diff --git a/README.md b/README.md
index 52eda092c8..69f751b9e5 100644
--- a/README.md
+++ b/README.md
@@ -159,6 +159,7 @@ Results and models are available in the [model zoo](docs/en/model_zoo.md).
- [x] [K-Net (NeurIPS'2021)](configs/knet)
- [x] [MaskFormer (NeurIPS'2021)](configs/maskformer)
- [x] [Mask2Former (CVPR'2022)](configs/mask2former)
+- [x] [PIDNet (ArXiv'2022)](configs/pidnet)
diff --git a/README_zh-CN.md b/README_zh-CN.md
index 167ecbdc40..709e6ef195 100644
--- a/README_zh-CN.md
+++ b/README_zh-CN.md
@@ -140,6 +140,7 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
- [x] [K-Net (NeurIPS'2021)](configs/knet)
- [x] [MaskFormer (NeurIPS'2021)](configs/maskformer)
- [x] [Mask2Former (CVPR'2022)](configs/mask2former)
+- [x] [PIDNet (ArXiv'2022)](configs/pidnet)
diff --git a/configs/pidnet/README.md b/configs/pidnet/README.md
new file mode 100644
index 0000000000..545b76e8b0
--- /dev/null
+++ b/configs/pidnet/README.md
@@ -0,0 +1,50 @@
+# PIDNet
+
+> [PIDNet: A Real-time Semantic Segmentation Network Inspired from PID Controller](https://arxiv.org/pdf/2206.02066.pdf)
+
+## Introduction
+
+
+
+Official Repo
+
+Code Snippet
+
+## Abstract
+
+
+
+Two-branch network architecture has shown its efficiency and effectiveness for real-time semantic segmentation tasks. However, direct fusion of low-level details and high-level semantics will lead to a phenomenon that the detailed features are easily overwhelmed by surrounding contextual information, namely overshoot in this paper, which limits the improvement of the accuracy of existed two-branch models. In this paper, we bridge a connection between Convolutional Neural Network (CNN) and Proportional-IntegralDerivative (PID) controller and reveal that the two-branch network is nothing but a Proportional-Integral (PI) controller, which inherently suffers from the similar overshoot issue. To alleviate this issue, we propose a novel threebranch network architecture: PIDNet, which possesses three branches to parse the detailed, context and boundary information (derivative of semantics), respectively, and employs boundary attention to guide the fusion of detailed and context branches in final stage. The family of PIDNets achieve the best trade-off between inference speed and accuracy and their test accuracy surpasses all the existed models with similar inference speed on Cityscapes, CamVid and COCO-Stuff datasets. Especially, PIDNet-S achieves 78.6% mIOU with inference speed of 93.2 FPS on Cityscapes test set and 80.1% mIOU with speed of 153.7 FPS on CamVid test set.
+
+
+
+
+

+
+
+## Results and models
+
+### Cityscapes
+
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
+| ------ | -------- | --------- | ------- | -------- | -------------- | ----- | ------------- | ----------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| PIDNet | PIDNet-S | 1024x1024 | 120000 | 3.38 | 80.82 | 78.74 | 80.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pidnet/pidnet-s_2xb6-120k_1024x1024-cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-s_2xb6-120k_1024x1024-cityscapes/pidnet-s_2xb6-120k_1024x1024-cityscapes_20230302_191700-bb8e3bcc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-s_2xb6-120k_1024x1024-cityscapes/pidnet-s_2xb6-120k_1024x1024-cityscapes_20230302_191700.json) |
+| PIDNet | PIDNet-M | 1024x1024 | 120000 | 5.14 | 71.98 | 80.22 | 82.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes/pidnet-m_2xb6-120k_1024x1024-cityscapes_20230301_143452-f9bcdbf3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes/pidnet-m_2xb6-120k_1024x1024-cityscapes_20230301_143452.json) |
+| PIDNet | PIDNet-L | 1024x1024 | 120000 | 5.83 | 60.06 | 80.89 | 82.37 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes/pidnet-l_2xb6-120k_1024x1024-cityscapes_20230303_114514-0783ca6b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes/pidnet-l_2xb6-120k_1024x1024-cityscapes_20230303_114514.json) |
+
+## Notes
+
+The pretrained weights in config files are converted from [the official repo](https://github.com/XuJiacong/PIDNet#models).
+
+## Citation
+
+```bibtex
+@misc{xu2022pidnet,
+ title={PIDNet: A Real-time Semantic Segmentation Network Inspired from PID Controller},
+ author={Jiacong Xu and Zixiang Xiong and Shankar P. Bhattacharyya},
+ year={2022},
+ eprint={2206.02066},
+ archivePrefix={arXiv},
+ primaryClass={cs.CV}
+}
+```
diff --git a/configs/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes.py b/configs/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes.py
new file mode 100644
index 0000000000..1955c91e05
--- /dev/null
+++ b/configs/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes.py
@@ -0,0 +1,10 @@
+_base_ = './pidnet-s_2xb6-120k_1024x1024-cityscapes.py'
+checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/pidnet/pidnet-l_imagenet1k_20230306-67889109.pth' # noqa
+model = dict(
+ backbone=dict(
+ channels=64,
+ ppm_channels=112,
+ num_stem_blocks=3,
+ num_branch_blocks=4,
+ init_cfg=dict(checkpoint=checkpoint_file)),
+ decode_head=dict(in_channels=256, channels=256))
diff --git a/configs/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes.py b/configs/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes.py
new file mode 100644
index 0000000000..38a69c1c45
--- /dev/null
+++ b/configs/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes.py
@@ -0,0 +1,5 @@
+_base_ = './pidnet-s_2xb6-120k_1024x1024-cityscapes.py'
+checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/pidnet/pidnet-m_imagenet1k_20230306-39893c52.pth' # noqa
+model = dict(
+ backbone=dict(channels=64, init_cfg=dict(checkpoint=checkpoint_file)),
+ decode_head=dict(in_channels=256))
diff --git a/configs/pidnet/pidnet-s_2xb6-120k_1024x1024-cityscapes.py b/configs/pidnet/pidnet-s_2xb6-120k_1024x1024-cityscapes.py
new file mode 100644
index 0000000000..f70ca4287a
--- /dev/null
+++ b/configs/pidnet/pidnet-s_2xb6-120k_1024x1024-cityscapes.py
@@ -0,0 +1,113 @@
+_base_ = [
+ '../_base_/datasets/cityscapes_1024x1024.py',
+ '../_base_/default_runtime.py'
+]
+
+# The class_weight is borrowed from https://github.com/openseg-group/OCNet.pytorch/issues/14 # noqa
+# Licensed under the MIT License
+class_weight = [
+ 0.8373, 0.918, 0.866, 1.0345, 1.0166, 0.9969, 0.9754, 1.0489, 0.8786,
+ 1.0023, 0.9539, 0.9843, 1.1116, 0.9037, 1.0865, 1.0955, 1.0865, 1.1529,
+ 1.0507
+]
+checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/pidnet/pidnet-s_imagenet1k_20230306-715e6273.pth' # noqa
+crop_size = (1024, 1024)
+data_preprocessor = dict(
+ type='SegDataPreProcessor',
+ mean=[123.675, 116.28, 103.53],
+ std=[58.395, 57.12, 57.375],
+ bgr_to_rgb=True,
+ pad_val=0,
+ seg_pad_val=255,
+ size=crop_size)
+norm_cfg = dict(type='SyncBN', requires_grad=True)
+model = dict(
+ type='EncoderDecoder',
+ data_preprocessor=data_preprocessor,
+ backbone=dict(
+ type='PIDNet',
+ in_channels=3,
+ channels=32,
+ ppm_channels=96,
+ num_stem_blocks=2,
+ num_branch_blocks=3,
+ align_corners=False,
+ norm_cfg=norm_cfg,
+ act_cfg=dict(type='ReLU', inplace=True),
+ init_cfg=dict(type='Pretrained', checkpoint=checkpoint_file)),
+ decode_head=dict(
+ type='PIDHead',
+ in_channels=128,
+ channels=128,
+ num_classes=19,
+ norm_cfg=norm_cfg,
+ act_cfg=dict(type='ReLU', inplace=True),
+ align_corners=True,
+ loss_decode=[
+ dict(
+ type='CrossEntropyLoss',
+ use_sigmoid=False,
