4_512x512_80k_potsdam/pspnet_r101-d8_4x4_512x512_80k_potsdam_20211220_125612.log.json) |
### Vaihingen
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| PSPNet | R-18-D8 | 512x512 | 80000 | 1.45 | 85.06 | V100 | 71.46 | 73.36 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r18-d8_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_512x512_80k_vaihingen/pspnet_r18-d8_4x4_512x512_80k_vaihingen_20211228_160355-52a8a6f6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_512x512_80k_vaihingen/pspnet_r18-d8_4x4_512x512_80k_vaihingen_20211228_160355.log.json) |
-| PSPNet | R-50-D8 | 512x512 | 80000 | 6.14 | 30.29 | V100 | 72.36 | 73.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_512x512_80k_vaihingen/pspnet_r50-d8_4x4_512x512_80k_vaihingen_20211228_160355-382f8f5b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_512x512_80k_vaihingen/pspnet_r50-d8_4x4_512x512_80k_vaihingen_20211228_160355.log.json) |
-| PSPNet | R-101-D8 | 512x512 | 80000 | 9.61 | 19.97 | V100 | 72.61 | 74.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r101-d8_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_4x4_512x512_80k_vaihingen/pspnet_r101-d8_4x4_512x512_80k_vaihingen_20211231_230806-8eba0a09.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_4x4_512x512_80k_vaihingen/pspnet_r101-d8_4x4_512x512_80k_vaihingen_20211231_230806.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| PSPNet | R-18-D8 | 512x512 | 80000 | 1.45 | 85.06 | V100 | 71.46 | 73.36 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r18-d8_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_512x512_80k_vaihingen/pspnet_r18-d8_4x4_512x512_80k_vaihingen_20211228_160355-52a8a6f6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_512x512_80k_vaihingen/pspnet_r18-d8_4x4_512x512_80k_vaihingen_20211228_160355.log.json) |
+| PSPNet | R-50-D8 | 512x512 | 80000 | 6.14 | 30.29 | V100 | 72.36 | 73.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_512x512_80k_vaihingen/pspnet_r50-d8_4x4_512x512_80k_vaihingen_20211228_160355-382f8f5b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_512x512_80k_vaihingen/pspnet_r50-d8_4x4_512x512_80k_vaihingen_20211228_160355.log.json) |
+| PSPNet | R-101-D8 | 512x512 | 80000 | 9.61 | 19.97 | V100 | 72.61 | 74.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_4x4_512x512_80k_vaihingen/pspnet_r101-d8_4x4_512x512_80k_vaihingen_20211231_230806-8eba0a09.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_4x4_512x512_80k_vaihingen/pspnet_r101-d8_4x4_512x512_80k_vaihingen_20211231_230806.log.json) |
### iSAID
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| PSPNet | R-18-D8 | 896x896 | 80000 | 4.52 | 26.91 | V100 | 60.22 | 61.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r18-d8_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_896x896_80k_isaid/pspnet_r18-d8_4x4_896x896_80k_isaid_20220110_180526-e84c0b6a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_896x896_80k_isaid/pspnet_r18-d8_4x4_896x896_80k_isaid_20220110_180526.log.json) |
-| PSPNet | R-50-D8 | 896x896 | 80000 | 16.58 | 8.88 | V100 | 65.36 | 66.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pspnet/pspnet_r50-d8_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_896x896_80k_isaid/pspnet_r50-d8_4x4_896x896_80k_isaid_20220110_180629-1f21dc32.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_896x896_80k_isaid/pspnet_r50-d8_4x4_896x896_80k_isaid_20220110_180629.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| PSPNet | R-18-D8 | 896x896 | 80000 | 4.52 | 26.91 | V100 | 60.22 | 61.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r18-d8_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_896x896_80k_isaid/pspnet_r18-d8_4x4_896x896_80k_isaid_20220110_180526-e84c0b6a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_896x896_80k_isaid/pspnet_r18-d8_4x4_896x896_80k_isaid_20220110_180526.log.json) |
+| PSPNet | R-50-D8 | 896x896 | 80000 | 16.58 | 8.88 | V100 | 65.36 | 66.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_896x896_80k_isaid/pspnet_r50-d8_4x4_896x896_80k_isaid_20220110_180629-1f21dc32.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_896x896_80k_isaid/pspnet_r50-d8_4x4_896x896_80k_isaid_20220110_180629.log.json) |
Note:
diff --git a/configs/resnest/README.md b/configs/resnest/README.md
index d27bbe2807..304791abe9 100644
--- a/configs/resnest/README.md
+++ b/configs/resnest/README.md
@@ -26,21 +26,21 @@ It is well known that featuremap attention and multi-path representation are imp
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ---------- | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | ------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| FCN | S-101-D8 | 512x1024 | 80000 | 11.4 | 2.39 | V100 | 77.56 | 78.98 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/resnest/resnest_s101-d8_fcn_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x1024_80k_cityscapes/fcn_s101-d8_512x1024_80k_cityscapes_20200807_140631-f8d155b3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x1024_80k_cityscapes/fcn_s101-d8_512x1024_80k_cityscapes-20200807_140631.log.json) |
-| PSPNet | S-101-D8 | 512x1024 | 80000 | 11.8 | 2.52 | V100 | 78.57 | 79.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/resnest/resnest_s101-d8_pspnet_4xb2-80k_cityscapes512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x1024_80k_cityscapes/pspnet_s101-d8_512x1024_80k_cityscapes_20200807_140631-c75f3b99.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x1024_80k_cityscapes/pspnet_s101-d8_512x1024_80k_cityscapes-20200807_140631.log.json) |
-| DeepLabV3 | S-101-D8 | 512x1024 | 80000 | 11.9 | 1.88 | V100 | 79.67 | 80.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/resnest/resnest_s101-d8_deeplabv3_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x1024_80k_cityscapes/deeplabv3_s101-d8_512x1024_80k_cityscapes_20200807_144429-b73c4270.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x1024_80k_cityscapes/deeplabv3_s101-d8_512x1024_80k_cityscapes-20200807_144429.log.json) |
-| DeepLabV3+ | S-101-D8 | 512x1024 | 80000 | 13.2 | 2.36 | V100 | 79.62 | 80.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/resnest/resnest_s101-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x1024_80k_cityscapes/deeplabv3plus_s101-d8_512x1024_80k_cityscapes_20200807_144429-1239eb43.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x1024_80k_cityscapes/deeplabv3plus_s101-d8_512x1024_80k_cityscapes-20200807_144429.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ---------- | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| FCN | S-101-D8 | 512x1024 | 80000 | 11.4 | 2.39 | V100 | 77.56 | 78.98 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/resnest/resnest_s101-d8_fcn_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x1024_80k_cityscapes/fcn_s101-d8_512x1024_80k_cityscapes_20200807_140631-f8d155b3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x1024_80k_cityscapes/fcn_s101-d8_512x1024_80k_cityscapes-20200807_140631.log.json) |
+| PSPNet | S-101-D8 | 512x1024 | 80000 | 11.8 | 2.52 | V100 | 78.57 | 79.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/resnest/resnest_s101-d8_pspnet_4xb2-80k_cityscapes512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x1024_80k_cityscapes/pspnet_s101-d8_512x1024_80k_cityscapes_20200807_140631-c75f3b99.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x1024_80k_cityscapes/pspnet_s101-d8_512x1024_80k_cityscapes-20200807_140631.log.json) |
+| DeepLabV3 | S-101-D8 | 512x1024 | 80000 | 11.9 | 1.88 | V100 | 79.67 | 80.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/resnest/resnest_s101-d8_deeplabv3_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x1024_80k_cityscapes/deeplabv3_s101-d8_512x1024_80k_cityscapes_20200807_144429-b73c4270.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x1024_80k_cityscapes/deeplabv3_s101-d8_512x1024_80k_cityscapes-20200807_144429.log.json) |
+| DeepLabV3+ | S-101-D8 | 512x1024 | 80000 | 13.2 | 2.36 | V100 | 79.62 | 80.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/resnest/resnest_s101-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x1024_80k_cityscapes/deeplabv3plus_s101-d8_512x1024_80k_cityscapes_20200807_144429-1239eb43.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x1024_80k_cityscapes/deeplabv3plus_s101-d8_512x1024_80k_cityscapes-20200807_144429.log.json) |
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ---------- | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | --------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| FCN | S-101-D8 | 512x512 | 160000 | 14.2 | 12.86 | V100 | 45.62 | 46.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/resnest/resnest_s101-d8_fcn_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x512_160k_ade20k/fcn_s101-d8_512x512_160k_ade20k_20200807_145416-d3160329.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x512_160k_ade20k/fcn_s101-d8_512x512_160k_ade20k-20200807_145416.log.json) |
-| PSPNet | S-101-D8 | 512x512 | 160000 | 14.2 | 13.02 | V100 | 45.44 | 46.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/resnest/resnest_s101-d8_pspnet_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x512_160k_ade20k/pspnet_s101-d8_512x512_160k_ade20k_20200807_145416-a6daa92a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x512_160k_ade20k/pspnet_s101-d8_512x512_160k_ade20k-20200807_145416.log.json) |
-| DeepLabV3 | S-101-D8 | 512x512 | 160000 | 14.6 | 9.28 | V100 | 45.71 | 46.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/resnest/resnest_s101-d8_deeplabv3_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x512_160k_ade20k/deeplabv3_s101-d8_512x512_160k_ade20k_20200807_144503-17ecabe5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x512_160k_ade20k/deeplabv3_s101-d8_512x512_160k_ade20k-20200807_144503.log.json) |
-| DeepLabV3+ | S-101-D8 | 512x512 | 160000 | 16.2 | 11.96 | V100 | 46.47 | 47.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/resnest/resnest_s101-d8_deeplabv3plus_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x512_160k_ade20k/deeplabv3plus_s101-d8_512x512_160k_ade20k_20200807_144503-27b26226.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x512_160k_ade20k/deeplabv3plus_s101-d8_512x512_160k_ade20k-20200807_144503.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ---------- | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | ------------------------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| FCN | S-101-D8 | 512x512 | 160000 | 14.2 | 12.86 | V100 | 45.62 | 46.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/resnest/resnest_s101-d8_fcn_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x512_160k_ade20k/fcn_s101-d8_512x512_160k_ade20k_20200807_145416-d3160329.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x512_160k_ade20k/fcn_s101-d8_512x512_160k_ade20k-20200807_145416.log.json) |
+| PSPNet | S-101-D8 | 512x512 | 160000 | 14.2 | 13.02 | V100 | 45.44 | 46.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/resnest/resnest_s101-d8_pspnet_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x512_160k_ade20k/pspnet_s101-d8_512x512_160k_ade20k_20200807_145416-a6daa92a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x512_160k_ade20k/pspnet_s101-d8_512x512_160k_ade20k-20200807_145416.log.json) |
+| DeepLabV3 | S-101-D8 | 512x512 | 160000 | 14.6 | 9.28 | V100 | 45.71 | 46.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/resnest/resnest_s101-d8_deeplabv3_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x512_160k_ade20k/deeplabv3_s101-d8_512x512_160k_ade20k_20200807_144503-17ecabe5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x512_160k_ade20k/deeplabv3_s101-d8_512x512_160k_ade20k-20200807_144503.log.json) |
+| DeepLabV3+ | S-101-D8 | 512x512 | 160000 | 16.2 | 11.96 | V100 | 46.47 | 47.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/resnest/resnest_s101-d8_deeplabv3plus_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x512_160k_ade20k/deeplabv3plus_s101-d8_512x512_160k_ade20k_20200807_144503-27b26226.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x512_160k_ade20k/deeplabv3plus_s101-d8_512x512_160k_ade20k-20200807_144503.log.json) |
## Citation
diff --git a/configs/segformer/README.md b/configs/segformer/README.md
index 5dbf1215bc..f8999b0efa 100644
--- a/configs/segformer/README.md
+++ b/configs/segformer/README.md
@@ -38,15 +38,15 @@ This script convert model from `PRETRAIN_PATH` and store the converted model in
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| --------- | -------- | --------- | ------: | -------: | -------------- | -------- | ----: | ------------- | ---------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| Segformer | MIT-B0 | 512x512 | 160000 | 2.1 | 51.32 | 1080 Ti | 37.41 | 38.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b0_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_512x512_160k_ade20k/segformer_mit-b0_512x512_160k_ade20k_20210726_101530-8ffa8fda.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_512x512_160k_ade20k/segformer_mit-b0_512x512_160k_ade20k_20210726_101530.log.json) |
-| Segformer | MIT-B1 | 512x512 | 160000 | 2.6 | 47.66 | TITAN Xp | 40.97 | 42.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b1_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_512x512_160k_ade20k/segformer_mit-b1_512x512_160k_ade20k_20210726_112106-d70e859d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_512x512_160k_ade20k/segformer_mit-b1_512x512_160k_ade20k_20210726_112106.log.json) |
-| Segformer | MIT-B2 | 512x512 | 160000 | 3.6 | 30.88 | TITAN Xp | 45.58 | 47.03 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b2_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_512x512_160k_ade20k/segformer_mit-b2_512x512_160k_ade20k_20210726_112103-cbd414ac.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_512x512_160k_ade20k/segformer_mit-b2_512x512_160k_ade20k_20210726_112103.log.json) |
-| Segformer | MIT-B3 | 512x512 | 160000 | 4.8 | 22.11 | V100 | 47.82 | 48.81 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b3_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_512x512_160k_ade20k/segformer_mit-b3_512x512_160k_ade20k_20210726_081410-962b98d2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_512x512_160k_ade20k/segformer_mit-b3_512x512_160k_ade20k_20210726_081410.log.json) |
-| Segformer | MIT-B4 | 512x512 | 160000 | 6.1 | 15.45 | V100 | 48.46 | 49.76 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b4_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_512x512_160k_ade20k/segformer_mit-b4_512x512_160k_ade20k_20210728_183055-7f509d7d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_512x512_160k_ade20k/segformer_mit-b4_512x512_160k_ade20k_20210728_183055.log.json) |
-| Segformer | MIT-B5 | 512x512 | 160000 | 7.2 | 11.89 | V100 | 49.13 | 50.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b5_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_512x512_160k_ade20k/segformer_mit-b5_512x512_160k_ade20k_20210726_145235-94cedf59.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_512x512_160k_ade20k/segformer_mit-b5_512x512_160k_ade20k_20210726_145235.log.json) |
-| Segformer | MIT-B5 | 640x640 | 160000 | 11.5 | 11.30 | V100 | 49.62 | 50.36 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b5_8xb2-160k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_640x640_160k_ade20k/segformer_mit-b5_640x640_160k_ade20k_20210801_121243-41d2845b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_640x640_160k_ade20k/segformer_mit-b5_640x640_160k_ade20k_20210801_121243.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| --------- | -------- | --------- | ------: | -------: | -------------- | -------- | ----: | ------------- | ------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| Segformer | MIT-B0 | 512x512 | 160000 | 2.1 | 51.32 | 1080 Ti | 37.41 | 38.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/segformer/segformer_mit-b0_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_512x512_160k_ade20k/segformer_mit-b0_512x512_160k_ade20k_20210726_101530-8ffa8fda.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_512x512_160k_ade20k/segformer_mit-b0_512x512_160k_ade20k_20210726_101530.log.json) |
+| Segformer | MIT-B1 | 512x512 | 160000 | 2.6 | 47.66 | TITAN Xp | 40.97 | 42.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/segformer/segformer_mit-b1_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_512x512_160k_ade20k/segformer_mit-b1_512x512_160k_ade20k_20210726_112106-d70e859d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_512x512_160k_ade20k/segformer_mit-b1_512x512_160k_ade20k_20210726_112106.log.json) |
+| Segformer | MIT-B2 | 512x512 | 160000 | 3.6 | 30.88 | TITAN Xp | 45.58 | 47.03 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/segformer/segformer_mit-b2_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_512x512_160k_ade20k/segformer_mit-b2_512x512_160k_ade20k_20210726_112103-cbd414ac.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_512x512_160k_ade20k/segformer_mit-b2_512x512_160k_ade20k_20210726_112103.log.json) |
+| Segformer | MIT-B3 | 512x512 | 160000 | 4.8 | 22.11 | V100 | 47.82 | 48.81 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/segformer/segformer_mit-b3_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_512x512_160k_ade20k/segformer_mit-b3_512x512_160k_ade20k_20210726_081410-962b98d2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_512x512_160k_ade20k/segformer_mit-b3_512x512_160k_ade20k_20210726_081410.log.json) |
+| Segformer | MIT-B4 | 512x512 | 160000 | 6.1 | 15.45 | V100 | 48.46 | 49.76 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/segformer/segformer_mit-b4_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_512x512_160k_ade20k/segformer_mit-b4_512x512_160k_ade20k_20210728_183055-7f509d7d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_512x512_160k_ade20k/segformer_mit-b4_512x512_160k_ade20k_20210728_183055.log.json) |
+| Segformer | MIT-B5 | 512x512 | 160000 | 7.2 | 11.89 | V100 | 49.13 | 50.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/segformer/segformer_mit-b5_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_512x512_160k_ade20k/segformer_mit-b5_512x512_160k_ade20k_20210726_145235-94cedf59.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_512x512_160k_ade20k/segformer_mit-b5_512x512_160k_ade20k_20210726_145235.log.json) |
+| Segformer | MIT-B5 | 640x640 | 160000 | 11.5 | 11.30 | V100 | 49.62 | 50.36 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/segformer/segformer_mit-b5_8xb2-160k_ade20k-640x640.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_640x640_160k_ade20k/segformer_mit-b5_640x640_160k_ade20k_20210801_121243-41d2845b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_640x640_160k_ade20k/segformer_mit-b5_640x640_160k_ade20k_20210801_121243.log.json) |
Evaluation with AlignedResize:
@@ -80,14 +80,14 @@ test_pipeline = [
The lower fps result is caused by the sliding window inference scheme (window size:1024x1024).