+ class_weight=class_weight,
+ loss_weight=0.4),
+ dict(
+ type='OhemCrossEntropy',
+ thres=0.9,
+ min_kept=131072,
+ class_weight=class_weight,
+ loss_weight=1.0),
+ dict(type='BoundaryLoss', loss_weight=20.0),
+ dict(
+ type='OhemCrossEntropy',
+ thres=0.9,
+ min_kept=131072,
+ class_weight=class_weight,
+ loss_weight=1.0)
+ ]),
+ train_cfg=dict(),
+ test_cfg=dict(mode='whole'))
+
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations'),
+ dict(
+ type='RandomResize',
+ scale=(2048, 1024),
+ ratio_range=(0.5, 2.0),
+ keep_ratio=True),
+ dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
+ dict(type='RandomFlip', prob=0.5),
+ dict(type='PhotoMetricDistortion'),
+ dict(type='GenerateEdge', edge_width=4),
+ dict(type='PackSegInputs')
+]
+train_dataloader = dict(batch_size=6, dataset=dict(pipeline=train_pipeline))
+
+iters = 120000
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
+optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer, clip_grad=None)
+# learning policy
+param_scheduler = [
+ dict(
+ type='PolyLR',
+ eta_min=0,
+ power=0.9,
+ begin=0,
+ end=iters,
+ by_epoch=False)
+]
+# training schedule for 120k
+train_cfg = dict(
+ type='IterBasedTrainLoop', max_iters=iters, val_interval=iters // 10)
+val_cfg = dict(type='ValLoop')
+test_cfg = dict(type='TestLoop')
+default_hooks = dict(
+ timer=dict(type='IterTimerHook'),
+ logger=dict(type='LoggerHook', interval=50, log_metric_by_epoch=False),
+ param_scheduler=dict(type='ParamSchedulerHook'),
+ checkpoint=dict(
+ type='CheckpointHook', by_epoch=False, interval=iters // 10),
+ sampler_seed=dict(type='DistSamplerSeedHook'),
+ visualization=dict(type='SegVisualizationHook'))
+
+randomness = dict(seed=304)
diff --git a/configs/pidnet/pidnet.yml b/configs/pidnet/pidnet.yml
new file mode 100644
index 0000000000..7fe818ca7c
--- /dev/null
+++ b/configs/pidnet/pidnet.yml
@@ -0,0 +1,81 @@
+Collections:
+- Name: PIDNet
+ Metadata:
+ Training Data:
+ - Cityscapes
+ Paper:
+ URL: https://arxiv.org/pdf/2206.02066.pdf
+ Title: 'PIDNet: A Real-time Semantic Segmentation Network Inspired from PID Controller'
+ README: configs/pidnet/README.md
+ Code:
+ URL: https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/mmseg/models/backbones/pidnet.py
+ Version: dev-1.x
+ Converted From:
+ Code: https://github.com/XuJiacong/PIDNet
+Models:
+- Name: pidnet-s_2xb6-120k_1024x1024-cityscapes
+ In Collection: PIDNet
+ Metadata:
+ backbone: PIDNet-S
+ crop size: (1024,1024)
+ lr schd: 120000
+ inference time (ms/im):
+ - value: 12.37
+ hardware: V100
+ backend: PyTorch
+ batch size: 1
+ mode: FP32
+ resolution: (1024,1024)
+ Training Memory (GB): 3.38
+ Results:
+ - Task: Semantic Segmentation
+ Dataset: Cityscapes
+ Metrics:
+ mIoU: 78.74
+ mIoU(ms+flip): 80.87
+ Config: configs/pidnet/pidnet-s_2xb6-120k_1024x1024-cityscapes.py
+ Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-s_2xb6-120k_1024x1024-cityscapes/pidnet-s_2xb6-120k_1024x1024-cityscapes_20230302_191700-bb8e3bcc.pth
+- Name: pidnet-m_2xb6-120k_1024x1024-cityscapes
+ In Collection: PIDNet
+ Metadata:
+ backbone: PIDNet-M
+ crop size: (1024,1024)
+ lr schd: 120000
+ inference time (ms/im):
+ - value: 13.89
+ hardware: V100
+ backend: PyTorch
+ batch size: 1
+ mode: FP32
+ resolution: (1024,1024)
+ Training Memory (GB): 5.14
+ Results:
+ - Task: Semantic Segmentation
+ Dataset: Cityscapes
+ Metrics:
+ mIoU: 80.22
+ mIoU(ms+flip): 82.05
+ Config: configs/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes.py
+ Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes/pidnet-m_2xb6-120k_1024x1024-cityscapes_20230301_143452-f9bcdbf3.pth
+- Name: pidnet-l_2xb6-120k_1024x1024-cityscapes
+ In Collection: PIDNet
+ Metadata:
+ backbone: PIDNet-L
+ crop size: (1024,1024)
+ lr schd: 120000
+ inference time (ms/im):
+ - value: 16.65
+ hardware: V100
+ backend: PyTorch
+ batch size: 1
+ mode: FP32
+ resolution: (1024,1024)
+ Training Memory (GB): 5.83
+ Results:
+ - Task: Semantic Segmentation
+ Dataset: Cityscapes
+ Metrics:
+ mIoU: 80.89
+ mIoU(ms+flip): 82.37
+ Config: configs/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes.py
+ Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes/pidnet-l_2xb6-120k_1024x1024-cityscapes_20230303_114514-0783ca6b.pth
diff --git a/mmseg/models/backbones/__init__.py b/mmseg/models/backbones/__init__.py
index bda42bb692..909b54f3ec 100644
--- a/mmseg/models/backbones/__init__.py
+++ b/mmseg/models/backbones/__init__.py
@@ -11,6 +11,7 @@
from .mit import MixVisionTransformer
from .mobilenet_v2 import MobileNetV2
from .mobilenet_v3 import MobileNetV3
+from .pidnet import PIDNet
from .resnest import ResNeSt
from .resnet import ResNet, ResNetV1c, ResNetV1d
from .resnext import ResNeXt
@@ -26,5 +27,5 @@
'ResNeSt', 'MobileNetV2', 'UNet', 'CGNet', 'MobileNetV3',
'VisionTransformer', 'SwinTransformer', 'MixVisionTransformer',
'BiSeNetV1', 'BiSeNetV2', 'ICNet', 'TIMMBackbone', 'ERFNet', 'PCPVT',
- 'SVT', 'STDCNet', 'STDCContextPathNet', 'BEiT', 'MAE'
+ 'SVT', 'STDCNet', 'STDCContextPathNet', 'BEiT', 'MAE', 'PIDNet'
]
diff --git a/mmseg/models/backbones/pidnet.py b/mmseg/models/backbones/pidnet.py
new file mode 100644
index 0000000000..0b711a3737
--- /dev/null
+++ b/mmseg/models/backbones/pidnet.py
@@ -0,0 +1,522 @@
+# Copyright (c) OpenMMLab. All rights reserved.
+from typing import Tuple, Union
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from mmcv.cnn import ConvModule
+from mmengine.model import BaseModule
+from mmengine.runner import CheckpointLoader
+from torch import Tensor
+
+from mmseg.registry import MODELS
+from mmseg.utils import OptConfigType
+from ..utils import DAPPM, PAPPM, BasicBlock, Bottleneck
+
+
+class PagFM(BaseModule):
+ """Pixel-attention-guided fusion module.
+
+ Args:
+ in_channels (int): The number of input channels.
+ channels (int): The number of channels.
+ after_relu (bool): Whether to use ReLU before attention.
+ Default: False.
+ with_channel (bool): Whether to use channel attention.
+ Default: False.
+ upsample_mode (str): The mode of upsample. Default: 'bilinear'.
+ norm_cfg (dict): Config dict for normalization layer.
+ Default: dict(type='BN').
+ act_cfg (dict): Config dict for activation layer.
+ Default: dict(typ='ReLU', inplace=True).
+ init_cfg (dict): Config dict for initialization. Default: None.
+ """
+
+ def __init__(self,
+ in_channels: int,
+ channels: int,
+ after_relu: bool = False,
+ with_channel: bool = False,
+ upsample_mode: str = 'bilinear',
+ norm_cfg: OptConfigType = dict(type='BN'),
+ act_cfg: OptConfigType = dict(typ='ReLU', inplace=True),
+ init_cfg: OptConfigType = None):
+ super().__init__(init_cfg)
+ self.after_relu = after_relu
+ self.with_channel = with_channel
+ self.upsample_mode = upsample_mode
+ self.f_i = ConvModule(
+ in_channels, channels, 1, norm_cfg=norm_cfg, act_cfg=None)
+ self.f_p = ConvModule(
+ in_channels, channels, 1, norm_cfg=norm_cfg, act_cfg=None)
+ if with_channel:
+ self.up = ConvModule(
+ channels, in_channels, 1, norm_cfg=norm_cfg, act_cfg=None)
+ if after_relu:
+ self.relu = MODELS.build(act_cfg)
+
+ def forward(self, x_p: Tensor, x_i: Tensor) -> Tensor:
+ """Forward function.
+
+ Args:
+ x_p (Tensor): The featrue map from P branch.
+ x_i (Tensor): The featrue map from I branch.
+
+ Returns:
+ Tensor: The feature map with pixel-attention-guided fusion.
+ """
+ if self.after_relu:
+ x_p = self.relu(x_p)
+ x_i = self.relu(x_i)
+
+ f_i = self.f_i(x_i)
+ f_i = F.interpolate(
+ f_i,
+ size=x_p.shape[2:],
+ mode=self.upsample_mode,
+ align_corners=False)
+
+ f_p = self.f_p(x_p)
+
+ if self.with_channel:
+ sigma = torch.sigmoid(self.up(f_p * f_i))
+ else:
+ sigma = torch.sigmoid(torch.sum(f_p * f_i, dim=1).unsqueeze(1))
+
+ x_i = F.interpolate(
+ x_i,
+ size=x_p.shape[2:],
+ mode=self.upsample_mode,
+ align_corners=False)
+
+ out = sigma * x_i + (1 - sigma) * x_p
+ return out
+
+
+class Bag(BaseModule):
+ """Boundary-attention-guided fusion module.
+
+ Args:
+ in_channels (int): The number of input channels.
+ out_channels (int): The number of output channels.
+ kernel_size (int): The kernel size of the convolution. Default: 3.
+ padding (int): The padding of the convolution. Default: 1.
+ norm_cfg (dict): Config dict for normalization layer.
+ Default: dict(type='BN').
+ act_cfg (dict): Config dict for activation layer.
+ Default: dict(type='ReLU', inplace=True).
+ conv_cfg (dict): Config dict for convolution layer.
+ Default: dict(order=('norm', 'act', 'conv')).
+ init_cfg (dict): Config dict for initialization. Default: None.
+ """
+
+ def __init__(self,
+ in_channels: int,
+ out_channels: int,
+ kernel_size: int = 3,
+ padding: int = 1,
+ norm_cfg: OptConfigType = dict(type='BN'),
+ act_cfg: OptConfigType = dict(type='ReLU', inplace=True),
+ conv_cfg: OptConfigType = dict(order=('norm', 'act', 'conv')),
+ init_cfg: OptConfigType = None):
+ super().__init__(init_cfg)
+
+ self.conv = ConvModule(
+ in_channels,
+ out_channels,
+ kernel_size,
+ padding=padding,
+ norm_cfg=norm_cfg,
+ act_cfg=act_cfg,
+ **conv_cfg)
+
+ def forward(self, x_p: Tensor, x_i: Tensor, x_d: Tensor) -> Tensor:
+ """Forward function.
+
+ Args:
+ x_p (Tensor): The featrue map from P branch.
+ x_i (Tensor): The featrue map from I branch.
+ x_d (Tensor): The featrue map from D branch.
+
+ Returns:
+ Tensor: The feature map with boundary-attention-guided fusion.
+ """
+ sigma = torch.sigmoid(x_d)
+ return self.conv(sigma * x_p + (1 - sigma) * x_i)
+
+
+class LightBag(BaseModule):
+ """Light Boundary-attention-guided fusion module.
+
+ Args:
+ in_channels (int): The number of input channels.
+ out_channels (int): The number of output channels.
+ norm_cfg (dict): Config dict for normalization layer.
+ Default: dict(type='BN').
+ act_cfg (dict): Config dict for activation layer. Default: None.
+ init_cfg (dict): Config dict for initialization. Default: None.
+ """
+
+ def __init__(self,
+ in_channels: int,
+ out_channels: int,
+ norm_cfg: OptConfigType = dict(type='BN'),
+ act_cfg: OptConfigType = None,
+ init_cfg: OptConfigType = None):
+ super().__init__(init_cfg)
+ self.f_p = ConvModule(
+ in_channels,
+ out_channels,
+ kernel_size=1,
+ norm_cfg=norm_cfg,
+ act_cfg=act_cfg)
+ self.f_i = ConvModule(
+ in_channels,
+ out_channels,
+ kernel_size=1,
+ norm_cfg=norm_cfg,
+ act_cfg=act_cfg)
+
+ def forward(self, x_p: Tensor, x_i: Tensor, x_d: Tensor) -> Tensor:
+ """Forward function.
+ Args:
+ x_p (Tensor): The featrue map from P branch.
+ x_i (Tensor): The featrue map from I branch.
+ x_d (Tensor): The featrue map from D branch.
+
+ Returns:
+ Tensor: The feature map with light boundary-attention-guided
+ fusion.
+ """
+ sigma = torch.sigmoid(x_d)
+
+ f_p = self.f_p((1 - sigma) * x_i + x_p)
+ f_i = self.f_i(x_i + sigma * x_p)
+
+ return f_p + f_i
+
+
+@MODELS.register_module()
+class PIDNet(BaseModule):
+ """PIDNet backbone.
+
+ This backbone is the implementation of `PIDNet: A Real-time Semantic
+ Segmentation Network Inspired from PID Controller
+ `_.
+ Modified from https://github.com/XuJiacong/PIDNet.
+
+ Licensed under the MIT License.
+
+ Args:
+ in_channels (int): The number of input channels. Default: 3.
+ channels (int): The number of channels in the stem layer. Default: 64.
+ ppm_channels (int): The number of channels in the PPM layer.
+ Default: 96.
+ num_stem_blocks (int): The number of blocks in the stem layer.
+ Default: 2.
+ num_branch_blocks (int): The number of blocks in the branch layer.
+ Default: 3.
+ align_corners (bool): The align_corners argument of F.interpolate.
+ Default: False.
+ norm_cfg (dict): Config dict for normalization layer.
+ Default: dict(type='BN').
+ act_cfg (dict): Config dict for activation layer.
+ Default: dict(type='ReLU', inplace=True).
+ init_cfg (dict): Config dict for initialization. Default: None.
+ """
+
+ def __init__(self,
+ in_channels: int = 3,
+ channels: int = 64,
+ ppm_channels: int = 96,
+ num_stem_blocks: int = 2,
+ num_branch_blocks: int = 3,
+ align_corners: bool = False,
+ norm_cfg: OptConfigType = dict(type='BN'),
+ act_cfg: OptConfigType = dict(type='ReLU', inplace=True),
+ init_cfg: OptConfigType = None,
+ **kwargs):
+ super().__init__(init_cfg)
+ self.norm_cfg = norm_cfg
+ self.act_cfg = act_cfg
+ self.align_corners = align_corners
+
+ # stem layer
+ self.stem = self._make_stem_layer(in_channels, channels,
+ num_stem_blocks)
+ self.relu = nn.ReLU()
+
+ # I Branch
+ self.i_branch_layers = nn.ModuleList()
+ for i in range(3):
+ self.i_branch_layers.append(
+ self._make_layer(
+ block=BasicBlock if i < 2 else Bottleneck,
+ in_channels=channels * 2**(i + 1),
+ channels=channels * 8 if i > 0 else channels * 4,
+ num_blocks=num_branch_blocks if i < 2 else 2,
+ stride=2))
+
+ # P Branch
+ self.p_branch_layers = nn.ModuleList()
+ for i in range(3):
+ self.p_branch_layers.append(
+ self._make_layer(
+ block=BasicBlock if i < 2 else Bottleneck,
+ in_channels=channels * 2,
+ channels=channels * 2,
+ num_blocks=num_stem_blocks if i < 2 else 1))
+ self.compression_1 = ConvModule(
+ channels * 4,
+ channels * 2,
+ kernel_size=1,
+ bias=False,
+ norm_cfg=norm_cfg,
+ act_cfg=None)
+ self.compression_2 = ConvModule(
+ channels * 8,
+ channels * 2,
+ kernel_size=1,
+ bias=False,
+ norm_cfg=norm_cfg,
+ act_cfg=None)
+ self.pag_1 = PagFM(channels * 2, channels)
+ self.pag_2 = PagFM(channels * 2, channels)
+
+ # D Branch
+ if num_stem_blocks == 2:
+ self.d_branch_layers = nn.ModuleList([
+ self._make_single_layer(BasicBlock, channels * 2, channels),
+ self._make_layer(Bottleneck, channels, channels, 1)
+ ])
+ channel_expand = 1
+ spp_module = PAPPM
+ dfm_module = LightBag
+ act_cfg_dfm = None
+ else:
+ self.d_branch_layers = nn.ModuleList([
+ self._make_single_layer(BasicBlock, channels * 2,
+ channels * 2),
+ self._make_single_layer(BasicBlock, channels * 2, channels * 2)
+ ])
+ channel_expand = 2
+ spp_module = DAPPM
+ dfm_module = Bag
+ act_cfg_dfm = act_cfg
+
+ self.diff_1 = ConvModule(
+ channels * 4,
+ channels * channel_expand,
+ kernel_size=3,
+ padding=1,
+ bias=False,
+ norm_cfg=norm_cfg,
+ act_cfg=None)
+ self.diff_2 = ConvModule(
+ channels * 8,
+ channels * 2,
+ kernel_size=3,
+ padding=1,
+ bias=False,
+ norm_cfg=norm_cfg,
+ act_cfg=None)
+
+ self.spp = spp_module(
+ channels * 16, ppm_channels, channels * 4, num_scales=5)
+ self.dfm = dfm_module(
+ channels * 4, channels * 4, norm_cfg=norm_cfg, act_cfg=act_cfg_dfm)
+
+ self.d_branch_layers.append(
+ self._make_layer(Bottleneck, channels * 2, channels * 2, 1))
+
+ def _make_stem_layer(self, in_channels: int, channels: int,
+ num_blocks: int) -> nn.Sequential:
+ """Make stem layer.