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| --------- | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | ---------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| Segformer | MIT-B0 | 1024x1024 | 160000 | 3.64 | 4.74 | V100 | 76.54 | 78.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b0_8xb1-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_8x1_1024x1024_160k_cityscapes/segformer_mit-b0_8x1_1024x1024_160k_cityscapes_20211208_101857-e7f88502.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_8x1_1024x1024_160k_cityscapes/segformer_mit-b0_8x1_1024x1024_160k_cityscapes_20211208_101857.log.json) |
-| Segformer | MIT-B1 | 1024x1024 | 160000 | 4.49 | 4.3 | V100 | 78.56 | 79.73 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b1_8xb1-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_8x1_1024x1024_160k_cityscapes/segformer_mit-b1_8x1_1024x1024_160k_cityscapes_20211208_064213-655c7b3f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_8x1_1024x1024_160k_cityscapes/segformer_mit-b1_8x1_1024x1024_160k_cityscapes_20211208_064213.log.json) |
-| Segformer | MIT-B2 | 1024x1024 | 160000 | 7.42 | 3.36 | V100 | 81.08 | 82.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b2_8xb1-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_8x1_1024x1024_160k_cityscapes/segformer_mit-b2_8x1_1024x1024_160k_cityscapes_20211207_134205-6096669a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_8x1_1024x1024_160k_cityscapes/segformer_mit-b2_8x1_1024x1024_160k_cityscapes_20211207_134205.log.json) |
-| Segformer | MIT-B3 | 1024x1024 | 160000 | 10.86 | 2.53 | V100 | 81.94 | 83.14 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b3_8xb1-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_8x1_1024x1024_160k_cityscapes/segformer_mit-b3_8x1_1024x1024_160k_cityscapes_20211206_224823-a8f8a177.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_8x1_1024x1024_160k_cityscapes/segformer_mit-b3_8x1_1024x1024_160k_cityscapes_20211206_224823.log.json) |
-| Segformer | MIT-B4 | 1024x1024 | 160000 | 15.07 | 1.88 | V100 | 81.89 | 83.38 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b4_8xb1-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_8x1_1024x1024_160k_cityscapes/segformer_mit-b4_8x1_1024x1024_160k_cityscapes_20211207_080709-07f6c333.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_8x1_1024x1024_160k_cityscapes/segformer_mit-b4_8x1_1024x1024_160k_cityscapes_20211207_080709.log.json) |
-| Segformer | MIT-B5 | 1024x1024 | 160000 | 18.00 | 1.39 | V100 | 82.25 | 83.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segformer/segformer_mit-b5_8xb1-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_8x1_1024x1024_160k_cityscapes/segformer_mit-b5_8x1_1024x1024_160k_cityscapes_20211206_072934-87a052ec.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_8x1_1024x1024_160k_cityscapes/segformer_mit-b5_8x1_1024x1024_160k_cityscapes_20211206_072934.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| --------- | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | ------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| Segformer | MIT-B0 | 1024x1024 | 160000 | 3.64 | 4.74 | V100 | 76.54 | 78.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/segformer/segformer_mit-b0_8xb1-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_8x1_1024x1024_160k_cityscapes/segformer_mit-b0_8x1_1024x1024_160k_cityscapes_20211208_101857-e7f88502.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_8x1_1024x1024_160k_cityscapes/segformer_mit-b0_8x1_1024x1024_160k_cityscapes_20211208_101857.log.json) |
+| Segformer | MIT-B1 | 1024x1024 | 160000 | 4.49 | 4.3 | V100 | 78.56 | 79.73 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/segformer/segformer_mit-b1_8xb1-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_8x1_1024x1024_160k_cityscapes/segformer_mit-b1_8x1_1024x1024_160k_cityscapes_20211208_064213-655c7b3f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_8x1_1024x1024_160k_cityscapes/segformer_mit-b1_8x1_1024x1024_160k_cityscapes_20211208_064213.log.json) |
+| Segformer | MIT-B2 | 1024x1024 | 160000 | 7.42 | 3.36 | V100 | 81.08 | 82.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/segformer/segformer_mit-b2_8xb1-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_8x1_1024x1024_160k_cityscapes/segformer_mit-b2_8x1_1024x1024_160k_cityscapes_20211207_134205-6096669a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_8x1_1024x1024_160k_cityscapes/segformer_mit-b2_8x1_1024x1024_160k_cityscapes_20211207_134205.log.json) |
+| Segformer | MIT-B3 | 1024x1024 | 160000 | 10.86 | 2.53 | V100 | 81.94 | 83.14 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/segformer/segformer_mit-b3_8xb1-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_8x1_1024x1024_160k_cityscapes/segformer_mit-b3_8x1_1024x1024_160k_cityscapes_20211206_224823-a8f8a177.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_8x1_1024x1024_160k_cityscapes/segformer_mit-b3_8x1_1024x1024_160k_cityscapes_20211206_224823.log.json) |
+| Segformer | MIT-B4 | 1024x1024 | 160000 | 15.07 | 1.88 | V100 | 81.89 | 83.38 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/segformer/segformer_mit-b4_8xb1-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_8x1_1024x1024_160k_cityscapes/segformer_mit-b4_8x1_1024x1024_160k_cityscapes_20211207_080709-07f6c333.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_8x1_1024x1024_160k_cityscapes/segformer_mit-b4_8x1_1024x1024_160k_cityscapes_20211207_080709.log.json) |
+| Segformer | MIT-B5 | 1024x1024 | 160000 | 18.00 | 1.39 | V100 | 82.25 | 83.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/segformer/segformer_mit-b5_8xb1-160k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_8x1_1024x1024_160k_cityscapes/segformer_mit-b5_8x1_1024x1024_160k_cityscapes_20211206_072934-87a052ec.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_8x1_1024x1024_160k_cityscapes/segformer_mit-b5_8x1_1024x1024_160k_cityscapes_20211206_072934.log.json) |
## Citation
diff --git a/configs/segmenter/README.md b/configs/segmenter/README.md
index a9a64ae421..103b125472 100644
--- a/configs/segmenter/README.md
+++ b/configs/segmenter/README.md
@@ -55,13 +55,13 @@ In our default setting, pretrained models and their corresponding [ViT-AugReg](h
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ---------------- | -------- | --------- | ------- | -------- | -------------- | ------ | ----- | ------------- | -------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| Segmenter Mask | ViT-T_16 | 512x512 | 160000 | 1.21 | 27.98 | V100 | 39.99 | 40.83 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segmenter/segmenter_vit-t_mask_8xb1-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-t_mask_8x1_512x512_160k_ade20k/segmenter_vit-t_mask_8x1_512x512_160k_ade20k_20220105_151706-ffcf7509.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-t_mask_8x1_512x512_160k_ade20k/segmenter_vit-t_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json) |
-| Segmenter Linear | ViT-S_16 | 512x512 | 160000 | 1.78 | 28.07 | V100 | 45.75 | 46.82 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segmenter/segmenter_vit-s_fcn_8xb1-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k/segmenter_vit-s_linear_8x1_512x512_160k_ade20k_20220105_151713-39658c46.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k/segmenter_vit-s_linear_8x1_512x512_160k_ade20k_20220105_151713.log.json) |
-| Segmenter Mask | ViT-S_16 | 512x512 | 160000 | 2.03 | 24.80 | V100 | 46.19 | 47.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segmenter/segmenter_vit-s_mask_8xb1-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k/segmenter_vit-s_mask_8x1_512x512_160k_ade20k_20220105_151706-511bb103.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k/segmenter_vit-s_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json) |
-| Segmenter Mask | ViT-B_16 | 512x512 | 160000 | 4.20 | 13.20 | V100 | 49.60 | 51.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segmenter/segmenter_vit-b_mask_8xb1-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706-bc533b08.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json) |
-| Segmenter Mask | ViT-L_16 | 640x640 | 160000 | 16.56 | 2.62 | V100 | 52.16 | 53.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segmenter/segmenter_vit-l_mask_8xb1-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k/segmenter_vit-l_mask_8x1_512x512_160k_ade20k_20220105_162750-7ef345be.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k/segmenter_vit-l_mask_8x1_512x512_160k_ade20k_20220105_162750.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ---------------- | -------- | --------- | ------- | -------- | -------------- | ------ | ----- | ------------- | ----------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| Segmenter Mask | ViT-T_16 | 512x512 | 160000 | 1.21 | 27.98 | V100 | 39.99 | 40.83 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/segmenter/segmenter_vit-t_mask_8xb1-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-t_mask_8x1_512x512_160k_ade20k/segmenter_vit-t_mask_8x1_512x512_160k_ade20k_20220105_151706-ffcf7509.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-t_mask_8x1_512x512_160k_ade20k/segmenter_vit-t_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json) |
+| Segmenter Linear | ViT-S_16 | 512x512 | 160000 | 1.78 | 28.07 | V100 | 45.75 | 46.82 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/segmenter/segmenter_vit-s_fcn_8xb1-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k/segmenter_vit-s_linear_8x1_512x512_160k_ade20k_20220105_151713-39658c46.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k/segmenter_vit-s_linear_8x1_512x512_160k_ade20k_20220105_151713.log.json) |
+| Segmenter Mask | ViT-S_16 | 512x512 | 160000 | 2.03 | 24.80 | V100 | 46.19 | 47.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/segmenter/segmenter_vit-s_mask_8xb1-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k/segmenter_vit-s_mask_8x1_512x512_160k_ade20k_20220105_151706-511bb103.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k/segmenter_vit-s_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json) |
+| Segmenter Mask | ViT-B_16 | 512x512 | 160000 | 4.20 | 13.20 | V100 | 49.60 | 51.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/segmenter/segmenter_vit-b_mask_8xb1-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706-bc533b08.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json) |
+| Segmenter Mask | ViT-L_16 | 640x640 | 160000 | 16.56 | 2.62 | V100 | 52.16 | 53.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/segmenter/segmenter_vit-l_mask_8xb1-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k/segmenter_vit-l_mask_8x1_512x512_160k_ade20k_20220105_162750-7ef345be.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k/segmenter_vit-l_mask_8x1_512x512_160k_ade20k_20220105_162750.log.json) |
## Citation
diff --git a/configs/segnext/README.md b/configs/segnext/README.md
index 06b63be546..d7434a0621 100644
--- a/configs/segnext/README.md
+++ b/configs/segnext/README.md
@@ -8,7 +8,7 @@
Official Repo
-Code Snippet
+Code Snippet
## Abstract
@@ -26,12 +26,12 @@ We present SegNeXt, a simple convolutional network architecture for semantic seg
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------- | -------- | --------- | ------- | -------- | -------------- | ------ | ----- | ------------- | -------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| SegNeXt | MSCAN-T | 512x512 | 160000 | 17.88 | 52.38 | A100 | 41.50 | 42.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segnext/segnext_mscan-t_1xb16-adamw-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k_20230210_140244-05bd8466.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k_20230210_140244.log.json) |
-| SegNeXt | MSCAN-S | 512x512 | 160000 | 21.47 | 42.27 | A100 | 44.16 | 45.81 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segnext/segnext_mscan-s_1xb16-adamw-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k_20230214_113014-43013668.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k_20230214_113014.log.json) |
-| SegNeXt | MSCAN-B | 512x512 | 160000 | 31.03 | 35.15 | A100 | 48.03 | 49.68 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segnext/segnext_mscan-b_1xb16-adamw-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k_20230209_172053-b6f6c70c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k_20230209_172053.log.json) |
-| SegNeXt | MSCAN-L | 512x512 | 160000 | 43.32 | 22.91 | A100 | 50.99 | 52.10 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/segnext/segnext_mscan-l_1xb16-adamw-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k_20230209_172055-19b14b63.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k_20230209_172055.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------- | -------- | --------- | ------- | -------- | -------------- | ------ | ----- | ------------- | ----------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| SegNeXt | MSCAN-T | 512x512 | 160000 | 17.88 | 52.38 | A100 | 41.50 | 42.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/segnext/segnext_mscan-t_1xb16-adamw-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k_20230210_140244-05bd8466.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k_20230210_140244.log.json) |
+| SegNeXt | MSCAN-S | 512x512 | 160000 | 21.47 | 42.27 | A100 | 44.16 | 45.81 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/segnext/segnext_mscan-s_1xb16-adamw-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k_20230214_113014-43013668.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k_20230214_113014.log.json) |
+| SegNeXt | MSCAN-B | 512x512 | 160000 | 31.03 | 35.15 | A100 | 48.03 | 49.68 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/segnext/segnext_mscan-b_1xb16-adamw-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k_20230209_172053-b6f6c70c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k_20230209_172053.log.json) |
+| SegNeXt | MSCAN-L | 512x512 | 160000 | 43.32 | 22.91 | A100 | 50.99 | 52.10 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/segnext/segnext_mscan-l_1xb16-adamw-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k_20230209_172055-19b14b63.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k_20230209_172055.log.json) |
Note:
@@ -39,7 +39,7 @@ Note:
- The total batch size is 16. We trained for SegNeXt with a single GPU as the performance degrades significantly when using`SyncBN` (mainly in `OverlapPatchEmbed` modules of `MSCAN`) of PyTorch 1.9.