+
+ Args:
+ in_channels (int): Number of input channels.
+ channels (int): Number of output channels.
+ num_blocks (int): Number of blocks.
+
+ Returns:
+ nn.Sequential: The stem layer.
+ """
+
+ layers = [
+ ConvModule(
+ in_channels,
+ channels,
+ kernel_size=3,
+ stride=2,
+ padding=1,
+ norm_cfg=self.norm_cfg,
+ act_cfg=self.act_cfg),
+ ConvModule(
+ channels,
+ channels,
+ kernel_size=3,
+ stride=2,
+ padding=1,
+ norm_cfg=self.norm_cfg,
+ act_cfg=self.act_cfg)
+ ]
+
+ layers.append(
+ self._make_layer(BasicBlock, channels, channels, num_blocks))
+ layers.append(nn.ReLU())
+ layers.append(
+ self._make_layer(
+ BasicBlock, channels, channels * 2, num_blocks, stride=2))
+ layers.append(nn.ReLU())
+
+ return nn.Sequential(*layers)
+
+ def _make_layer(self,
+ block: BasicBlock,
+ in_channels: int,
+ channels: int,
+ num_blocks: int,
+ stride: int = 1) -> nn.Sequential:
+ """Make layer for PIDNet backbone.
+ Args:
+ block (BasicBlock): Basic block.
+ in_channels (int): Number of input channels.
+ channels (int): Number of output channels.
+ num_blocks (int): Number of blocks.
+ stride (int): Stride of the first block. Default: 1.
+
+ Returns:
+ nn.Sequential: The Branch Layer.
+ """
+ downsample = None
+ if stride != 1 or in_channels != channels * block.expansion:
+ downsample = ConvModule(
+ in_channels,
+ channels * block.expansion,
+ kernel_size=1,
+ stride=stride,
+ norm_cfg=self.norm_cfg,
+ act_cfg=None)
+
+ layers = [block(in_channels, channels, stride, downsample)]
+ in_channels = channels * block.expansion
+ for i in range(1, num_blocks):
+ layers.append(
+ block(
+ in_channels,
+ channels,
+ stride=1,
+ act_cfg_out=None if i == num_blocks - 1 else self.act_cfg))
+ return nn.Sequential(*layers)
+
+ def _make_single_layer(self,
+ block: Union[BasicBlock, Bottleneck],
+ in_channels: int,
+ channels: int,
+ stride: int = 1) -> nn.Module:
+ """Make single layer for PIDNet backbone.
+ Args:
+ block (BasicBlock or Bottleneck): Basic block or Bottleneck.
+ in_channels (int): Number of input channels.
+ channels (int): Number of output channels.
+ stride (int): Stride of the first block. Default: 1.
+
+ Returns:
+ nn.Module
+ """
+
+ downsample = None
+ if stride != 1 or in_channels != channels * block.expansion:
+ downsample = ConvModule(
+ in_channels,
+ channels * block.expansion,
+ kernel_size=1,
+ stride=stride,
+ norm_cfg=self.norm_cfg,
+ act_cfg=None)
+ return block(
+ in_channels, channels, stride, downsample, act_cfg_out=None)
+
+ def init_weights(self):
+ """Initialize the weights in backbone.
+
+ Since the D branch is not initialized by the pre-trained model, we
+ initialize it with the same method as the ResNet.
+ """
+ for m in self.modules():
+ if isinstance(m, nn.Conv2d):
+ nn.init.kaiming_normal_(
+ m.weight, mode='fan_out', nonlinearity='relu')
+ elif isinstance(m, nn.BatchNorm2d):
+ nn.init.constant_(m.weight, 1)
+ nn.init.constant_(m.bias, 0)
+ if self.init_cfg is not None:
+ assert 'checkpoint' in self.init_cfg, f'Only support ' \
+ f'specify `Pretrained` in ' \
+ f'`init_cfg` in ' \
+ f'{self.__class__.__name__} '
+ ckpt = CheckpointLoader.load_checkpoint(
+ self.init_cfg['checkpoint'], map_location='cpu')
+ self.load_state_dict(ckpt, strict=False)
+
+ def forward(self, x: Tensor) -> Union[Tensor, Tuple[Tensor]]:
+ """Forward function.
+
+ Args:
+ x (Tensor): Input tensor with shape (B, C, H, W).
+
+ Returns:
+ Tensor or tuple[Tensor]: If self.training is True, return
+ tuple[Tensor], else return Tensor.
+ """
+ w_out = x.shape[-1] // 8
+ h_out = x.shape[-2] // 8
+
+ # stage 0-2
+ x = self.stem(x)
+
+ # stage 3
+ x_i = self.relu(self.i_branch_layers[0](x))
+ x_p = self.p_branch_layers[0](x)
+ x_d = self.d_branch_layers[0](x)
+
+ comp_i = self.compression_1(x_i)
+ x_p = self.pag_1(x_p, comp_i)
+ diff_i = self.diff_1(x_i)
+ x_d += F.interpolate(
+ diff_i,
+ size=[h_out, w_out],
+ mode='bilinear',
+ align_corners=self.align_corners)
+ if self.training:
+ temp_p = x_p.clone()
+
+ # stage 4
+ x_i = self.relu(self.i_branch_layers[1](x_i))
+ x_p = self.p_branch_layers[1](self.relu(x_p))
+ x_d = self.d_branch_layers[1](self.relu(x_d))
+
+ comp_i = self.compression_2(x_i)
+ x_p = self.pag_2(x_p, comp_i)
+ diff_i = self.diff_2(x_i)
+ x_d += F.interpolate(
+ diff_i,
+ size=[h_out, w_out],
+ mode='bilinear',
+ align_corners=self.align_corners)
+ if self.training:
+ temp_d = x_d.clone()
+
+ # stage 5
+ x_i = self.i_branch_layers[2](x_i)
+ x_p = self.p_branch_layers[2](self.relu(x_p))
+ x_d = self.d_branch_layers[2](self.relu(x_d))
+
+ x_i = self.spp(x_i)
+ x_i = F.interpolate(
+ x_i,
+ size=[h_out, w_out],
+ mode='bilinear',
+ align_corners=self.align_corners)
+ out = self.dfm(x_p, x_i, x_d)
+ return (temp_p, out, temp_d) if self.training else out
diff --git a/mmseg/models/decode_heads/__init__.py b/mmseg/models/decode_heads/__init__.py
index b18152d7d9..e6eeafc248 100644
--- a/mmseg/models/decode_heads/__init__.py
+++ b/mmseg/models/decode_heads/__init__.py
@@ -19,6 +19,7 @@
from .maskformer_head import MaskFormerHead
from .nl_head import NLHead
from .ocr_head import OCRHead
+from .pid_head import PIDHead
from .point_head import PointHead
from .psa_head import PSAHead
from .psp_head import PSPHead
@@ -38,5 +39,6 @@
'PointHead', 'APCHead', 'DMHead', 'LRASPPHead', 'SETRUPHead',
'SETRMLAHead', 'DPTHead', 'SETRMLAHead', 'SegmenterMaskTransformerHead',
'SegformerHead', 'ISAHead', 'STDCHead', 'IterativeDecodeHead',
- 'KernelUpdateHead', 'KernelUpdator', 'MaskFormerHead', 'Mask2FormerHead'
+ 'KernelUpdateHead', 'KernelUpdator', 'MaskFormerHead', 'Mask2FormerHead',
+ 'PIDHead'
]
diff --git a/mmseg/models/decode_heads/pid_head.py b/mmseg/models/decode_heads/pid_head.py
new file mode 100644
index 0000000000..c092cb32d0
--- /dev/null
+++ b/mmseg/models/decode_heads/pid_head.py
@@ -0,0 +1,183 @@
+# Copyright (c) OpenMMLab. All rights reserved.
+from typing import Optional, Tuple, Union
+
+import torch
+import torch.nn as nn
+from mmcv.cnn import ConvModule, build_activation_layer, build_norm_layer
+from mmengine.model import BaseModule
+from torch import Tensor
+
+from mmseg.models.decode_heads.decode_head import BaseDecodeHead
+from mmseg.models.losses import accuracy
+from mmseg.models.utils import resize
+from mmseg.registry import MODELS
+from mmseg.utils import OptConfigType, SampleList
+
+
+class BasePIDHead(BaseModule):
+ """Base class for PID head.
+
+ Args:
+ in_channels (int): Number of input channels.
+ channels (int): Number of output channels.
+ norm_cfg (dict): Config dict for normalization layer.
+ Default: dict(type='BN').
+ act_cfg (dict): Config dict for activation layer.
+ Default: dict(type='ReLU', inplace=True).
+ init_cfg (dict or list[dict], optional): Init config dict.
+ Default: None.
+ """
+
+ def __init__(self,
+ in_channels: int,
+ channels: int,
+ norm_cfg: OptConfigType = dict(type='BN'),
+ act_cfg: OptConfigType = dict(type='ReLU', inplace=True),
+ init_cfg: OptConfigType = None):
+ super().__init__(init_cfg)
+ self.conv = ConvModule(
+ in_channels,
+ channels,
+ kernel_size=3,
+ padding=1,
+ norm_cfg=norm_cfg,
+ act_cfg=act_cfg,
+ order=('norm', 'act', 'conv'))
+ _, self.norm = build_norm_layer(norm_cfg, num_features=channels)
+ self.act = build_activation_layer(act_cfg)
+
+ def forward(self, x: Tensor, cls_seg: Optional[nn.Module]) -> Tensor:
+ """Forward function.
+ Args:
+ x (Tensor): Input tensor.
+ cls_seg (nn.Module, optional): The classification head.
+
+ Returns:
+ Tensor: Output tensor.
+ """
+ x = self.conv(x)
+ x = self.norm(x)
+ x = self.act(x)
+ if cls_seg is not None:
+ x = cls_seg(x)
+ return x
+
+
+@MODELS.register_module()
+class PIDHead(BaseDecodeHead):
+ """Decode head for PIDNet.
+
+ Args:
+ in_channels (int): Number of input channels.
+ channels (int): Number of output channels.
+ num_classes (int): Number of classes.
+ norm_cfg (dict): Config dict for normalization layer.
+ Default: dict(type='BN').
+ act_cfg (dict): Config dict for activation layer.
+ Default: dict(type='ReLU', inplace=True).
+ """
+
+ def __init__(self,
+ in_channels: int,
+ channels: int,
+ num_classes: int,
+ norm_cfg: OptConfigType = dict(type='BN'),
+ act_cfg: OptConfigType = dict(type='ReLU', inplace=True),
+ **kwargs):
+ super().__init__(
+ in_channels,
+ channels,
+ num_classes=num_classes,
+ norm_cfg=norm_cfg,
+ act_cfg=act_cfg,
+ **kwargs)
+ self.i_head = BasePIDHead(in_channels, channels, norm_cfg, act_cfg)
+ self.p_head = BasePIDHead(in_channels // 2, channels, norm_cfg,
+ act_cfg)
+ self.d_head = BasePIDHead(
+ in_channels // 2,
+ in_channels // 4,
+ norm_cfg,
+ )
+ self.p_cls_seg = nn.Conv2d(channels, self.out_channels, kernel_size=1)
+ self.d_cls_seg = nn.Conv2d(in_channels // 4, 1, kernel_size=1)
+
+ def init_weights(self):
+ for m in self.modules():
+ if isinstance(m, nn.Conv2d):
+ nn.init.kaiming_normal_(
+ m.weight, mode='fan_out', nonlinearity='relu')
+ elif isinstance(m, nn.BatchNorm2d):
+ nn.init.constant_(m.weight, 1)
+ nn.init.constant_(m.bias, 0)
+
+ def forward(
+ self,
+ inputs: Union[Tensor,
+ Tuple[Tensor]]) -> Union[Tensor, Tuple[Tensor]]:
+ """Forward function.
+ Args:
+ inputs (Tensor | tuple[Tensor]): Input tensor or tuple of
+ Tensor. When training, the input is a tuple of three tensors,
+ (p_feat, i_feat, d_feat), and the output is a tuple of three
+ tensors, (p_seg_logit, i_seg_logit, d_seg_logit).
+ When inference, only the head of integral branch is used, and
+ input is a tensor of integral feature map, and the output is
+ the segmentation logit.
+
+ Returns:
+ Tensor | tuple[Tensor]: Output tensor or tuple of tensors.
+ """
+ if self.training:
+ x_p, x_i, x_d = inputs
+ x_p = self.p_head(x_p, self.p_cls_seg)
+ x_i = self.i_head(x_i, self.cls_seg)
+ x_d = self.d_head(x_d, self.d_cls_seg)
+ return x_p, x_i, x_d
+ else:
+ return self.i_head(inputs, self.cls_seg)
+
+ def _stack_batch_gt(self, batch_data_samples: SampleList) -> Tuple[Tensor]:
+ gt_semantic_segs = [
+ data_sample.gt_sem_seg.data for data_sample in batch_data_samples
+ ]
+ gt_edge_segs = [
+ data_sample.gt_edge_map.data for data_sample in batch_data_samples
+ ]
+ gt_sem_segs = torch.stack(gt_semantic_segs, dim=0)
+ gt_edge_segs = torch.stack(gt_edge_segs, dim=0)
+ return gt_sem_segs, gt_edge_segs
+
+ def loss_by_feat(self, seg_logits: Tuple[Tensor],
+ batch_data_samples: SampleList) -> dict:
+ loss = dict()
+ p_logit, i_logit, d_logit = seg_logits
+ sem_label, bd_label = self._stack_batch_gt(batch_data_samples)
+ p_logit = resize(
+ input=p_logit,
+ size=sem_label.shape[2:],
+ mode='bilinear',
+ align_corners=self.align_corners)
+ i_logit = resize(
+ input=i_logit,
+ size=sem_label.shape[2:],
+ mode='bilinear',
+ align_corners=self.align_corners)
+ d_logit = resize(
+ input=d_logit,
+ size=bd_label.shape[2:],
+ mode='bilinear',
+ align_corners=self.align_corners)
+ sem_label = sem_label.squeeze(1)
+ bd_label = bd_label.squeeze(1)
+ loss['loss_sem_p'] = self.loss_decode[0](
+ p_logit, sem_label, ignore_index=self.ignore_index)
+ loss['loss_sem_i'] = self.loss_decode[1](i_logit, sem_label)
+ loss['loss_bd'] = self.loss_decode[2](d_logit, bd_label)
+ filler = torch.ones_like(sem_label) * self.ignore_index
+ sem_bd_label = torch.where(
+ torch.sigmoid(d_logit[:, 0, :, :]) > 0.8, sem_label, filler)
+ loss['loss_sem_bd'] = self.loss_decode[3](i_logit, sem_bd_label)
+ loss['acc_seg'] = accuracy(
+ i_logit, sem_label, ignore_index=self.ignore_index)
+ return loss
diff --git a/mmseg/models/losses/__init__.py b/mmseg/models/losses/__init__.py
index d7e019747d..2f7e39cb28 100644
--- a/mmseg/models/losses/__init__.py
+++ b/mmseg/models/losses/__init__.py
@@ -1,10 +1,12 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .accuracy import Accuracy, accuracy
+from .boundary_loss import BoundaryLoss
from .cross_entropy_loss import (CrossEntropyLoss, binary_cross_entropy,
cross_entropy, mask_cross_entropy)
from .dice_loss import DiceLoss
from .focal_loss import FocalLoss
from .lovasz_loss import LovaszLoss
+from .ohem_cross_entropy_loss import OhemCrossEntropy
from .tversky_loss import TverskyLoss
from .utils import reduce_loss, weight_reduce_loss, weighted_loss
@@ -12,5 +14,5 @@
'accuracy', 'Accuracy', 'cross_entropy', 'binary_cross_entropy',
'mask_cross_entropy', 'CrossEntropyLoss', 'reduce_loss',
'weight_reduce_loss', 'weighted_loss', 'LovaszLoss', 'DiceLoss',
- 'FocalLoss', 'TverskyLoss'
+ 'FocalLoss', 'TverskyLoss', 'OhemCrossEntropy', 'BoundaryLoss'
]
diff --git a/mmseg/models/losses/boundary_loss.py b/mmseg/models/losses/boundary_loss.py
new file mode 100644
index 0000000000..e86b850d87
--- /dev/null
+++ b/mmseg/models/losses/boundary_loss.py
@@ -0,0 +1,62 @@
+# Copyright (c) OpenMMLab. All rights reserved.
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from torch import Tensor
+
+from mmseg.registry import MODELS
+
+
+@MODELS.register_module()
+class BoundaryLoss(nn.Module):
+ """Boundary loss.
+
+ This function is modified from
+ `PIDNet `_. # noqa
+ Licensed under the MIT License.