-- There will be subtle differences when model testing as Non-negative Matrix Factorization (NMF) in `LightHamHead` will be initialized randomly. To control this randomness, please set the random seed when model testing. You can modify [`./tools/test.py`](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/tools/test.py) like:
+- There will be subtle differences when model testing as Non-negative Matrix Factorization (NMF) in `LightHamHead` will be initialized randomly. To control this randomness, please set the random seed when model testing. You can modify [`./tools/test.py`](https://github.com/open-mmlab/mmsegmentation/blob/main/tools/test.py) like:
```python
def main():
diff --git a/configs/segnext/metafile.yaml b/configs/segnext/metafile.yaml
index faa11c9784..3c8ff5bb92 100644
--- a/configs/segnext/metafile.yaml
+++ b/configs/segnext/metafile.yaml
@@ -33,7 +33,7 @@ Models:
Paper:
Title: 'SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation'
URL: https://arxiv.org/abs/2209.08575
- Code: https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/models/backbones/mscan.py#L328
+ Code: https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/backbones/mscan.py#L328
Framework: PyTorch
- Name: segnext_mscan-s_1xb16-adamw-160k_ade20k-512x512
In Collection: SegNeXt
@@ -57,7 +57,7 @@ Models:
Paper:
Title: 'SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation'
URL: https://arxiv.org/abs/2209.08575
- Code: https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/models/backbones/mscan.py#L328
+ Code: https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/backbones/mscan.py#L328
Framework: PyTorch
- Name: segnext_mscan-b_1xb16-adamw-160k_ade20k-512x512
In Collection: SegNeXt
@@ -81,7 +81,7 @@ Models:
Paper:
Title: 'SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation'
URL: https://arxiv.org/abs/2209.08575
- Code: https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/models/backbones/mscan.py#L328
+ Code: https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/backbones/mscan.py#L328
Framework: PyTorch
- Name: segnext_mscan-l_1xb16-adamw-160k_ade20k-512x512
In Collection: SegNeXt
@@ -105,5 +105,5 @@ Models:
Paper:
Title: 'SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation'
URL: https://arxiv.org/abs/2209.08575
- Code: https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/models/backbones/mscan.py#L328
+ Code: https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/backbones/mscan.py#L328
Framework: PyTorch
diff --git a/configs/sem_fpn/README.md b/configs/sem_fpn/README.md
index 8bbbd0eee0..697cf506e2 100644
--- a/configs/sem_fpn/README.md
+++ b/configs/sem_fpn/README.md
@@ -26,17 +26,17 @@ The recently introduced panoptic segmentation task has renewed our community's i
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | ---------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| FPN | R-50 | 512x1024 | 80000 | 2.8 | 13.54 | V100 | 74.52 | 76.08 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/sem_fpn/fpn_r50_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x1024_80k_cityscapes/fpn_r50_512x1024_80k_cityscapes_20200717_021437-94018a0d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x1024_80k_cityscapes/fpn_r50_512x1024_80k_cityscapes-20200717_021437.log.json) |
-| FPN | R-101 | 512x1024 | 80000 | 3.9 | 10.29 | V100 | 75.80 | 77.40 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/sem_fpn/fpn_r101_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x1024_80k_cityscapes/fpn_r101_512x1024_80k_cityscapes_20200717_012416-c5800d4c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x1024_80k_cityscapes/fpn_r101_512x1024_80k_cityscapes-20200717_012416.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | ------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| FPN | R-50 | 512x1024 | 80000 | 2.8 | 13.54 | V100 | 74.52 | 76.08 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/sem_fpn/fpn_r50_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x1024_80k_cityscapes/fpn_r50_512x1024_80k_cityscapes_20200717_021437-94018a0d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x1024_80k_cityscapes/fpn_r50_512x1024_80k_cityscapes-20200717_021437.log.json) |
+| FPN | R-101 | 512x1024 | 80000 | 3.9 | 10.29 | V100 | 75.80 | 77.40 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/sem_fpn/fpn_r101_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x1024_80k_cityscapes/fpn_r101_512x1024_80k_cityscapes_20200717_012416-c5800d4c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x1024_80k_cityscapes/fpn_r101_512x1024_80k_cityscapes-20200717_012416.log.json) |
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | ------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| FPN | R-50 | 512x512 | 160000 | 4.9 | 55.77 | V100 | 37.49 | 39.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/sem_fpn/fpn_r50_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x512_160k_ade20k/fpn_r50_512x512_160k_ade20k_20200718_131734-5b5a6ab9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x512_160k_ade20k/fpn_r50_512x512_160k_ade20k-20200718_131734.log.json) |
-| FPN | R-101 | 512x512 | 160000 | 5.9 | 40.58 | V100 | 39.35 | 40.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/sem_fpn/fpn_r101_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x512_160k_ade20k/fpn_r101_512x512_160k_ade20k_20200718_131734-306b5004.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x512_160k_ade20k/fpn_r101_512x512_160k_ade20k-20200718_131734.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------: | -------: | -------------- | ------ | ----: | ------------- | --------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| FPN | R-50 | 512x512 | 160000 | 4.9 | 55.77 | V100 | 37.49 | 39.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/sem_fpn/fpn_r50_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x512_160k_ade20k/fpn_r50_512x512_160k_ade20k_20200718_131734-5b5a6ab9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x512_160k_ade20k/fpn_r50_512x512_160k_ade20k-20200718_131734.log.json) |
+| FPN | R-101 | 512x512 | 160000 | 5.9 | 40.58 | V100 | 39.35 | 40.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/sem_fpn/fpn_r101_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x512_160k_ade20k/fpn_r101_512x512_160k_ade20k_20200718_131734-306b5004.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x512_160k_ade20k/fpn_r101_512x512_160k_ade20k-20200718_131734.log.json) |
## Citation
diff --git a/configs/setr/README.md b/configs/setr/README.md
index 556c625f41..15be6ec099 100644
--- a/configs/setr/README.md
+++ b/configs/setr/README.md
@@ -47,20 +47,20 @@ This script convert the model from `PRETRAIN_PATH` and store the converted model
### ADE20K
-| Method | Backbone | Crop Size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ---------- | -------- | --------- | ---------- | ------- | -------- | -------------- | ------ | ----- | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| SETR Naive | ViT-L | 512x512 | 16 | 160000 | 18.40 | 4.72 | V100 | 48.28 | 49.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/setr/setr_vit-l_naive_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_512x512_160k_b16_ade20k/setr_naive_512x512_160k_b16_ade20k_20210619_191258-061f24f5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_512x512_160k_b16_ade20k/setr_naive_512x512_160k_b16_ade20k_20210619_191258.log.json) |
-| SETR PUP | ViT-L | 512x512 | 16 | 160000 | 19.54 | 4.50 | V100 | 48.24 | 49.99 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/setr/setr_vit-l_pup_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_512x512_160k_b16_ade20k/setr_pup_512x512_160k_b16_ade20k_20210619_191343-7e0ce826.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_512x512_160k_b16_ade20k/setr_pup_512x512_160k_b16_ade20k_20210619_191343.log.json) |
-| SETR MLA | ViT-L | 512x512 | 8 | 160000 | 10.96 | - | V100 | 47.34 | 49.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/setr/setr_vit-l-mla_8xb1-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b8_ade20k/setr_mla_512x512_160k_b8_ade20k_20210619_191118-c6d21df0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b8_ade20k/setr_mla_512x512_160k_b8_ade20k_20210619_191118.log.json) |
-| SETR MLA | ViT-L | 512x512 | 16 | 160000 | 17.30 | 5.25 | V100 | 47.39 | 49.37 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/setr/setr_vit-l_mla_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b16_ade20k/setr_mla_512x512_160k_b16_ade20k_20210619_191057-f9741de7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b16_ade20k/setr_mla_512x512_160k_b16_ade20k_20210619_191057.log.json) |
+| Method | Backbone | Crop Size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ---------- | -------- | --------- | ---------- | ------- | -------- | -------------- | ------ | ----- | ------------: | -------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| SETR Naive | ViT-L | 512x512 | 16 | 160000 | 18.40 | 4.72 | V100 | 48.28 | 49.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/setr/setr_vit-l_naive_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_512x512_160k_b16_ade20k/setr_naive_512x512_160k_b16_ade20k_20210619_191258-061f24f5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_512x512_160k_b16_ade20k/setr_naive_512x512_160k_b16_ade20k_20210619_191258.log.json) |
+| SETR PUP | ViT-L | 512x512 | 16 | 160000 | 19.54 | 4.50 | V100 | 48.24 | 49.99 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/setr/setr_vit-l_pup_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_512x512_160k_b16_ade20k/setr_pup_512x512_160k_b16_ade20k_20210619_191343-7e0ce826.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_512x512_160k_b16_ade20k/setr_pup_512x512_160k_b16_ade20k_20210619_191343.log.json) |
+| SETR MLA | ViT-L | 512x512 | 8 | 160000 | 10.96 | - | V100 | 47.34 | 49.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/setr/setr_vit-l-mla_8xb1-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b8_ade20k/setr_mla_512x512_160k_b8_ade20k_20210619_191118-c6d21df0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b8_ade20k/setr_mla_512x512_160k_b8_ade20k_20210619_191118.log.json) |
+| SETR MLA | ViT-L | 512x512 | 16 | 160000 | 17.30 | 5.25 | V100 | 47.39 | 49.37 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/setr/setr_vit-l_mla_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b16_ade20k/setr_mla_512x512_160k_b16_ade20k_20210619_191057-f9741de7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b16_ade20k/setr_mla_512x512_160k_b16_ade20k_20210619_191057.log.json) |
### Cityscapes
-| Method | Backbone | Crop Size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ---------- | -------- | --------- | ---------- | ------- | -------- | -------------- | ------ | ----- | ------------: | -------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| SETR Naive | ViT-L | 768x768 | 8 | 80000 | 24.06 | 0.39 | V100 | 78.10 | 80.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/setr/setr_vit-l_naive_8xb1-80k_cityscapes-768x768.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_vit-large_8x1_768x768_80k_cityscapes/setr_naive_vit-large_8x1_768x768_80k_cityscapes_20211123_000505-20728e80.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_vit-large_8x1_768x768_80k_cityscapes/setr_naive_vit-large_8x1_768x768_80k_cityscapes_20211123_000505.log.json) |
-| SETR PUP | ViT-L | 768x768 | 8 | 80000 | 27.96 | 0.37 | V100 | 79.21 | 81.02 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/setr/setr_vit-l_pup_8xb1-80k_cityscapes-768x768.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_vit-large_8x1_768x768_80k_cityscapes/setr_pup_vit-large_8x1_768x768_80k_cityscapes_20211122_155115-f6f37b8f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_vit-large_8x1_768x768_80k_cityscapes/setr_pup_vit-large_8x1_768x768_80k_cityscapes_20211122_155115.log.json) |
-| SETR MLA | ViT-L | 768x768 | 8 | 80000 | 24.10 | 0.41 | V100 | 77.00 | 79.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/setr/setr_vit-l_mla_8xb1-80k_cityscapes-768x768.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_vit-large_8x1_768x768_80k_cityscapes/setr_mla_vit-large_8x1_768x768_80k_cityscapes_20211119_101003-7f8dccbe.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_vit-large_8x1_768x768_80k_cityscapes/setr_mla_vit-large_8x1_768x768_80k_cityscapes_20211119_101003.log.json) |
+| Method | Backbone | Crop Size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ---------- | -------- | --------- | ---------- | ------- | -------- | -------------- | ------ | ----- | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| SETR Naive | ViT-L | 768x768 | 8 | 80000 | 24.06 | 0.39 | V100 | 78.10 | 80.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/setr/setr_vit-l_naive_8xb1-80k_cityscapes-768x768.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_vit-large_8x1_768x768_80k_cityscapes/setr_naive_vit-large_8x1_768x768_80k_cityscapes_20211123_000505-20728e80.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_vit-large_8x1_768x768_80k_cityscapes/setr_naive_vit-large_8x1_768x768_80k_cityscapes_20211123_000505.log.json) |
+| SETR PUP | ViT-L | 768x768 | 8 | 80000 | 27.96 | 0.37 | V100 | 79.21 | 81.02 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/setr/setr_vit-l_pup_8xb1-80k_cityscapes-768x768.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_vit-large_8x1_768x768_80k_cityscapes/setr_pup_vit-large_8x1_768x768_80k_cityscapes_20211122_155115-f6f37b8f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_vit-large_8x1_768x768_80k_cityscapes/setr_pup_vit-large_8x1_768x768_80k_cityscapes_20211122_155115.log.json) |
+| SETR MLA | ViT-L | 768x768 | 8 | 80000 | 24.10 | 0.41 | V100 | 77.00 | 79.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/setr/setr_vit-l_mla_8xb1-80k_cityscapes-768x768.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_vit-large_8x1_768x768_80k_cityscapes/setr_mla_vit-large_8x1_768x768_80k_cityscapes_20211119_101003-7f8dccbe.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_vit-large_8x1_768x768_80k_cityscapes/setr_mla_vit-large_8x1_768x768_80k_cityscapes_20211119_101003.log.json) |
## Citation
diff --git a/configs/stdc/README.md b/configs/stdc/README.md
index 1efd65482f..3e8bf60688 100644
--- a/configs/stdc/README.md
+++ b/configs/stdc/README.md
@@ -46,12 +46,12 @@ This script convert model from `PRETRAIN_PATH` and store the converted model in
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------ | -------------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------- | -------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| STDC | STDC1 (No Pretrain) | 512x1024 | 80000 | 7.15 | 23.06 | V100 | 71.82 | 73.89 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/stdc/stdc1_4xb12-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc1_512x1024_80k_cityscapes/stdc1_512x1024_80k_cityscapes_20220224_073048-74e6920a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc1_512x1024_80k_cityscapes/stdc1_512x1024_80k_cityscapes_20220224_073048.log.json) |
-| STDC | STDC1 | 512x1024 | 80000 | - | - | V100 | 74.94 | 76.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/stdc/stdc1_in1k-pre_4xb12-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc1_in1k-pre_512x1024_80k_cityscapes/stdc1_in1k-pre_512x1024_80k_cityscapes_20220224_141648-3d4c2981.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc1_in1k-pre_512x1024_80k_cityscapes/stdc1_in1k-pre_512x1024_80k_cityscapes_20220224_141648.log.json) |
-| STDC | STDC2 (No Pretrain) | 512x1024 | 80000 | 8.27 | 23.71 | V100 | 73.15 | 76.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/stdc/stdc2_4xb12-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc2_512x1024_80k_cityscapes/stdc2_512x1024_80k_cityscapes_20220222_132015-fb1e3a1a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc2_512x1024_80k_cityscapes/stdc2_512x1024_80k_cityscapes_20220222_132015.log.json) |
-| STDC | STDC2 | 512x1024 | 80000 | - | - | V100 | 76.67 | 78.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/stdc/stdc2_in1k-pre_4xb12-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc2_in1k-pre_512x1024_80k_cityscapes/stdc2_in1k-pre_512x1024_80k_cityscapes_20220224_073048-1f8f0f6c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc2_in1k-pre_512x1024_80k_cityscapes/stdc2_in1k-pre_512x1024_80k_cityscapes_20220224_073048.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------- | ----------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| STDC | STDC1 (No Pretrain) | 512x1024 | 80000 | 7.15 | 23.06 | V100 | 71.82 | 73.89 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/stdc/stdc1_4xb12-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc1_512x1024_80k_cityscapes/stdc1_512x1024_80k_cityscapes_20220224_073048-74e6920a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc1_512x1024_80k_cityscapes/stdc1_512x1024_80k_cityscapes_20220224_073048.log.json) |
+| STDC | STDC1 | 512x1024 | 80000 | - | - | V100 | 74.94 | 76.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/stdc/stdc1_in1k-pre_4xb12-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc1_in1k-pre_512x1024_80k_cityscapes/stdc1_in1k-pre_512x1024_80k_cityscapes_20220224_141648-3d4c2981.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc1_in1k-pre_512x1024_80k_cityscapes/stdc1_in1k-pre_512x1024_80k_cityscapes_20220224_141648.log.json) |
+| STDC | STDC2 (No Pretrain) | 512x1024 | 80000 | 8.27 | 23.71 | V100 | 73.15 | 76.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/stdc/stdc2_4xb12-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc2_512x1024_80k_cityscapes/stdc2_512x1024_80k_cityscapes_20220222_132015-fb1e3a1a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc2_512x1024_80k_cityscapes/stdc2_512x1024_80k_cityscapes_20220222_132015.log.json) |
+| STDC | STDC2 | 512x1024 | 80000 | - | - | V100 | 76.67 | 78.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/stdc/stdc2_in1k-pre_4xb12-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc2_in1k-pre_512x1024_80k_cityscapes/stdc2_in1k-pre_512x1024_80k_cityscapes_20220224_073048-1f8f0f6c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/stdc/stdc2_in1k-pre_512x1024_80k_cityscapes/stdc2_in1k-pre_512x1024_80k_cityscapes_20220224_073048.log.json) |
Note:
diff --git a/configs/twins/README.md b/configs/twins/README.md
index 306b65fac8..e4b3735b00 100644
--- a/configs/twins/README.md
+++ b/configs/twins/README.md
@@ -44,20 +44,20 @@ python tools/model_converters/twins2mmseg.py ./alt_gvt_base.pth ./pretrained/alt
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------- | ------------------- | --------- | ------- | -------- | -------------- | ------ | ----- | ------------- | -------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| FPN | Twins-PCPVT-S | 512x512 | 80000 | 6.60 | 27.15 | V100 | 43.26 | 44.11 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_pcpvt-s_fpn_fpnhead_8xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-s_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-s_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_204132-41acd132.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-s_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-s_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_204132.log.json) |
-| UPerNet | Twins-PCPVT-S | 512x512 | 160000 | 9.67 | 14.24 | V100 | 46.04 | 46.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_pcpvt-s_uperhead_8xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-s_uperhead_8x4_512x512_160k_ade20k/twins_pcpvt-s_uperhead_8x4_512x512_160k_ade20k_20211201_233537-8e99c07a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-s_uperhead_8x4_512x512_160k_ade20k/twins_pcpvt-s_uperhead_8x4_512x512_160k_ade20k_20211201_233537.log.json) |
-| FPN | Twins-PCPVT-B | 512x512 | 80000 | 8.41 | 19.67 | V100 | 45.66 | 46.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_pcpvt-b_fpn_fpnhead_8xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-b_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-b_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141019-d396db72.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-b_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-b_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141019.log.json) |
-| UPerNet | Twins-PCPVT-B (8x2) | 512x512 | 160000 | 6.46 | 12.04 | V100 | 47.91 | 48.64 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_pcpvt-b_uperhead_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-b_uperhead_8x2_512x512_160k_ade20k/twins_pcpvt-b_uperhead_8x2_512x512_160k_ade20k_20211130_141020-02094ea5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-b_uperhead_8x2_512x512_160k_ade20k/twins_pcpvt-b_uperhead_8x2_512x512_160k_ade20k_20211130_141020.log.json) |
-| FPN | Twins-PCPVT-L | 512x512 | 80000 | 10.78 | 14.32 | V100 | 45.94 | 46.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_pcpvt-l_fpn_fpnhead_8xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-l_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-l_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_105226-bc6d61dc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-l_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-l_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_105226.log.json) |
-| UPerNet | Twins-PCPVT-L (8x2) | 512x512 | 160000 | 7.82 | 10.70 | V100 | 49.35 | 50.08 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_pcpvt-l_uperhead_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-l_uperhead_8x2_512x512_160k_ade20k/twins_pcpvt-l_uperhead_8x2_512x512_160k_ade20k_20211201_075053-c6095c07.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-l_uperhead_8x2_512x512_160k_ade20k/twins_pcpvt-l_uperhead_8x2_512x512_160k_ade20k_20211201_075053.log.json) |
-| FPN | Twins-SVT-S | 512x512 | 80000 | 5.80 | 29.79 | V100 | 44.47 | 45.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_svt-s_fpn_fpnhead_8xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-s_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-s_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141006-0a0d3317.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-s_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-s_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141006.log.json) |
-| UPerNet | SVT-S (8x2) | 512x512 | 160000 | 4.93 | 15.09 | V100 | 46.08 | 46.96 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_svt-s_uperhead_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-s_uperhead_8x2_512x512_160k_ade20k/twins_svt-s_uperhead_8x2_512x512_160k_ade20k_20211130_141005-e48a2d94.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-s_uperhead_8x2_512x512_160k_ade20k/twins_svt-s_uperhead_8x2_512x512_160k_ade20k_20211130_141005.log.json) |
-| FPN | Twins-SVT-B | 512x512 | 80000 | 8.75 | 21.10 | V100 | 46.77 | 47.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_svt-b_fpn_fpnhead_8xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-b_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-b_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_113849-88b2907c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-b_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-b_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_113849.log.json) |
-| UPerNet | Twins-SVT-B (8x2) | 512x512 | 160000 | 6.77 | 12.66 | V100 | 48.04 | 48.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_svt-b_uperhead_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-b_uperhead_8x2_512x512_160k_ade20k/twins_svt-b_uperhead_8x2_512x512_160k_ade20k_20211202_040826-0943a1f1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-b_uperhead_8x2_512x512_160k_ade20k/twins_svt-b_uperhead_8x2_512x512_160k_ade20k_20211202_040826.log.json) |
-| FPN | Twins-SVT-L | 512x512 | 80000 | 11.20 | 17.80 | V100 | 46.55 | 47.74 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_svt-l_fpn_fpnhead_8xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-l_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-l_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141005-1d59bee2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-l_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-l_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141005.log.json) |
-| UPerNet | Twins-SVT-L (8x2) | 512x512 | 160000 | 8.41 | 10.73 | V100 | 49.65 | 50.63 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/twins/twins_pcpvt-l_uperhead_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-l_uperhead_8x2_512x512_160k_ade20k/twins_svt-l_uperhead_8x2_512x512_160k_ade20k_20211130_141005-3e2cae61.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-l_uperhead_8x2_512x512_160k_ade20k/twins_svt-l_uperhead_8x2_512x512_160k_ade20k_20211130_141005.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------- | ------------------- | --------- | ------- | -------- | -------------- | ------ | ----- | ------------- | ----------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| FPN | Twins-PCPVT-S | 512x512 | 80000 | 6.60 | 27.15 | V100 | 43.26 | 44.11 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/twins/twins_pcpvt-s_fpn_fpnhead_8xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-s_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-s_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_204132-41acd132.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-s_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-s_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_204132.log.json) |
+| UPerNet | Twins-PCPVT-S | 512x512 | 160000 | 9.67 | 14.24 | V100 | 46.04 | 46.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/twins/twins_pcpvt-s_uperhead_8xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-s_uperhead_8x4_512x512_160k_ade20k/twins_pcpvt-s_uperhead_8x4_512x512_160k_ade20k_20211201_233537-8e99c07a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-s_uperhead_8x4_512x512_160k_ade20k/twins_pcpvt-s_uperhead_8x4_512x512_160k_ade20k_20211201_233537.log.json) |
+| FPN | Twins-PCPVT-B | 512x512 | 80000 | 8.41 | 19.67 | V100 | 45.66 | 46.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/twins/twins_pcpvt-b_fpn_fpnhead_8xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-b_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-b_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141019-d396db72.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-b_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-b_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141019.log.json) |
+| UPerNet | Twins-PCPVT-B (8x2) | 512x512 | 160000 | 6.46 | 12.04 | V100 | 47.91 | 48.64 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/twins/twins_pcpvt-b_uperhead_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-b_uperhead_8x2_512x512_160k_ade20k/twins_pcpvt-b_uperhead_8x2_512x512_160k_ade20k_20211130_141020-02094ea5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-b_uperhead_8x2_512x512_160k_ade20k/twins_pcpvt-b_uperhead_8x2_512x512_160k_ade20k_20211130_141020.log.json) |
+| FPN | Twins-PCPVT-L | 512x512 | 80000 | 10.78 | 14.32 | V100 | 45.94 | 46.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/twins/twins_pcpvt-l_fpn_fpnhead_8xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-l_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-l_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_105226-bc6d61dc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-l_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_pcpvt-l_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_105226.log.json) |
+| UPerNet | Twins-PCPVT-L (8x2) | 512x512 | 160000 | 7.82 | 10.70 | V100 | 49.35 | 50.08 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/twins/twins_pcpvt-l_uperhead_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-l_uperhead_8x2_512x512_160k_ade20k/twins_pcpvt-l_uperhead_8x2_512x512_160k_ade20k_20211201_075053-c6095c07.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_pcpvt-l_uperhead_8x2_512x512_160k_ade20k/twins_pcpvt-l_uperhead_8x2_512x512_160k_ade20k_20211201_075053.log.json) |
+| FPN | Twins-SVT-S | 512x512 | 80000 | 5.80 | 29.79 | V100 | 44.47 | 45.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/twins/twins_svt-s_fpn_fpnhead_8xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-s_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-s_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141006-0a0d3317.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-s_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-s_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141006.log.json) |
+| UPerNet | SVT-S (8x2) | 512x512 | 160000 | 4.93 | 15.09 | V100 | 46.08 | 46.96 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/twins/twins_svt-s_uperhead_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-s_uperhead_8x2_512x512_160k_ade20k/twins_svt-s_uperhead_8x2_512x512_160k_ade20k_20211130_141005-e48a2d94.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-s_uperhead_8x2_512x512_160k_ade20k/twins_svt-s_uperhead_8x2_512x512_160k_ade20k_20211130_141005.log.json) |
+| FPN | Twins-SVT-B | 512x512 | 80000 | 8.75 | 21.10 | V100 | 46.77 | 47.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/twins/twins_svt-b_fpn_fpnhead_8xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-b_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-b_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_113849-88b2907c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-b_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-b_fpn_fpnhead_8x4_512x512_80k_ade20k_20211201_113849.log.json) |
+| UPerNet | Twins-SVT-B (8x2) | 512x512 | 160000 | 6.77 | 12.66 | V100 | 48.04 | 48.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/twins/twins_svt-b_uperhead_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-b_uperhead_8x2_512x512_160k_ade20k/twins_svt-b_uperhead_8x2_512x512_160k_ade20k_20211202_040826-0943a1f1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-b_uperhead_8x2_512x512_160k_ade20k/twins_svt-b_uperhead_8x2_512x512_160k_ade20k_20211202_040826.log.json) |
+| FPN | Twins-SVT-L | 512x512 | 80000 | 11.20 | 17.80 | V100 | 46.55 | 47.74 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/twins/twins_svt-l_fpn_fpnhead_8xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-l_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-l_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141005-1d59bee2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-l_fpn_fpnhead_8x4_512x512_80k_ade20k/twins_svt-l_fpn_fpnhead_8x4_512x512_80k_ade20k_20211130_141005.log.json) |
+| UPerNet | Twins-SVT-L (8x2) | 512x512 | 160000 | 8.41 | 10.73 | V100 | 49.65 | 50.63 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/twins/twins_pcpvt-l_uperhead_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-l_uperhead_8x2_512x512_160k_ade20k/twins_svt-l_uperhead_8x2_512x512_160k_ade20k_20211130_141005-3e2cae61.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/twins/twins_svt-l_uperhead_8x2_512x512_160k_ade20k/twins_svt-l_uperhead_8x2_512x512_160k_ade20k_20211130_141005.log.json) |
Note:
diff --git a/configs/unet/README.md b/configs/unet/README.md
index e42cd0f91e..7225fbbf68 100644
--- a/configs/unet/README.md
+++ b/configs/unet/README.md
@@ -26,53 +26,53 @@ There is large consent that successful training of deep networks requires many t
### Cityscapes
-| Method | Backbone | Loss | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ---------- | ----------- | ------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| UNet + FCN | UNet-S5-D16 | Cross Entropy | 512x1024 | 160000 | 17.91 | 3.05 | V100 | 69.10 | 71.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes_20211210_145204-6860854e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes_20211210_145204.log.json) |
+| Method | Backbone | Loss | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ---------- | ----------- | ------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| UNet + FCN | UNet-S5-D16 | Cross Entropy | 512x1024 | 160000 | 17.91 | 3.05 | V100 | 69.10 | 71.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/unet/unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes_20211210_145204-6860854e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes_20211210_145204.log.json) |
### DRIVE
-| Method | Backbone | Loss | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | Device | mDice | Dice | config | download |
-| ---------------- | ----------- | -------------------- | ---------- | --------- | -----: | ------- | -------- | -------------: | ------ | ----: | ----: | ---------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| UNet + FCN | UNet-S5-D16 | Cross Entropy | 584x565 | 64x64 | 42x42 | 40000 | 0.680 | - | V100 | 88.38 | 78.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_fcn_4xb4-40k_drive-64x64.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_64x64_40k_drive/fcn_unet_s5-d16_64x64_40k_drive_20201223_191051-5daf6d3b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_64x64_40k_drive/unet_s5-d16_64x64_40k_drive-20201223_191051.log.json) |
-| UNet + FCN | UNet-S5-D16 | Cross Entropy + Dice | 584x565 | 64x64 | 42x42 | 40000 | 0.582 | - | V100 | 88.71 | 79.32 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201820-785de5c2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201820.log.json) |