+
+
+ Args:
+ loss_weight (float): Weight of the loss. Defaults to 1.0.
+ loss_name (str): Name of the loss item. If you want this loss
+ item to be included into the backward graph, `loss_` must be the
+ prefix of the name. Defaults to 'loss_boundary'.
+ """
+
+ def __init__(self,
+ loss_weight: float = 1.0,
+ loss_name: str = 'loss_boundary'):
+ super().__init__()
+ self.loss_weight = loss_weight
+ self.loss_name_ = loss_name
+
+ def forward(self, bd_pre: Tensor, bd_gt: Tensor) -> Tensor:
+ """Forward function.
+ Args:
+ bd_pre (Tensor): Predictions of the boundary head.
+ bd_gt (Tensor): Ground truth of the boundary.
+
+ Returns:
+ Tensor: Loss tensor.
+ """
+ log_p = bd_pre.permute(0, 2, 3, 1).contiguous().view(1, -1)
+ target_t = bd_gt.view(1, -1).float()
+
+ pos_index = (target_t == 1)
+ neg_index = (target_t == 0)
+
+ weight = torch.zeros_like(log_p)
+ pos_num = pos_index.sum()
+ neg_num = neg_index.sum()
+ sum_num = pos_num + neg_num
+ weight[pos_index] = neg_num * 1.0 / sum_num
+ weight[neg_index] = pos_num * 1.0 / sum_num
+
+ loss = F.binary_cross_entropy_with_logits(
+ log_p, target_t, weight, reduction='mean')
+
+ return self.loss_weight * loss
+
+ @property
+ def loss_name(self):
+ return self.loss_name_
diff --git a/mmseg/models/losses/ohem_cross_entropy_loss.py b/mmseg/models/losses/ohem_cross_entropy_loss.py
new file mode 100644
index 0000000000..a519b4d84e
--- /dev/null
+++ b/mmseg/models/losses/ohem_cross_entropy_loss.py
@@ -0,0 +1,94 @@
+# Copyright (c) OpenMMLab. All rights reserved.
+from typing import List, Optional, Union
+
+import torch.nn as nn
+import torch.nn.functional as F
+from torch import Tensor
+
+from mmseg.registry import MODELS
+
+
+@MODELS.register_module()
+class OhemCrossEntropy(nn.Module):
+ """OhemCrossEntropy loss.
+
+ This func is modified from
+ `PIDNet `_. # noqa
+
+ Licensed under the MIT License.
+
+ Args:
+ ignore_label (int): Labels to ignore when computing the loss.
+ Default: 255
+ thresh (float, optional): The threshold for hard example selection.
+ Below which, are prediction with low confidence. If not
+ specified, the hard examples will be pixels of top ``min_kept``
+ loss. Default: 0.7.
+ min_kept (int, optional): The minimum number of predictions to keep.
+ Default: 100000.
+ loss_weight (float): Weight of the loss. Defaults to 1.0.
+ class_weight (list[float] | str, optional): Weight of each class. If in
+ str format, read them from a file. Defaults to None.
+ loss_name (str): Name of the loss item. If you want this loss
+ item to be included into the backward graph, `loss_` must be the
+ prefix of the name. Defaults to 'loss_boundary'.
+ """
+
+ def __init__(self,
+ ignore_label: int = 255,
+ thres: float = 0.7,
+ min_kept: int = 100000,
+ loss_weight: float = 1.0,
+ class_weight: Optional[Union[List[float], str]] = None,
+ loss_name: str = 'loss_ohem'):
+ super().__init__()
+ self.thresh = thres
+ self.min_kept = max(1, min_kept)
+ self.ignore_label = ignore_label
+ self.loss_weight = loss_weight
+ self.loss_name_ = loss_name
+ self.class_weight = class_weight
+
+ def forward(self, score: Tensor, target: Tensor) -> Tensor:
+ """Forward function.
+ Args:
+ score (Tensor): Predictions of the segmentation head.
+ target (Tensor): Ground truth of the image.
+
+ Returns:
+ Tensor: Loss tensor.
+ """
+ # score: (N, C, H, W)
+ pred = F.softmax(score, dim=1)
+ if self.class_weight is not None:
+ class_weight = score.new_tensor(self.class_weight)
+ else:
+ class_weight = None
+
+ pixel_losses = F.cross_entropy(
+ score,
+ target,
+ weight=class_weight,
+ ignore_index=self.ignore_label,
+ reduction='none').contiguous().view(-1) # (N*H*W)
+ mask = target.contiguous().view(-1) != self.ignore_label # (N*H*W)
+
+ tmp_target = target.clone() # (N, H, W)
+ tmp_target[tmp_target == self.ignore_label] = 0
+ # pred: (N, C, H, W) -> (N*H*W, C)
+ pred = pred.gather(1, tmp_target.unsqueeze(1))
+ # pred: (N*H*W, C) -> (N*H*W), ind: (N*H*W)
+ pred, ind = pred.contiguous().view(-1, )[mask].contiguous().sort()
+ if pred.numel() > 0:
+ min_value = pred[min(self.min_kept, pred.numel() - 1)]
+ else:
+ return score.new_tensor(0.0)
+ threshold = max(min_value, self.thresh)
+
+ pixel_losses = pixel_losses[mask][ind]
+ pixel_losses = pixel_losses[pred < threshold]
+ return self.loss_weight * pixel_losses.mean()
+
+ @property
+ def loss_name(self):
+ return self.loss_name_
diff --git a/mmseg/models/utils/__init__.py b/mmseg/models/utils/__init__.py
index 7aaa600c2d..fc142f16fc 100644
--- a/mmseg/models/utils/__init__.py
+++ b/mmseg/models/utils/__init__.py
@@ -1,8 +1,10 @@
# Copyright (c) OpenMMLab. All rights reserved.
+from .basic_block import BasicBlock, Bottleneck
from .embed import PatchEmbed
from .encoding import Encoding
from .inverted_residual import InvertedResidual, InvertedResidualV3
from .make_divisible import make_divisible
+from .ppm import DAPPM, PAPPM
from .res_layer import ResLayer
from .se_layer import SELayer
from .self_attention_block import SelfAttentionBlock
@@ -15,5 +17,5 @@
'ResLayer', 'SelfAttentionBlock', 'make_divisible', 'InvertedResidual',
'UpConvBlock', 'InvertedResidualV3', 'SELayer', 'PatchEmbed',
'nchw_to_nlc', 'nlc_to_nchw', 'nchw2nlc2nchw', 'nlc2nchw2nlc', 'Encoding',
- 'Upsample', 'resize'
+ 'Upsample', 'resize', 'DAPPM', 'PAPPM', 'BasicBlock', 'Bottleneck'
]
diff --git a/mmseg/models/utils/basic_block.py b/mmseg/models/utils/basic_block.py
new file mode 100644
index 0000000000..4e1ad8146d
--- /dev/null
+++ b/mmseg/models/utils/basic_block.py
@@ -0,0 +1,143 @@
+# Copyright (c) OpenMMLab. All rights reserved.
+from typing import Optional
+
+import torch.nn as nn
+from mmcv.cnn import ConvModule
+from mmengine.model import BaseModule
+from torch import Tensor
+
+from mmseg.registry import MODELS
+from mmseg.utils import OptConfigType
+
+
+class BasicBlock(BaseModule):
+ """Basic block from `ResNet `_.
+
+ Args:
+ in_channels (int): Input channels.
+ channels (int): Output channels.
+ stride (int): Stride of the first block. Default: 1.
+ downsample (nn.Module, optional): Downsample operation on identity.
+ Default: None.
+ norm_cfg (dict, optional): Config dict for normalization layer.
+ Default: dict(type='BN').
+ act_cfg (dict, optional): Config dict for activation layer in
+ ConvModule. Default: dict(type='ReLU', inplace=True).
+ act_cfg_out (dict, optional): Config dict for activation layer at the
+ last of the block. Default: None.
+ init_cfg (dict, optional): Initialization config dict. Default: None.
+ """
+
+ expansion = 1
+
+ def __init__(self,
+ in_channels: int,
+ channels: int,
+ stride: int = 1,
+ downsample: nn.Module = None,
+ norm_cfg: OptConfigType = dict(type='BN'),
+ act_cfg: OptConfigType = dict(type='ReLU', inplace=True),
+ act_cfg_out: OptConfigType = dict(type='ReLU', inplace=True),
+ init_cfg: OptConfigType = None):
+ super().__init__(init_cfg)
+ self.conv1 = ConvModule(
+ in_channels,
+ channels,
+ kernel_size=3,
+ stride=stride,
+ padding=1,
+ norm_cfg=norm_cfg,
+ act_cfg=act_cfg)
+ self.conv2 = ConvModule(
+ channels,
+ channels,
+ kernel_size=3,
+ padding=1,
+ norm_cfg=norm_cfg,
+ act_cfg=None)
+ self.downsample = downsample
+ if act_cfg_out:
+ self.act = MODELS.build(act_cfg_out)
+
+ def forward(self, x: Tensor) -> Tensor:
+ residual = x
+ out = self.conv1(x)
+ out = self.conv2(out)
+
+ if self.downsample:
+ residual = self.downsample(x)
+
+ out += residual
+
+ if hasattr(self, 'act'):
+ out = self.act(out)
+
+ return out
+
+
+class Bottleneck(BaseModule):
+ """Bottleneck block from `ResNet `_.
+
+ Args:
+ in_channels (int): Input channels.
+ channels (int): Output channels.
+ stride (int): Stride of the first block. Default: 1.
+ downsample (nn.Module, optional): Downsample operation on identity.
+ Default: None.
+ norm_cfg (dict, optional): Config dict for normalization layer.
+ Default: dict(type='BN').
+ act_cfg (dict, optional): Config dict for activation layer in
+ ConvModule. Default: dict(type='ReLU', inplace=True).
+ act_cfg_out (dict, optional): Config dict for activation layer at
+ the last of the block. Default: None.
+ init_cfg (dict, optional): Initialization config dict. Default: None.
+ """
+
+ expansion = 2
+
+ def __init__(self,
+ in_channels: int,
+ channels: int,
+ stride: int = 1,
+ downsample: Optional[nn.Module] = None,
+ norm_cfg: OptConfigType = dict(type='BN'),
+ act_cfg: OptConfigType = dict(type='ReLU', inplace=True),
+ act_cfg_out: OptConfigType = None,
+ init_cfg: OptConfigType = None):
+ super().__init__(init_cfg)
+ self.conv1 = ConvModule(
+ in_channels, channels, 1, norm_cfg=norm_cfg, act_cfg=act_cfg)
+ self.conv2 = ConvModule(
+ channels,
+ channels,
+ 3,
+ stride,
+ 1,
+ norm_cfg=norm_cfg,
+ act_cfg=act_cfg)
+ self.conv3 = ConvModule(
+ channels,
+ channels * self.expansion,
+ 1,
+ norm_cfg=norm_cfg,
+ act_cfg=None)
+ if act_cfg_out:
+ self.act = MODELS.build(act_cfg_out)
+ self.downsample = downsample
+
+ def forward(self, x: Tensor) -> Tensor:
+ residual = x
+
+ out = self.conv1(x)
+ out = self.conv2(out)
+ out = self.conv3(out)
+
+ if self.downsample:
+ residual = self.downsample(x)
+
+ out += residual
+
+ if hasattr(self, 'act'):
+ out = self.act(out)
+
+ return out
diff --git a/mmseg/models/utils/ppm.py b/mmseg/models/utils/ppm.py
new file mode 100644
index 0000000000..5fe6ff26fa
--- /dev/null
+++ b/mmseg/models/utils/ppm.py
@@ -0,0 +1,193 @@
+# Copyright (c) OpenMMLab. All rights reserved.
+from typing import Dict, List
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from mmcv.cnn import ConvModule
+from mmengine.model import BaseModule, ModuleList, Sequential
+from torch import Tensor
+
+
+class DAPPM(BaseModule):
+ """DAPPM module in `DDRNet `_.
+
+ Args:
+ in_channels (int): Input channels.
+ branch_channels (int): Branch channels.
+ out_channels (int): Output channels.
+ num_scales (int): Number of scales.
+ kernel_sizes (list[int]): Kernel sizes of each scale.
+ strides (list[int]): Strides of each scale.
+ paddings (list[int]): Paddings of each scale.
+ norm_cfg (dict): Config dict for normalization layer.
+ Default: dict(type='BN').
+ act_cfg (dict): Config dict for activation layer in ConvModule.
+ Default: dict(type='ReLU', inplace=True).
+ conv_cfg (dict): Config dict for convolution layer in ConvModule.
+ Default: dict(order=('norm', 'act', 'conv'), bias=False).
+ upsample_mode (str): Upsample mode. Default: 'bilinear'.
+ """
+
+ def __init__(self,
+ in_channels: int,
+ branch_channels: int,
+ out_channels: int,
+ num_scales: int,
+ kernel_sizes: List[int] = [5, 9, 17],
+ strides: List[int] = [2, 4, 8],
+ paddings: List[int] = [2, 4, 8],
+ norm_cfg: Dict = dict(type='BN', momentum=0.1),
+ act_cfg: Dict = dict(type='ReLU', inplace=True),
+ conv_cfg: Dict = dict(
+ order=('norm', 'act', 'conv'), bias=False),
+ upsample_mode: str = 'bilinear'):
+ super().__init__()
+
+ self.num_scales = num_scales
+ self.unsample_mode = upsample_mode
+ self.in_channels = in_channels
+ self.branch_channels = branch_channels
+ self.out_channels = out_channels
+ self.norm_cfg = norm_cfg
+ self.act_cfg = act_cfg
+ self.conv_cfg = conv_cfg
+
+ self.scales = ModuleList([
+ ConvModule(
+ in_channels,
+ branch_channels,
+ kernel_size=1,
+ norm_cfg=norm_cfg,
+ act_cfg=act_cfg,
+ **conv_cfg)
+ ])
+ for i in range(1, num_scales - 1):
+ self.scales.append(
+ Sequential(*[
+ nn.AvgPool2d(
+ kernel_size=kernel_sizes[i - 1],
+ stride=strides[i - 1],
+ padding=paddings[i - 1]),
+ ConvModule(
+ in_channels,
+ branch_channels,
+ kernel_size=1,
+ norm_cfg=norm_cfg,
+ act_cfg=act_cfg,
+ **conv_cfg)
+ ]))
+ self.scales.append(
+ Sequential(*[
+ nn.AdaptiveAvgPool2d((1, 1)),
+ ConvModule(
+ in_channels,
+ branch_channels,
+ kernel_size=1,
+ norm_cfg=norm_cfg,
+ act_cfg=act_cfg,
+ **conv_cfg)
+ ]))
+ self.processes = ModuleList()
+ for i in range(num_scales - 1):
+ self.processes.append(
+ ConvModule(
+ branch_channels,
+ branch_channels,
+ kernel_size=3,
+ padding=1,
+ norm_cfg=norm_cfg,
+ act_cfg=act_cfg,
+ **conv_cfg))
+
+ self.compression = ConvModule(
+ branch_channels * num_scales,
+ out_channels,
+ kernel_size=1,
+ norm_cfg=norm_cfg,
+ act_cfg=act_cfg,
+ **conv_cfg)
+
+ self.shortcut = ConvModule(
+ in_channels,
+ out_channels,
+ kernel_size=1,
+ norm_cfg=norm_cfg,
+ act_cfg=act_cfg,
+ **conv_cfg)
+
+ def forward(self, inputs: Tensor):
+ feats = []
+ feats.append(self.scales[0](inputs))
+
+ for i in range(1, self.num_scales):
+ feat_up = F.interpolate(
+ self.scales[i](inputs),
+ size=inputs.shape[2:],
+ mode=self.unsample_mode)
+ feats.append(self.processes[i - 1](feat_up + feats[i - 1]))
+
+ return self.compression(torch.cat(feats,
+ dim=1)) + self.shortcut(inputs)
+
+
+class PAPPM(DAPPM):
+ """PAPPM module in `PIDNet `_.
+
+ Args:
+ in_channels (int): Input channels.
+ branch_channels (int): Branch channels.
+ out_channels (int): Output channels.
+ num_scales (int): Number of scales.
+ kernel_sizes (list[int]): Kernel sizes of each scale.
+ strides (list[int]): Strides of each scale.
+ paddings (list[int]): Paddings of each scale.
+ norm_cfg (dict): Config dict for normalization layer.
+ Default: dict(type='BN', momentum=0.1).
+ act_cfg (dict): Config dict for activation layer in ConvModule.
+ Default: dict(type='ReLU', inplace=True).
+ conv_cfg (dict): Config dict for convolution layer in ConvModule.
+ Default: dict(order=('norm', 'act', 'conv'), bias=False).
+ upsample_mode (str): Upsample mode. Default: 'bilinear'.