-| UNet + PSPNet | UNet-S5-D16 | Cross Entropy | 584x565 | 64x64 | 42x42 | 40000 | 0.599 | - | V100 | 88.35 | 78.62 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_pspnet_4xb4-40k_drive-64x64.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive_20201227_181818-aac73387.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive-20201227_181818.log.json) |
-| UNet + PSPNet | UNet-S5-D16 | Cross Entropy + Dice | 584x565 | 64x64 | 42x42 | 40000 | 0.585 | - | V100 | 88.76 | 79.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201821-22b3e3ba.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201821.log.json) |
-| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy | 584x565 | 64x64 | 42x42 | 40000 | 0.596 | - | V100 | 88.38 | 78.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_deeplabv3_4xb4-40k_drive-64x64.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive_20201226_094047-0671ff20.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive-20201226_094047.log.json) |
-| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy + Dice | 584x565 | 64x64 | 42x42 | 40000 | 0.582 | - | V100 | 88.84 | 79.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201825-6bf0efd7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201825.log.json) |
+| Method | Backbone | Loss | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | Device | mDice | Dice | config | download |
+| ---------------- | ----------- | -------------------- | ---------- | --------- | -----: | ------- | -------- | -------------: | ------ | ----: | ----: | ------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| UNet + FCN | UNet-S5-D16 | Cross Entropy | 584x565 | 64x64 | 42x42 | 40000 | 0.680 | - | V100 | 88.38 | 78.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/unet/unet-s5-d16_fcn_4xb4-40k_drive-64x64.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_64x64_40k_drive/fcn_unet_s5-d16_64x64_40k_drive_20201223_191051-5daf6d3b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_64x64_40k_drive/unet_s5-d16_64x64_40k_drive-20201223_191051.log.json) |
+| UNet + FCN | UNet-S5-D16 | Cross Entropy + Dice | 584x565 | 64x64 | 42x42 | 40000 | 0.582 | - | V100 | 88.71 | 79.32 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201820-785de5c2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201820.log.json) |
+| UNet + PSPNet | UNet-S5-D16 | Cross Entropy | 584x565 | 64x64 | 42x42 | 40000 | 0.599 | - | V100 | 88.35 | 78.62 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/unet/unet-s5-d16_pspnet_4xb4-40k_drive-64x64.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive_20201227_181818-aac73387.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive-20201227_181818.log.json) |
+| UNet + PSPNet | UNet-S5-D16 | Cross Entropy + Dice | 584x565 | 64x64 | 42x42 | 40000 | 0.585 | - | V100 | 88.76 | 79.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201821-22b3e3ba.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201821.log.json) |
+| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy | 584x565 | 64x64 | 42x42 | 40000 | 0.596 | - | V100 | 88.38 | 78.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/unet/unet-s5-d16_deeplabv3_4xb4-40k_drive-64x64.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive_20201226_094047-0671ff20.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive-20201226_094047.log.json) |
+| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy + Dice | 584x565 | 64x64 | 42x42 | 40000 | 0.582 | - | V100 | 88.84 | 79.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201825-6bf0efd7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201825.log.json) |
### STARE
-| Method | Backbone | Loss | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | Device | mDice | Dice | config | download |
-| ---------------- | ----------- | -------------------- | ---------- | --------- | -----: | ------- | -------- | -------------: | ------ | ----: | ----: | ------------------------------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| UNet + FCN | UNet-S5-D16 | Cross Entropy | 605x700 | 128x128 | 85x85 | 40000 | 0.968 | - | V100 | 89.78 | 81.02 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_fcn_4xb4-40k_stare-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_stare/fcn_unet_s5-d16_128x128_40k_stare_20201223_191051-7d77e78b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_128x128_40k_stare/unet_s5-d16_128x128_40k_stare-20201223_191051.log.json) |
-| UNet + FCN | UNet-S5-D16 | Cross Entropy + Dice | 605x700 | 128x128 | 85x85 | 40000 | 0.986 | - | V100 | 90.65 | 82.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201821-f75705a9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201821.log.json) |
-| UNet + PSPNet | UNet-S5-D16 | Cross Entropy | 605x700 | 128x128 | 85x85 | 40000 | 0.982 | - | V100 | 89.89 | 81.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_pspnet_4xb4-40k_stare-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare_20201227_181818-3c2923c4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare-20201227_181818.log.json) |
-| UNet + PSPNet | UNet-S5-D16 | Cross Entropy + Dice | 605x700 | 128x128 | 85x85 | 40000 | 1.028 | - | V100 | 90.72 | 82.84 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201823-f1063ef7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201823.log.json) |
-| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy | 605x700 | 128x128 | 85x85 | 40000 | 0.999 | - | V100 | 89.73 | 80.93 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_deeplabv3_4xb4-40k_stare-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare_20201226_094047-93dcb93c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare-20201226_094047.log.json) |
-| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy + Dice | 605x700 | 128x128 | 85x85 | 40000 | 1.010 | - | V100 | 90.65 | 82.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201825-21db614c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201825.log.json) |
+| Method | Backbone | Loss | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | Device | mDice | Dice | config | download |
+| ---------------- | ----------- | -------------------- | ---------- | --------- | -----: | ------- | -------- | -------------: | ------ | ----: | ----: | --------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
+| UNet + FCN | UNet-S5-D16 | Cross Entropy | 605x700 | 128x128 | 85x85 | 40000 | 0.968 | - | V100 | 89.78 | 81.02 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/unet/unet-s5-d16_fcn_4xb4-40k_stare-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_stare/fcn_unet_s5-d16_128x128_40k_stare_20201223_191051-7d77e78b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_128x128_40k_stare/unet_s5-d16_128x128_40k_stare-20201223_191051.log.json) |
+| UNet + FCN | UNet-S5-D16 | Cross Entropy + Dice | 605x700 | 128x128 | 85x85 | 40000 | 0.986 | - | V100 | 90.65 | 82.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201821-f75705a9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201821.log.json) |
+| UNet + PSPNet | UNet-S5-D16 | Cross Entropy | 605x700 | 128x128 | 85x85 | 40000 | 0.982 | - | V100 | 89.89 | 81.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/unet/unet-s5-d16_pspnet_4xb4-40k_stare-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare_20201227_181818-3c2923c4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare-20201227_181818.log.json) |
+| UNet + PSPNet | UNet-S5-D16 | Cross Entropy + Dice | 605x700 | 128x128 | 85x85 | 40000 | 1.028 | - | V100 | 90.72 | 82.84 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201823-f1063ef7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201823.log.json) |
+| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy | 605x700 | 128x128 | 85x85 | 40000 | 0.999 | - | V100 | 89.73 | 80.93 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/unet/unet-s5-d16_deeplabv3_4xb4-40k_stare-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare_20201226_094047-93dcb93c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare-20201226_094047.log.json) |
+| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy + Dice | 605x700 | 128x128 | 85x85 | 40000 | 1.010 | - | V100 | 90.65 | 82.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201825-21db614c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201825.log.json) |
### CHASE_DB1
-| Method | Backbone | Loss | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | Device | mDice | Dice | config | download |
-| ---------------- | ----------- | -------------------- | ---------- | --------- | -----: | ------- | -------- | -------------: | ------ | ----: | ----: | ---------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| UNet + FCN | UNet-S5-D16 | Cross Entropy | 960x999 | 128x128 | 85x85 | 40000 | 0.968 | - | V100 | 89.46 | 80.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_fcn_4xb4-40k_chase-db1-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_chase_db1/fcn_unet_s5-d16_128x128_40k_chase_db1_20201223_191051-11543527.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_128x128_40k_chase_db1/unet_s5-d16_128x128_40k_chase_db1-20201223_191051.log.json) |
-| UNet + FCN | UNet-S5-D16 | Cross Entropy + Dice | 960x999 | 128x128 | 85x85 | 40000 | 0.986 | - | V100 | 89.52 | 80.40 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201821-1c4eb7cf.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201821.log.json) |
-| UNet + PSPNet | UNet-S5-D16 | Cross Entropy | 960x999 | 128x128 | 85x85 | 40000 | 0.982 | - | V100 | 89.52 | 80.36 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_pspnet_4xb4-40k_chase-db1-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1_20201227_181818-68d4e609.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1-20201227_181818.log.json) |
-| UNet + PSPNet | UNet-S5-D16 | Cross Entropy + Dice | 960x999 | 128x128 | 85x85 | 40000 | 1.028 | - | V100 | 89.45 | 80.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201823-c0802c4d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201823.log.json) |
-| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy | 960x999 | 128x128 | 85x85 | 40000 | 0.999 | - | V100 | 89.57 | 80.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet_s5-d16_deeplabv3_4xb4-40k_chase-db1-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1_20201226_094047-4c5aefa3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1-20201226_094047.log.json) |
-| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy + Dice | 960x999 | 128x128 | 85x85 | 40000 | 1.010 | - | V100 | 89.49 | 80.37 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201825-4ef29df5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201825.log.json) |
+| Method | Backbone | Loss | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | Device | mDice | Dice | config | download |
+| ---------------- | ----------- | -------------------- | ---------- | --------- | -----: | ------- | -------- | -------------: | ------ | ----: | ----: | ------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| UNet + FCN | UNet-S5-D16 | Cross Entropy | 960x999 | 128x128 | 85x85 | 40000 | 0.968 | - | V100 | 89.46 | 80.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/unet/unet-s5-d16_fcn_4xb4-40k_chase-db1-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_chase_db1/fcn_unet_s5-d16_128x128_40k_chase_db1_20201223_191051-11543527.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_128x128_40k_chase_db1/unet_s5-d16_128x128_40k_chase_db1-20201223_191051.log.json) |
+| UNet + FCN | UNet-S5-D16 | Cross Entropy + Dice | 960x999 | 128x128 | 85x85 | 40000 | 0.986 | - | V100 | 89.52 | 80.40 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201821-1c4eb7cf.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201821.log.json) |
+| UNet + PSPNet | UNet-S5-D16 | Cross Entropy | 960x999 | 128x128 | 85x85 | 40000 | 0.982 | - | V100 | 89.52 | 80.36 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/unet/unet-s5-d16_pspnet_4xb4-40k_chase-db1-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1_20201227_181818-68d4e609.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1-20201227_181818.log.json) |
+| UNet + PSPNet | UNet-S5-D16 | Cross Entropy + Dice | 960x999 | 128x128 | 85x85 | 40000 | 1.028 | - | V100 | 89.45 | 80.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201823-c0802c4d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201823.log.json) |
+| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy | 960x999 | 128x128 | 85x85 | 40000 | 0.999 | - | V100 | 89.57 | 80.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/unet/unet_s5-d16_deeplabv3_4xb4-40k_chase-db1-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1_20201226_094047-4c5aefa3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1-20201226_094047.log.json) |
+| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy + Dice | 960x999 | 128x128 | 85x85 | 40000 | 1.010 | - | V100 | 89.49 | 80.37 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201825-4ef29df5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201825.log.json) |
### HRF
-| Method | Backbone | Loss | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | Device | mDice | Dice | config | download |
-| ---------------- | ----------- | -------------------- | ---------- | --------- | ------: | ------- | -------- | -------------: | ------ | ----: | ----: | ---------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| UNet + FCN | UNet-S5-D16 | Cross Entropy | 2336x3504 | 256x256 | 170x170 | 40000 | 2.525 | - | V100 | 88.92 | 79.45 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_fcn_4xb4-40k_hrf-256x256.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_256x256_40k_hrf/fcn_unet_s5-d16_256x256_40k_hrf_20201223_173724-d89cf1ed.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_256x256_40k_hrf/unet_s5-d16_256x256_40k_hrf-20201223_173724.log.json) |
-| UNet + FCN | UNet-S5-D16 | Cross Entropy + Dice | 2336x3504 | 256x256 | 170x170 | 40000 | 2.623 | - | V100 | 89.64 | 80.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201821-c314da8a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201821.log.json) |
-| UNet + PSPNet | UNet-S5-D16 | Cross Entropy | 2336x3504 | 256x256 | 170x170 | 40000 | 2.588 | - | V100 | 89.24 | 80.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_pspnet_4xb4-40k_hrf-256x256.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf_20201227_181818-fdb7e29b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf-20201227_181818.log.json) |
-| UNet + PSPNet | UNet-S5-D16 | Cross Entropy + Dice | 2336x3504 | 256x256 | 170x170 | 40000 | 2.798 | - | V100 | 89.69 | 80.96 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201823-53d492fa.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201823.log.json) |
-| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy | 2336x3504 | 256x256 | 170x170 | 40000 | 2.604 | - | V100 | 89.32 | 80.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_deeplabv3_4xb4-40k_hrf-256x256.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf_20201226_094047-3a1fdf85.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf-20201226_094047.log.json) |
-| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy + Dice | 2336x3504 | 256x256 | 170x170 | 40000 | 2.607 | - | V100 | 89.56 | 80.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_202032-59daf7a4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_202032.log.json) |
+| Method | Backbone | Loss | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | Device | mDice | Dice | config | download |
+| ---------------- | ----------- | -------------------- | ---------- | --------- | ------: | ------- | -------- | -------------: | ------ | ----: | ----: | ------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| UNet + FCN | UNet-S5-D16 | Cross Entropy | 2336x3504 | 256x256 | 170x170 | 40000 | 2.525 | - | V100 | 88.92 | 79.45 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/unet/unet-s5-d16_fcn_4xb4-40k_hrf-256x256.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_256x256_40k_hrf/fcn_unet_s5-d16_256x256_40k_hrf_20201223_173724-d89cf1ed.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_256x256_40k_hrf/unet_s5-d16_256x256_40k_hrf-20201223_173724.log.json) |
+| UNet + FCN | UNet-S5-D16 | Cross Entropy + Dice | 2336x3504 | 256x256 | 170x170 | 40000 | 2.623 | - | V100 | 89.64 | 80.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201821-c314da8a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201821.log.json) |
+| UNet + PSPNet | UNet-S5-D16 | Cross Entropy | 2336x3504 | 256x256 | 170x170 | 40000 | 2.588 | - | V100 | 89.24 | 80.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/unet/unet-s5-d16_pspnet_4xb4-40k_hrf-256x256.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf_20201227_181818-fdb7e29b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf-20201227_181818.log.json) |
+| UNet + PSPNet | UNet-S5-D16 | Cross Entropy + Dice | 2336x3504 | 256x256 | 170x170 | 40000 | 2.798 | - | V100 | 89.69 | 80.96 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201823-53d492fa.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201823.log.json) |
+| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy | 2336x3504 | 256x256 | 170x170 | 40000 | 2.604 | - | V100 | 89.32 | 80.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/unet/unet-s5-d16_deeplabv3_4xb4-40k_hrf-256x256.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf_20201226_094047-3a1fdf85.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf-20201226_094047.log.json) |
+| UNet + DeepLabV3 | UNet-S5-D16 | Cross Entropy + Dice | 2336x3504 | 256x256 | 170x170 | 40000 | 2.607 | - | V100 | 89.56 | 80.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_202032-59daf7a4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_202032.log.json) |
Note:
diff --git a/configs/upernet/README.md b/configs/upernet/README.md
index 7d128090bf..c2babbd2a7 100644
--- a/configs/upernet/README.md
+++ b/configs/upernet/README.md
@@ -26,34 +26,34 @@ Humans recognize the visual world at multiple levels: we effortlessly categorize
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| UPerNet | R-50 | 512x1024 | 40000 | 6.4 | 4.25 | V100 | 77.10 | 78.37 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r50_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_40k_cityscapes/upernet_r50_512x1024_40k_cityscapes_20200605_094827-aa54cb54.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_40k_cityscapes/upernet_r50_512x1024_40k_cityscapes_20200605_094827.log.json) |
-| UPerNet | R-101 | 512x1024 | 40000 | 7.4 | 3.79 | V100 | 78.69 | 80.11 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r101_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_40k_cityscapes/upernet_r101_512x1024_40k_cityscapes_20200605_094933-ebce3b10.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_40k_cityscapes/upernet_r101_512x1024_40k_cityscapes_20200605_094933.log.json) |
-| UPerNet | R-50 | 769x769 | 40000 | 7.2 | 1.76 | V100 | 77.98 | 79.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r50_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_40k_cityscapes/upernet_r50_769x769_40k_cityscapes_20200530_033048-92d21539.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_40k_cityscapes/upernet_r50_769x769_40k_cityscapes_20200530_033048.log.json) |
-| UPerNet | R-101 | 769x769 | 40000 | 8.4 | 1.56 | V100 | 79.03 | 80.77 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r101_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_40k_cityscapes/upernet_r101_769x769_40k_cityscapes_20200530_040819-83c95d01.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_40k_cityscapes/upernet_r101_769x769_40k_cityscapes_20200530_040819.log.json) |
-| UPerNet | R-50 | 512x1024 | 80000 | - | - | V100 | 78.19 | 79.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r50_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_80k_cityscapes/upernet_r50_512x1024_80k_cityscapes_20200607_052207-848beca8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_80k_cityscapes/upernet_r50_512x1024_80k_cityscapes_20200607_052207.log.json) |
-| UPerNet | R-101 | 512x1024 | 80000 | - | - | V100 | 79.40 | 80.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r101_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_80k_cityscapes/upernet_r101_512x1024_80k_cityscapes_20200607_002403-f05f2345.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_80k_cityscapes/upernet_r101_512x1024_80k_cityscapes_20200607_002403.log.json) |
-| UPerNet | R-50 | 769x769 | 80000 | - | - | V100 | 79.39 | 80.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r50_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_80k_cityscapes/upernet_r50_769x769_80k_cityscapes_20200607_005107-82ae7d15.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_80k_cityscapes/upernet_r50_769x769_80k_cityscapes_20200607_005107.log.json) |
-| UPerNet | R-101 | 769x769 | 80000 | - | - | V100 | 80.10 | 81.49 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r101_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_80k_cityscapes/upernet_r101_769x769_80k_cityscapes_20200607_001014-082fc334.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_80k_cityscapes/upernet_r101_769x769_80k_cityscapes_20200607_001014.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| UPerNet | R-50 | 512x1024 | 40000 | 6.4 | 4.25 | V100 | 77.10 | 78.37 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/upernet/upernet_r50_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_40k_cityscapes/upernet_r50_512x1024_40k_cityscapes_20200605_094827-aa54cb54.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_40k_cityscapes/upernet_r50_512x1024_40k_cityscapes_20200605_094827.log.json) |
+| UPerNet | R-101 | 512x1024 | 40000 | 7.4 | 3.79 | V100 | 78.69 | 80.11 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/upernet/upernet_r101_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_40k_cityscapes/upernet_r101_512x1024_40k_cityscapes_20200605_094933-ebce3b10.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_40k_cityscapes/upernet_r101_512x1024_40k_cityscapes_20200605_094933.log.json) |
+| UPerNet | R-50 | 769x769 | 40000 | 7.2 | 1.76 | V100 | 77.98 | 79.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/upernet/upernet_r50_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_40k_cityscapes/upernet_r50_769x769_40k_cityscapes_20200530_033048-92d21539.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_40k_cityscapes/upernet_r50_769x769_40k_cityscapes_20200530_033048.log.json) |
+| UPerNet | R-101 | 769x769 | 40000 | 8.4 | 1.56 | V100 | 79.03 | 80.77 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/upernet/upernet_r101_4xb2-40k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_40k_cityscapes/upernet_r101_769x769_40k_cityscapes_20200530_040819-83c95d01.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_40k_cityscapes/upernet_r101_769x769_40k_cityscapes_20200530_040819.log.json) |
+| UPerNet | R-50 | 512x1024 | 80000 | - | - | V100 | 78.19 | 79.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/upernet/upernet_r50_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_80k_cityscapes/upernet_r50_512x1024_80k_cityscapes_20200607_052207-848beca8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_80k_cityscapes/upernet_r50_512x1024_80k_cityscapes_20200607_052207.log.json) |
+| UPerNet | R-101 | 512x1024 | 80000 | - | - | V100 | 79.40 | 80.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/upernet/upernet_r101_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_80k_cityscapes/upernet_r101_512x1024_80k_cityscapes_20200607_002403-f05f2345.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_80k_cityscapes/upernet_r101_512x1024_80k_cityscapes_20200607_002403.log.json) |
+| UPerNet | R-50 | 769x769 | 80000 | - | - | V100 | 79.39 | 80.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/upernet/upernet_r50_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_80k_cityscapes/upernet_r50_769x769_80k_cityscapes_20200607_005107-82ae7d15.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_80k_cityscapes/upernet_r50_769x769_80k_cityscapes_20200607_005107.log.json) |
+| UPerNet | R-101 | 769x769 | 80000 | - | - | V100 | 80.10 | 81.49 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/upernet/upernet_r101_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_80k_cityscapes/upernet_r101_769x769_80k_cityscapes_20200607_001014-082fc334.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_80k_cityscapes/upernet_r101_769x769_80k_cityscapes_20200607_001014.log.json) |
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| UPerNet | R-50 | 512x512 | 80000 | 8.1 | 23.40 | V100 | 40.70 | 41.81 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r50_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_80k_ade20k/upernet_r50_512x512_80k_ade20k_20200614_144127-ecc8377b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_80k_ade20k/upernet_r50_512x512_80k_ade20k_20200614_144127.log.json) |
-| UPerNet | R-101 | 512x512 | 80000 | 9.1 | 20.34 | V100 | 42.91 | 43.96 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r101_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_80k_ade20k/upernet_r101_512x512_80k_ade20k_20200614_185117-32e4db94.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_80k_ade20k/upernet_r101_512x512_80k_ade20k_20200614_185117.log.json) |
-| UPerNet | R-50 | 512x512 | 160000 | - | - | V100 | 42.05 | 42.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r50_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_160k_ade20k/upernet_r50_512x512_160k_ade20k_20200615_184328-8534de8d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_160k_ade20k/upernet_r50_512x512_160k_ade20k_20200615_184328.log.json) |
-| UPerNet | R-101 | 512x512 | 160000 | - | - | V100 | 43.82 | 44.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r101_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_160k_ade20k/upernet_r101_512x512_160k_ade20k_20200615_161951-91b32684.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_160k_ade20k/upernet_r101_512x512_160k_ade20k_20200615_161951.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| UPerNet | R-50 | 512x512 | 80000 | 8.1 | 23.40 | V100 | 40.70 | 41.81 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/upernet/upernet_r50_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_80k_ade20k/upernet_r50_512x512_80k_ade20k_20200614_144127-ecc8377b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_80k_ade20k/upernet_r50_512x512_80k_ade20k_20200614_144127.log.json) |
+| UPerNet | R-101 | 512x512 | 80000 | 9.1 | 20.34 | V100 | 42.91 | 43.96 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/upernet/upernet_r101_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_80k_ade20k/upernet_r101_512x512_80k_ade20k_20200614_185117-32e4db94.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_80k_ade20k/upernet_r101_512x512_80k_ade20k_20200614_185117.log.json) |
+| UPerNet | R-50 | 512x512 | 160000 | - | - | V100 | 42.05 | 42.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/upernet/upernet_r50_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_160k_ade20k/upernet_r50_512x512_160k_ade20k_20200615_184328-8534de8d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_160k_ade20k/upernet_r50_512x512_160k_ade20k_20200615_184328.log.json) |
+| UPerNet | R-101 | 512x512 | 160000 | - | - | V100 | 43.82 | 44.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/upernet/upernet_r101_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_160k_ade20k/upernet_r101_512x512_160k_ade20k_20200615_161951-91b32684.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_160k_ade20k/upernet_r101_512x512_160k_ade20k_20200615_161951.log.json) |
### Pascal VOC 2012 + Aug
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| UPerNet | R-50 | 512x512 | 20000 | 6.4 | 23.17 | V100 | 74.82 | 76.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r50_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_20k_voc12aug/upernet_r50_512x512_20k_voc12aug_20200617_165330-5b5890a7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_20k_voc12aug/upernet_r50_512x512_20k_voc12aug_20200617_165330.log.json) |
-| UPerNet | R-101 | 512x512 | 20000 | 7.5 | 19.98 | V100 | 77.10 | 78.29 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r101_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_20k_voc12aug/upernet_r101_512x512_20k_voc12aug_20200617_165629-f14e7f27.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_20k_voc12aug/upernet_r101_512x512_20k_voc12aug_20200617_165629.log.json) |
-| UPerNet | R-50 | 512x512 | 40000 | - | - | V100 | 75.92 | 77.44 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r50_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_40k_voc12aug/upernet_r50_512x512_40k_voc12aug_20200613_162257-ca9bcc6b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_40k_voc12aug/upernet_r50_512x512_40k_voc12aug_20200613_162257.log.json) |
-| UPerNet | R-101 | 512x512 | 40000 | - | - | V100 | 77.43 | 78.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/upernet/upernet_r101_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_40k_voc12aug/upernet_r101_512x512_40k_voc12aug_20200613_163549-e26476ac.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_40k_voc12aug/upernet_r101_512x512_40k_voc12aug_20200613_163549.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| UPerNet | R-50 | 512x512 | 20000 | 6.4 | 23.17 | V100 | 74.82 | 76.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/upernet/upernet_r50_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_20k_voc12aug/upernet_r50_512x512_20k_voc12aug_20200617_165330-5b5890a7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_20k_voc12aug/upernet_r50_512x512_20k_voc12aug_20200617_165330.log.json) |
+| UPerNet | R-101 | 512x512 | 20000 | 7.5 | 19.98 | V100 | 77.10 | 78.29 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/upernet/upernet_r101_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_20k_voc12aug/upernet_r101_512x512_20k_voc12aug_20200617_165629-f14e7f27.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_20k_voc12aug/upernet_r101_512x512_20k_voc12aug_20200617_165629.log.json) |
+| UPerNet | R-50 | 512x512 | 40000 | - | - | V100 | 75.92 | 77.44 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/upernet/upernet_r50_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_40k_voc12aug/upernet_r50_512x512_40k_voc12aug_20200613_162257-ca9bcc6b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_40k_voc12aug/upernet_r50_512x512_40k_voc12aug_20200613_162257.log.json) |
+| UPerNet | R-101 | 512x512 | 40000 | - | - | V100 | 77.43 | 78.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/upernet/upernet_r101_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_40k_voc12aug/upernet_r101_512x512_40k_voc12aug_20200613_163549-e26476ac.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_40k_voc12aug/upernet_r101_512x512_40k_voc12aug_20200613_163549.log.json) |
## Citation
diff --git a/configs/vit/README.md b/configs/vit/README.md
index 26601d498f..f75326e8e4 100644
--- a/configs/vit/README.md
+++ b/configs/vit/README.md
@@ -44,19 +44,19 @@ This script convert model from `PRETRAIN_PATH` and store the converted model in
### ADE20K
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
-| ------- | ----------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| UPerNet | ViT-B + MLN | 512x512 | 80000 | 9.20 | 6.94 | V100 | 47.71 | 49.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_vit-b16_mln_upernet_8xb2-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_80k_ade20k/upernet_vit-b16_mln_512x512_80k_ade20k_20210624_130547-0403cee1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_80k_ade20k/20210624_130547.log.json) |
-| UPerNet | ViT-B + MLN | 512x512 | 160000 | 9.20 | 7.58 | V100 | 46.75 | 48.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_vit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_160k_ade20k/upernet_vit-b16_mln_512x512_160k_ade20k_20210624_130547-852fa768.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_160k_ade20k/20210623_192432.log.json) |
-| UPerNet | ViT-B + LN + MLN | 512x512 | 160000 | 9.21 | 6.82 | V100 | 47.73 | 49.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_vit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k/upernet_vit-b16_ln_mln_512x512_160k_ade20k_20210621_172828-f444c077.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k/20210621_172828.log.json) |
-| UPerNet | DeiT-S | 512x512 | 80000 | 4.68 | 29.85 | V100 | 42.96 | 43.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_deit-s16_upernet_8xb2-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_80k_ade20k/upernet_deit-s16_512x512_80k_ade20k_20210624_095228-afc93ec2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_80k_ade20k/20210624_095228.log.json) |
-| UPerNet | DeiT-S | 512x512 | 160000 | 4.68 | 29.19 | V100 | 42.87 | 43.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_deit-s16_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_160k_ade20k/upernet_deit-s16_512x512_160k_ade20k_20210621_160903-5110d916.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_160k_ade20k/20210621_160903.log.json) |
-| UPerNet | DeiT-S + MLN | 512x512 | 160000 | 5.69 | 11.18 | V100 | 43.82 | 45.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_deit-s16_mln_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_mln_512x512_160k_ade20k/upernet_deit-s16_mln_512x512_160k_ade20k_20210621_161021-fb9a5dfb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_mln_512x512_160k_ade20k/20210621_161021.log.json) |