+ """
+
+ def __init__(self,
+ in_channels: int,
+ branch_channels: int,
+ out_channels: int,
+ num_scales: int,
+ kernel_sizes: List[int] = [5, 9, 17],
+ strides: List[int] = [2, 4, 8],
+ paddings: List[int] = [2, 4, 8],
+ norm_cfg: Dict = dict(type='BN', momentum=0.1),
+ act_cfg: Dict = dict(type='ReLU', inplace=True),
+ conv_cfg: Dict = dict(
+ order=('norm', 'act', 'conv'), bias=False),
+ upsample_mode: str = 'bilinear'):
+ super().__init__(in_channels, branch_channels, out_channels,
+ num_scales, kernel_sizes, strides, paddings, norm_cfg,
+ act_cfg, conv_cfg, upsample_mode)
+
+ self.processes = ConvModule(
+ self.branch_channels * (self.num_scales - 1),
+ self.branch_channels * (self.num_scales - 1),
+ kernel_size=3,
+ padding=1,
+ groups=self.num_scales - 1,
+ norm_cfg=self.norm_cfg,
+ act_cfg=self.act_cfg,
+ **self.conv_cfg)
+
+ def forward(self, inputs: Tensor):
+ x_ = self.scales[0](inputs)
+ feats = []
+ for i in range(1, self.num_scales):
+ feat_up = F.interpolate(
+ self.scales[i](inputs),
+ size=inputs.shape[2:],
+ mode=self.unsample_mode,
+ align_corners=False)
+ feats.append(feat_up + x_)
+ scale_out = self.processes(torch.cat(feats, dim=1))
+ return self.compression(torch.cat([x_, scale_out],
+ dim=1)) + self.shortcut(inputs)
diff --git a/model-index.yml b/model-index.yml
index ae96bd30f7..be7210e120 100644
--- a/model-index.yml
+++ b/model-index.yml
@@ -31,6 +31,7 @@ Import:
- configs/mobilenet_v3/mobilenet_v3.yml
- configs/nonlocal_net/nonlocal_net.yml
- configs/ocrnet/ocrnet.yml
+- configs/pidnet/pidnet.yml
- configs/point_rend/point_rend.yml
- configs/poolformer/poolformer.yml
- configs/psanet/psanet.yml
diff --git a/tests/test_models/test_backbones/test_pidnet.py b/tests/test_models/test_backbones/test_pidnet.py
new file mode 100644
index 0000000000..208dfc7814
--- /dev/null
+++ b/tests/test_models/test_backbones/test_pidnet.py
@@ -0,0 +1,87 @@
+# Copyright (c) OpenMMLab. All rights reserved.
+import os
+import tempfile
+
+import torch
+from mmengine.registry import init_default_scope
+
+from mmseg.registry import MODELS
+
+init_default_scope('mmseg')
+
+
+def test_pidnet_backbone():
+ # Test PIDNet Standard Forward
+ norm_cfg = dict(type='BN', requires_grad=True)
+ backbone_cfg = dict(
+ type='PIDNet',
+ in_channels=3,
+ channels=32,
+ ppm_channels=96,
+ num_stem_blocks=2,
+ num_branch_blocks=3,
+ align_corners=False,
+ norm_cfg=norm_cfg,
+ act_cfg=dict(type='ReLU', inplace=True))
+ model = MODELS.build(backbone_cfg)
+ model.init_weights()
+
+ # Test init weights
+ temp_file = tempfile.NamedTemporaryFile()
+ temp_file.close()
+ torch.save(model.state_dict(), temp_file.name)
+ backbone_cfg.update(
+ init_cfg=dict(type='Pretrained', checkpoint=temp_file.name))
+ model = MODELS.build(backbone_cfg)
+ model.init_weights()
+ os.remove(temp_file.name)
+
+ # Test eval mode
+ model.eval()
+ batch_size = 1
+ imgs = torch.randn(batch_size, 3, 64, 128)
+ feats = model(imgs)
+
+ assert type(feats) == torch.Tensor
+ assert feats.shape == torch.Size([batch_size, 128, 8, 16])
+
+ # Test train mode
+ model.train()
+ batch_size = 2
+ imgs = torch.randn(batch_size, 3, 64, 128)
+ feats = model(imgs)
+
+ assert len(feats) == 3
+ # test output for P branch
+ assert feats[0].shape == torch.Size([batch_size, 64, 8, 16])
+ # test output for I branch
+ assert feats[1].shape == torch.Size([batch_size, 128, 8, 16])
+ # test output for D branch
+ assert feats[2].shape == torch.Size([batch_size, 64, 8, 16])
+
+ # Test pidnet-m
+ backbone_cfg.update(channels=64)
+ model = MODELS.build(backbone_cfg)
+ feats = model(imgs)
+
+ assert len(feats) == 3
+ # test output for P branch
+ assert feats[0].shape == torch.Size([batch_size, 128, 8, 16])
+ # test output for I branch
+ assert feats[1].shape == torch.Size([batch_size, 256, 8, 16])
+ # test output for D branch
+ assert feats[2].shape == torch.Size([batch_size, 128, 8, 16])
+
+ # Test pidnet-l
+ backbone_cfg.update(
+ channels=64, ppm_channesl=112, num_stem_blocks=3, num_branch_blocks=4)
+ model = MODELS.build(backbone_cfg)
+ feats = model(imgs)
+
+ assert len(feats) == 3
+ # test output for P branch
+ assert feats[0].shape == torch.Size([batch_size, 128, 8, 16])
+ # test output for I branch
+ assert feats[1].shape == torch.Size([batch_size, 256, 8, 16])
+ # test output for D branch
+ assert feats[2].shape == torch.Size([batch_size, 128, 8, 16])
diff --git a/tests/test_models/test_heads/test_pidnet_head.py b/tests/test_models/test_heads/test_pidnet_head.py
new file mode 100644
index 0000000000..a6247371c5
--- /dev/null
+++ b/tests/test_models/test_heads/test_pidnet_head.py
@@ -0,0 +1,89 @@
+# Copyright (c) OpenMMLab. All rights reserved.
+import torch
+from mmengine.registry import init_default_scope
+
+from mmseg.registry import MODELS
+
+
+def test_pidnet_head():
+ init_default_scope('mmseg')
+
+ # Test PIDNet decode head Standard Forward
+ norm_cfg = dict(type='BN', requires_grad=True)
+ backbone_cfg = dict(
+ type='PIDNet',
+ in_channels=3,
+ channels=32,
+ ppm_channels=96,
+ num_stem_blocks=2,
+ num_branch_blocks=3,
+ align_corners=False,
+ norm_cfg=norm_cfg,
+ act_cfg=dict(type='ReLU', inplace=True))
+ decode_head_cfg = dict(
+ type='PIDHead',
+ in_channels=128,
+ channels=128,
+ num_classes=19,
+ norm_cfg=norm_cfg,
+ act_cfg=dict(type='ReLU', inplace=True),
+ align_corners=True,
+ loss_decode=[
+ dict(
+ type='CrossEntropyLoss',
+ use_sigmoid=False,
+ class_weight=[
+ 0.8373, 0.918, 0.866, 1.0345, 1.0166, 0.9969, 0.9754,
+ 1.0489, 0.8786, 1.0023, 0.9539, 0.9843, 1.1116, 0.9037,
+ 1.0865, 1.0955, 1.0865, 1.1529, 1.0507
+ ],
+ loss_weight=0.4),
+ dict(
+ type='OhemCrossEntropy',
+ thres=0.9,
+ min_kept=131072,
+ class_weight=[
+ 0.8373, 0.918, 0.866, 1.0345, 1.0166, 0.9969, 0.9754,
+ 1.0489, 0.8786, 1.0023, 0.9539, 0.9843, 1.1116, 0.9037,
+ 1.0865, 1.0955, 1.0865, 1.1529, 1.0507
+ ],
+ loss_weight=1.0),
+ dict(type='BoundaryLoss', loss_weight=20.0),
+ dict(
+ type='OhemCrossEntropy',
+ thres=0.9,
+ min_kept=131072,
+ class_weight=[
+ 0.8373, 0.918, 0.866, 1.0345, 1.0166, 0.9969, 0.9754,
+ 1.0489, 0.8786, 1.0023, 0.9539, 0.9843, 1.1116, 0.9037,
+ 1.0865, 1.0955, 1.0865, 1.1529, 1.0507
+ ],
+ loss_weight=1.0)
+ ])
+ backbone = MODELS.build(backbone_cfg)
+ head = MODELS.build(decode_head_cfg)
+
+ # Test train mode
+ backbone.train()
+ head.train()
+ batch_size = 2
+ imgs = torch.randn(batch_size, 3, 64, 128)
+ feats = backbone(imgs)
+ seg_logit = head(feats)
+
+ assert isinstance(seg_logit, tuple)
+ assert len(seg_logit) == 3
+
+ p_logits, i_logits, d_logits = seg_logit
+ assert p_logits.shape == (batch_size, 19, 8, 16)
+ assert i_logits.shape == (batch_size, 19, 8, 16)
+ assert d_logits.shape == (batch_size, 1, 8, 16)
+
+ # Test eval mode
+ backbone.eval()
+ head.eval()
+ feats = backbone(imgs)
+ seg_logit = head(feats)
+
+ assert isinstance(seg_logit, torch.Tensor)
+ assert seg_logit.shape == (batch_size, 19, 8, 16)