-| UPerNet | DeiT-S + LN + MLN | 512x512 | 160000 | 5.69 | 12.39 | V100 | 43.52 | 45.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_deit-s16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k/upernet_deit-s16_ln_mln_512x512_160k_ade20k_20210621_161021-c0cd652f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k/20210621_161021.log.json) |
-| UPerNet | DeiT-B | 512x512 | 80000 | 7.75 | 9.69 | V100 | 45.24 | 46.73 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_deit-b16_upernet_8xb2-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_80k_ade20k/upernet_deit-b16_512x512_80k_ade20k_20210624_130529-1e090789.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_80k_ade20k/20210624_130529.log.json) |
-| UPerNet | DeiT-B | 512x512 | 160000 | 7.75 | 10.39 | V100 | 45.36 | 47.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_deit-b16_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_160k_ade20k/upernet_deit-b16_512x512_160k_ade20k_20210621_180100-828705d7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_160k_ade20k/20210621_180100.log.json) |
-| UPerNet | DeiT-B + MLN | 512x512 | 160000 | 9.21 | 7.78 | V100 | 45.46 | 47.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_deit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_mln_512x512_160k_ade20k/upernet_deit-b16_mln_512x512_160k_ade20k_20210621_191949-4e1450f3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_mln_512x512_160k_ade20k/20210621_191949.log.json) |
-| UPerNet | DeiT-B + LN + MLN | 512x512 | 160000 | 9.21 | 7.75 | V100 | 45.37 | 47.23 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_deit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_ln_mln_512x512_160k_ade20k/upernet_deit-b16_ln_mln_512x512_160k_ade20k_20210623_153535-8a959c14.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_ln_mln_512x512_160k_ade20k/20210623_153535.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
+| ------- | ----------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| UPerNet | ViT-B + MLN | 512x512 | 80000 | 9.20 | 6.94 | V100 | 47.71 | 49.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/vit/vit_vit-b16_mln_upernet_8xb2-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_80k_ade20k/upernet_vit-b16_mln_512x512_80k_ade20k_20210624_130547-0403cee1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_80k_ade20k/20210624_130547.log.json) |
+| UPerNet | ViT-B + MLN | 512x512 | 160000 | 9.20 | 7.58 | V100 | 46.75 | 48.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/vit/vit_vit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_160k_ade20k/upernet_vit-b16_mln_512x512_160k_ade20k_20210624_130547-852fa768.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_160k_ade20k/20210623_192432.log.json) |
+| UPerNet | ViT-B + LN + MLN | 512x512 | 160000 | 9.21 | 6.82 | V100 | 47.73 | 49.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/vit/vit_vit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k/upernet_vit-b16_ln_mln_512x512_160k_ade20k_20210621_172828-f444c077.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k/20210621_172828.log.json) |
+| UPerNet | DeiT-S | 512x512 | 80000 | 4.68 | 29.85 | V100 | 42.96 | 43.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/vit/vit_deit-s16_upernet_8xb2-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_80k_ade20k/upernet_deit-s16_512x512_80k_ade20k_20210624_095228-afc93ec2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_80k_ade20k/20210624_095228.log.json) |
+| UPerNet | DeiT-S | 512x512 | 160000 | 4.68 | 29.19 | V100 | 42.87 | 43.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/vit/vit_deit-s16_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_160k_ade20k/upernet_deit-s16_512x512_160k_ade20k_20210621_160903-5110d916.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_160k_ade20k/20210621_160903.log.json) |
+| UPerNet | DeiT-S + MLN | 512x512 | 160000 | 5.69 | 11.18 | V100 | 43.82 | 45.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/vit/vit_deit-s16_mln_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_mln_512x512_160k_ade20k/upernet_deit-s16_mln_512x512_160k_ade20k_20210621_161021-fb9a5dfb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_mln_512x512_160k_ade20k/20210621_161021.log.json) |
+| UPerNet | DeiT-S + LN + MLN | 512x512 | 160000 | 5.69 | 12.39 | V100 | 43.52 | 45.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/vit/vit_deit-s16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k/upernet_deit-s16_ln_mln_512x512_160k_ade20k_20210621_161021-c0cd652f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k/20210621_161021.log.json) |
+| UPerNet | DeiT-B | 512x512 | 80000 | 7.75 | 9.69 | V100 | 45.24 | 46.73 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/vit/vit_deit-b16_upernet_8xb2-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_80k_ade20k/upernet_deit-b16_512x512_80k_ade20k_20210624_130529-1e090789.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_80k_ade20k/20210624_130529.log.json) |
+| UPerNet | DeiT-B | 512x512 | 160000 | 7.75 | 10.39 | V100 | 45.36 | 47.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/vit/vit_deit-b16_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_160k_ade20k/upernet_deit-b16_512x512_160k_ade20k_20210621_180100-828705d7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_160k_ade20k/20210621_180100.log.json) |
+| UPerNet | DeiT-B + MLN | 512x512 | 160000 | 9.21 | 7.78 | V100 | 45.46 | 47.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/vit/vit_deit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_mln_512x512_160k_ade20k/upernet_deit-b16_mln_512x512_160k_ade20k_20210621_191949-4e1450f3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_mln_512x512_160k_ade20k/20210621_191949.log.json) |
+| UPerNet | DeiT-B + LN + MLN | 512x512 | 160000 | 9.21 | 7.75 | V100 | 45.37 | 47.23 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/vit/vit_deit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_ln_mln_512x512_160k_ade20k/upernet_deit-b16_ln_mln_512x512_160k_ade20k_20210623_153535-8a959c14.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_ln_mln_512x512_160k_ade20k/20210623_153535.log.json) |
## Citation
diff --git a/demo/MMSegmentation_Tutorial.ipynb b/demo/MMSegmentation_Tutorial.ipynb
index 1d92342ae6..ac8601b321 100644
--- a/demo/MMSegmentation_Tutorial.ipynb
+++ b/demo/MMSegmentation_Tutorial.ipynb
@@ -7,7 +7,7 @@
"id": "view-in-github"
},
"source": [
- ""
+ "
"
]
},
{
@@ -89,7 +89,7 @@
"outputs": [],
"source": [
"!rm -rf mmsegmentation\n",
- "!git clone -b dev-1.x https://github.com/open-mmlab/mmsegmentation.git \n",
+ "!git clone -b main https://github.com/open-mmlab/mmsegmentation.git \n",
"%cd mmsegmentation\n",
"!pip install -e ."
]
diff --git a/docker/Dockerfile b/docker/Dockerfile
index 73a0fac121..982b09bdc6 100644
--- a/docker/Dockerfile
+++ b/docker/Dockerfile
@@ -28,7 +28,7 @@ RUN ["/bin/bash", "-c", "mim install mmengine"]
RUN ["/bin/bash", "-c", "mim install mmcv==${MMCV}"]
# Install MMSegmentation
-RUN git clone -b dev-1.x https://github.com/open-mmlab/mmsegmentation.git /mmsegmentation
+RUN git clone -b main https://github.com/open-mmlab/mmsegmentation.git /mmsegmentation
WORKDIR /mmsegmentation
ENV FORCE_CUDA="1"
RUN pip install -r requirements.txt
diff --git a/docs/en/advanced_guides/add_models.md b/docs/en/advanced_guides/add_models.md
index e470e48ef2..ed5c9ce611 100644
--- a/docs/en/advanced_guides/add_models.md
+++ b/docs/en/advanced_guides/add_models.md
@@ -49,7 +49,7 @@ Here we show how to develop a new backbone with an example of MobileNet.
### Add new heads
-In MMSegmentation, we provide a [BaseDecodeHead](https://github.com/open-mmlab/mmsegmentation/blob/1.x/mmseg/models/decode_heads/decode_head.py#L17) for developing all segmentation heads.
+In MMSegmentation, we provide a [BaseDecodeHead](https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/decode_heads/decode_head.py#L17) for developing all segmentation heads.
All newly implemented decode heads should be derived from it.
Here we show how to develop a new head with the example of [PSPNet](https://arxiv.org/abs/1612.01105) as the following.
@@ -166,7 +166,7 @@ loss_decode=dict(type='MyLoss', loss_weight=1.0))
### Add new data preprocessor
-In MMSegmentation 1.x versions, we use [SegDataPreProcessor](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/models/data_preprocessor.py#L13) to copy data to the target device and preprocess the data into the model input format as default. Here we show how to develop a new data preprocessor.
+In MMSegmentation 1.x versions, we use [SegDataPreProcessor](https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/data_preprocessor.py#L13) to copy data to the target device and preprocess the data into the model input format as default. Here we show how to develop a new data preprocessor.
1. Create a new file `mmseg/models/my_datapreprocessor.py`.
@@ -204,7 +204,7 @@ In MMSegmentation 1.x versions, we use [SegDataPreProcessor](https://github.com/
The segmentor is an algorithmic architecture in which users can customize their algorithms by adding customized components and defining the logic of algorithm execution. Please refer to [the model document](./models.md) for more details.
-Since the [BaseSegmentor](https://github.com/open-mmlab/mmsegmentation/blob/1.x/mmseg/models/segmentors/base.py#L15) in MMSegmentation unifies three modes for a forward process, to develop a new segmentor, users need to overwrite `loss`, `predict` and `_forward` methods corresponding to the `loss`, `predict` and `tensor` modes.
+Since the [BaseSegmentor](https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/segmentors/base.py#L15) in MMSegmentation unifies three modes for a forward process, to develop a new segmentor, users need to overwrite `loss`, `predict` and `_forward` methods corresponding to the `loss`, `predict` and `tensor` modes.
Here we show how to develop a new segmentor.
diff --git a/docs/en/advanced_guides/data_flow.md b/docs/en/advanced_guides/data_flow.md
index 20d23084ab..404035aee4 100644
--- a/docs/en/advanced_guides/data_flow.md
+++ b/docs/en/advanced_guides/data_flow.md
@@ -16,7 +16,7 @@ val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
```
-In the above diagram, the red line indicates the [train_step](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/docs/en/advanced_guides/models.md#train_step). At each training iteration, dataloader loads images from storage and transfer to data preprocessor, data preprocessor would put images to the specific device and stack data to batch, then model accepts the batch data as inputs, finally the outputs of the model would be sent to optimizer. The blue line indicates [val_step](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/docs/en/advanced_guides/models.md#val_step) and [test_step](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/docs/en/advanced_guides/models.md#test_step). The dataflow of these two process is similar to the `train_step` except the outputs of model, since model parameters are freezed when doing evaluation, the model output would be transferred to [Evaluator](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/docs/en/advanced_guides/evaluation.md#ioumetric) to compute metrics.
+In the above diagram, the red line indicates the [train_step](./models.md#train_step). At each training iteration, dataloader loads images from storage and transfer to data preprocessor, data preprocessor would put images to the specific device and stack data to batch, then model accepts the batch data as inputs, finally the outputs of the model would be sent to optimizer. The blue line indicates [val_step](./models.md#val_step) and [test_step](./models.md#test_step). The dataflow of these two process is similar to the `train_step` except the outputs of model, since model parameters are freezed when doing evaluation, the model output would be transferred to [Evaluator](./evaluation.md#ioumetric) to compute metrics.
## Dataflow convention in MMSegmentation
@@ -26,7 +26,7 @@ From the diagram above, we could see the basic dataflow. In this section, we wou
DataLoader is an essential component in training and testing pipelines of MMEngine. Conceptually, it is derived from and consistent with [PyTorch](https://pytorch.org/). DataLoader loads data from filesystem and the original data passes through data preparation pipeline, then it would be sent to Data Preprocessor.
-MMSegmentation defines the default data format at [PackSegInputs](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/datasets/transforms/formatting.py#L12), it's the last component of `train_pipeline` and `test_pipeline`. Please refer to [data transform documentation](https://mmsegmentation.readthedocs.io/en/dev-1.x/advanced_guides/transforms.html) for more information about data transform `pipeline`.
+MMSegmentation defines the default data format at [PackSegInputs](https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/datasets/transforms/formatting.py#L12), it's the last component of `train_pipeline` and `test_pipeline`. Please refer to [data transform documentation](./transforms.md) for more information about data transform `pipeline`.
Without any modifications, the return value of PackSegInputs is usually a `dict` and has only two keys, `inputs` and `data_samples`. The following pseudo-code shows the data types of the data loader output in mmseg, which is a batch of fetched data samples from the dataset, and data loader packs them into a dictionary of the list. `inputs` is the list of input tensors to the model and `data_samples` contains a list of input images' meta information and corresponding ground truth.
@@ -37,11 +37,11 @@ dict(
)
```
-**Note:** [SegDataSample](https://github.com/open-mmlab/mmsegmentation/blob/1.x/mmseg/structures/seg_data_sample.py) is a data structure interface of MMSegmentation, it is used as an interface between different components. `SegDataSample` implements the abstract data element `mmengine.structures.BaseDataElement`, please refer to [the SegDataSample documentation](https://mmsegmentation.readthedocs.io/en/1.x/advanced_guides/structures.html) and [data element documentation](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/data_element.html) in [MMEngine](https://github.com/open-mmlab/mmengine) for more information.
+**Note:** [SegDataSample](https://github.com/open-mmlab/mmsegmentation/blob/1.x/mmseg/structures/seg_data_sample.py) is a data structure interface of MMSegmentation, it is used as an interface between different components. `SegDataSample` implements the abstract data element `mmengine.structures.BaseDataElement`, please refer to [the SegDataSample documentation](./structures.md) and [data element documentation](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/data_element.html) in [MMEngine](https://github.com/open-mmlab/mmengine) for more information.
### Data Preprocessor to Model
-Though drawn separately in the diagram [above](#overview-of-dataflow), data_preprocessor is a part of the model and thus can be found in [Model tutorial](https://mmsegmentation.readthedocs.io/en/dev-1.x/advanced_guides/models.html) at data preprocessor chapter.
+Though drawn separately in the diagram [above](#overview-of-dataflow), data_preprocessor is a part of the model and thus can be found in [Model tutorial](./models.md) at data preprocessor chapter.
The return value of data preprocessor is a dictionary, containing `inputs` and `data_samples`, `inputs` is batched images, a 4D tensor, and some additional meta info used in data preprocesses would be added to the `data_samples`. When transferred to the network, the dictionary would be unpacked to two values. The following pseudo-codes show the return value of the data preprocessor and the input values of model.
@@ -59,21 +59,21 @@ class Network(BaseSegmentor):
pass
```
-**Note:** Model forward has 3 kinds of mode, which is controlled by input argumentmode, please refer [model tutorial](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/docs/en/advanced_guides/models.md) for more details.
+**Note:** Model forward has 3 kinds of mode, which is controlled by input argumentmode, please refer [model tutorial](./models.md) for more details.
### Model output
-As [model tutorial](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/docs/en/advanced_guides/models.md#forward) mentioned 3 kinds of mode forward with 3 kinds of output. `train_step`and `test_step`(or `val_step`) correspond to `'loss'` and `'predict'` respectively.
+As [model tutorial](./models.md#forward) mentioned 3 kinds of mode forward with 3 kinds of output. `train_step`and `test_step`(or `val_step`) correspond to `'loss'` and `'predict'` respectively.
-In `test_step` or `val_step`, the inference results would be transferred to `Evaluator`. You might read the [evaluation document](https://mmsegmentation.readthedocs.io/en/dev-1.x/advanced_guides/evaluation.html) for more information about `Evaluator`.
+In `test_step` or `val_step`, the inference results would be transferred to `Evaluator`. You might read the [evaluation document](./evaluation.md) for more information about `Evaluator`.
-After inference, the [BaseSegmentor](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/models/segmentors/base.py#L15) in MMSegmentation would do a simple post process to pack inference results, the segmentation logits produced by the neural network, segmentation mask after the `argmax` operation and ground truth(if exists) would be packed into a similar `SegDataSample` instance. The return value of [postprocess_result](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/models/segmentors/base.py#L132) is a **`List` of `SegDataSample`**. Following diagram shows the key properties of these `SegDataSample` instances.
+After inference, the [BaseSegmentor](https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/segmentors/base.py#L15) in MMSegmentation would do a simple post process to pack inference results, the segmentation logits produced by the neural network, segmentation mask after the `argmax` operation and ground truth(if exists) would be packed into a similar `SegDataSample` instance. The return value of [postprocess_result](https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/segmentors/base.py#L132) is a **`List` of `SegDataSample`**. Following diagram shows the key properties of these `SegDataSample` instances.

-The same as Data Preprocessor, loss function is also a part of the model, it's a property of [decode head](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/models/decode_heads/decode_head.py#L142).
+The same as Data Preprocessor, loss function is also a part of the model, it's a property of [decode head](https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/decode_heads/decode_head.py#L142).
-In MMSegmentation, the method [loss_by_feat](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/models/decode_heads/decode_head.py#L291) of `decode_head` is an unified interface used to compute loss.
+In MMSegmentation, the method [loss_by_feat](https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/decode_heads/decode_head.py#L291) of `decode_head` is an unified interface used to compute loss.
Parameters:
@@ -84,4 +84,4 @@ Returns:
- dict\[str, Tensor\]: a dictionary of loss components
-**Note:** The `train_step` transfers the loss into OptimWrapper to update the weights in model, please refer [train_step](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/docs/en/advanced_guides/models.md#train_step) for more details.
+**Note:** The `train_step` transfers the loss into OptimWrapper to update the weights in model, please refer [train_step](./models.md#train_step) for more details.
diff --git a/docs/en/advanced_guides/datasets.md b/docs/en/advanced_guides/datasets.md
index a1b8044b3d..c655a3ff55 100644
--- a/docs/en/advanced_guides/datasets.md
+++ b/docs/en/advanced_guides/datasets.md
@@ -1,14 +1,14 @@
# Dataset
-Dataset classes in MMSegmentation have two functions: (1) load data information after [data preparation](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/docs/en/user_guides/2_dataset_prepare.md)
-and (2) send data into [dataset transform pipeline](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/datasets/basesegdataset.py#L141) to do [data augmentation](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/docs/zh_cn/advanced_guides/transforms.md).
+Dataset classes in MMSegmentation have two functions: (1) load data information after [data preparation](../user_guides/2_dataset_prepare.md)
+and (2) send data into [dataset transform pipeline](https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/datasets/basesegdataset.py#L141) to do [data augmentation](./transforms.md).
There are 2 kinds of loaded information: (1) meta information which is original dataset information such as categories (classes) of dataset and their corresponding palette information, (2) data information which includes
the path of dataset images and labels.
The tutorial includes some main interfaces in MMSegmentation 1.x dataset class: methods of loading data information and modifying dataset classes in base dataset class, and the relationship between dataset and the data transform pipeline.
## Main Interfaces
-Take Cityscapes as an example, if you want to run the example, please download and [preprocess](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/docs/en/user_guides/2_dataset_prepare.md#cityscapes)
+Take Cityscapes as an example, if you want to run the example, please download and [preprocess](../user_guides/2_dataset_prepare.md#cityscapes)
Cityscapes dataset in `data` directory, before running the demo code:
Instantiate Cityscapes training dataset:
@@ -108,7 +108,7 @@ print(dataset.metainfo)
```
The return value of dataset `__getitem__` method is the output of data samples after data augmentation, whose type is also `dict`. It has two fields: `'inputs'` corresponding to images after data augmentation,
-and `'data_samples'` corresponding to `SegDataSample`\](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/docs/zh_cn/advanced_guides/structures.md) which is new data structures in MMSegmentation 1.x,
+and `'data_samples'` corresponding to [`SegDataSample`](./structures.md) which is new data structures in MMSegmentation 1.x,
and `gt_sem_seg` of `SegDataSample` has labels after data augmentation operations.
```python
@@ -179,19 +179,19 @@ print(dataset[0])
## BaseSegDataset
-As mentioned above, dataset classes have the same functions, we implemented [`BaseSegDataset`](https://mmsegmentation.readthedocs.io/en/dev-1.x/api.html?highlight=BaseSegDataset#mmseg.datasets.BaseSegDataset) to reues the common functions.
+As mentioned above, dataset classes have the same functions, we implemented [`BaseSegDataset`](https://mmsegmentation.readthedocs.io/en/main/api.html?highlight=BaseSegDataset#mmseg.datasets.BaseSegDataset) to reues the common functions.
It inherits [`BaseDataset` of MMEngine](https://github.com/open-mmlab/mmengine/blob/main/docs/en/advanced_tutorials/basedataset.md) and follows unified initialization process of OpenMMLab. It supports the highly effective interior storing format, some functions like
dataset concatenation and repeatedly sampling. In MMSegmentation `BaseSegDataset`, the **method of loading data information** (`load_data_list`) is redefined and adds new `get_label_map` method to **modify dataset classes information**.
### Loading Dataset Information
The loaded data information includes the path of images samples and annotations samples, the detailed implementation could be found in
-[`load_data_list`](https://github.com/open-mmlab/mmsegmentation/blob/163277bfe0fa8fefb63ee5137917fafada1b301c/mmseg/datasets/basesegdataset.py#L231) of `BaseSegDataset` in MMSegmentation.
+[`load_data_list`](https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/datasets/basesegdataset.py#L231) of `BaseSegDataset` in MMSegmentation.
There are two main methods to acquire the path of images and labels:
1. Load file paths according to the dirictory and suffix of input images and annotations
-If the dataset directory structure is organized as below, the [`load_data_list`](https://github.com/open-mmlab/mmsegmentation/blob/163277bfe0fa8fefb63ee5137917fafada1b301c/mmseg/datasets/basesegdataset.py#L231) can parse dataset directory Structure:
+If the dataset directory structure is organized as below, the [`load_data_list`](https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/datasets/basesegdataset.py#L231) can parse dataset directory Structure:
```
├── data
@@ -344,7 +344,7 @@ print(dataset.metainfo)
```
Meta information is different from default setting of Cityscapes dataset. Moreover, `label_map` field is also defined, which is used for modifying label index of each pixel on segmentation mask.
-The segmentation label would re-map class information by `label_map`, [here](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/datasets/basesegdataset.py#L151) is detailed implementation:
+The segmentation label would re-map class information by `label_map`, [here](https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/datasets/basesegdataset.py#L151) is detailed implementation:
```python
gt_semantic_seg_copy = gt_semantic_seg.copy()
diff --git a/docs/en/advanced_guides/engine.md b/docs/en/advanced_guides/engine.md
index 0ed08fa4b5..7acfe5ad64 100644
--- a/docs/en/advanced_guides/engine.md
+++ b/docs/en/advanced_guides/engine.md
@@ -70,14 +70,14 @@ It is not recommended for users to modify the default hook priorities. Please re
The following are the default hooks used in MMSegmentation:
-| Hook | Function | Priority |
-| :-----------------------------------------------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------: | :---------------: |
-| [IterTimerHook](https://github.com/open-mmlab/mmengine/blob/main/mmengine/hooks/iter_timer_hook.py) | Record the time spent on each iteration. | NORMAL (50) |
-| [LoggerHook](https://github.com/open-mmlab/mmengine/blob/main/mmengine/hooks/logger_hook.py) | Collect log records from different components in `Runner` and output them to terminal, JSON file, tensorboard, wandb, etc. | BELOW_NORMAL (60) |
-| [ParamSchedulerHook](https://github.com/open-mmlab/mmengine/blob/main/mmengine/hooks/param_scheduler_hook.py) | Update some hyperparameters in the optimizer, such as learning rate momentum. | LOW (70) |
-| [CheckpointHook](https://github.com/open-mmlab/mmengine/blob/main/mmengine/hooks/checkpoint_hook.py) | Regularly save checkpoint files. | VERY_LOW (90) |
-| [DistSamplerSeedHook](https://github.com/open-mmlab/mmengine/blob/main/mmengine/hooks/sampler_seed_hook.py) | Ensure the distributed sampler shuffle is enabled. | NORMAL (50) |
-| [SegVisualizationHook](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/visualization/local_visualizer.py) | Visualize prediction results during validation and testing. | NORMAL (50) |
+| Hook | Function | Priority |
+| :--------------------------------------------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------: | :---------------: |
+| [IterTimerHook](https://github.com/open-mmlab/mmengine/blob/main/mmengine/hooks/iter_timer_hook.py) | Record the time spent on each iteration. | NORMAL (50) |
+| [LoggerHook](https://github.com/open-mmlab/mmengine/blob/main/mmengine/hooks/logger_hook.py) | Collect log records from different components in `Runner` and output them to terminal, JSON file, tensorboard, wandb, etc. | BELOW_NORMAL (60) |
+| [ParamSchedulerHook](https://github.com/open-mmlab/mmengine/blob/main/mmengine/hooks/param_scheduler_hook.py) | Update some hyperparameters in the optimizer, such as learning rate momentum. | LOW (70) |
+| [CheckpointHook](https://github.com/open-mmlab/mmengine/blob/main/mmengine/hooks/checkpoint_hook.py) | Regularly save checkpoint files. | VERY_LOW (90) |
+| [DistSamplerSeedHook](https://github.com/open-mmlab/mmengine/blob/main/mmengine/hooks/sampler_seed_hook.py) | Ensure the distributed sampler shuffle is enabled. | NORMAL (50) |
+| [SegVisualizationHook](https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/visualization/local_visualizer.py) | Visualize prediction results during validation and testing. | NORMAL (50) |
MMSegmentation registers some hooks with essential training functions in `default_hooks`:
@@ -149,7 +149,7 @@ custom_hooks = [
### SegVisualizationHook
-MMSegmentation implemented [`SegVisualizationHook`](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/engine/hooks/visualization_hook.py#L17), which is used to visualize prediction results during validation and testing.
+MMSegmentation implemented [`SegVisualizationHook`](https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/engine/hooks/visualization_hook.py#L17), which is used to visualize prediction results during validation and testing.
`SegVisualizationHook` overrides the `_after_iter` method in the base class `Hook`. During validation or testing, it calls the `add_datasample` method of `visualizer` to draw semantic segmentation results according to the specified iteration interval. The specific implementation is as follows:
```python
@@ -185,7 +185,7 @@ class SegVisualizationHook(Hook):
```
-For more details about visualization, you can check [here](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/docs/en/user_guides/visualization.md).
+For more details about visualization, you can check [here](../user_guides/visualization.md).
## Optimizer
@@ -237,7 +237,7 @@ The default setting for `loss_scale` in [`AmpOptimWrapper`](https://github.com/o
In model training, if you want to set different optimization strategies for different parameters in the optimizer, such as setting different learning rates, weight decay, and other hyperparameters, you can achieve this by setting `paramwise_cfg` in the `optim_wrapper` of the configuration file.
-The following config file uses the [ViT `optim_wrapper`](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/vit/vit_vit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py#L15-L27) as an example to introduce the use of `paramwise_cfg` parameters. During training, the weight decay parameter coefficients for the `pos_embed`, `mask_token`, and `norm` modules are set to 0. That is, during training, the weight decay for these modules will be changed to `weight_decay * decay_mult`=0.
+The following config file uses the [ViT `optim_wrapper`](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/vit/vit_vit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py#L15-L27) as an example to introduce the use of `paramwise_cfg` parameters. During training, the weight decay parameter coefficients for the `pos_embed`, `mask_token`, and `norm` modules are set to 0. That is, during training, the weight decay for these modules will be changed to `weight_decay * decay_mult`=0.
```python
optimizer = dict(
@@ -259,7 +259,7 @@ Here, `decay_mult` refers to the weight decay coefficient for the corresponding
The default optimizer wrapper constructor [`DefaultOptimWrapperConstructor`](https://github.com/open-mmlab/mmengine/blob/main/mmengine/optim/optimizer/default_constructor.py#L19) builds the optimizer used in training based on the input `optim_wrapper` and `paramwise_cfg` defined in the `optim_wrapper`. When the functionality of [`DefaultOptimWrapperConstructor`](https://github.com/open-mmlab/mmengine/blob/main/mmengine/optim/optimizer/default_constructor.py#L19) does not meet the requirements, you can customize the optimizer wrapper constructor to implement the configuration of hyperparameters.
-MMSegmentation has implemented the [`LearningRateDecayOptimizerConstructor`](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/engine/optimizers/layer_decay_optimizer_constructor.py#L104), which can decay the learning rate of model parameters in the backbone networks of ConvNeXt, BEiT, and MAE models during training according to the defined decay ratio (`decay_rate`). The configuration in the configuration file is as follows:
+MMSegmentation has implemented the [`LearningRateDecayOptimizerConstructor`](https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/engine/optimizers/layer_decay_optimizer_constructor.py#L104), which can decay the learning rate of model parameters in the backbone networks of ConvNeXt, BEiT, and MAE models during training according to the defined decay ratio (`decay_rate`). The configuration in the configuration file is as follows:
```python
optim_wrapper = dict(
diff --git a/docs/en/advanced_guides/evaluation.md b/docs/en/advanced_guides/evaluation.md
index 1e42db2a10..ca0beeeccf 100644
--- a/docs/en/advanced_guides/evaluation.md
+++ b/docs/en/advanced_guides/evaluation.md
@@ -2,10 +2,7 @@
The evaluation procedure would be executed at [ValLoop](https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/loops.py#L300) and [TestLoop](https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/loops.py#L373), users can evaluate model performance during training or using the test script with simple settings in the configuration file. The `ValLoop` and `TestLoop` are properties of [Runner](https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/runner.py#L59), they will be built the first time they are called. To build the `ValLoop` successfully, the `val_dataloader` and `val_evaluator` must be set when building `Runner` since `dataloader` and `evaluator` are required parameters, and the same goes for `TestLoop`. For more information about the Runner's design, please refer to the [documentation](https://github.com/open-mmlab/mmengine/blob/main/docs/en/design/runner.md) of [MMEngine](https://github.com/open-mmlab/mmengine).
-