-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlib.rs
341 lines (300 loc) · 11.1 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
#![allow(clippy::many_single_char_names, clippy::too_many_arguments)]
#![deny(unsafe_code)]
use ndarray::{s, Array1, Array2, ArrayView1, ArrayView2, ArrayViewMut1, Zip};
use ndarray_stats::QuantileExt;
const FACTOR: f64 = 0.01;
/// Non-negative least squares solver.
///
/// NNLS solves the following matrix problem:
/// Minimize || E x - f || subject to G x >= h.
///
/// where
/// E is an m2 x n matrix and f is the m2 element data vector.
/// In general, G is an m x n constraint matrix, but for his case,
/// G is the identity matrix and h is the zero vector.
pub fn nnls(a: ArrayView2<f64>, b: ArrayView1<f64>) -> (Array1<f64>, f64) {
let (m, n) = a.dim();
if m == 0 || n == 0 {
panic!("The dimensions of the problem are bad. Either `a` has zero row or column.");
}
let mut nnls = Nnls::new(a, b);
nnls.run()
}
struct Nnls {
a: Array2<f64>,
b: Array1<f64>,
zz: Array1<f64>,
w: Vec<f64>,
index: Vec<usize>,
}
impl Nnls {
pub fn new(a: ArrayView2<f64>, b: ArrayView1<f64>) -> Nnls {
let (m, n) = a.dim();
let zz = Array1::zeros(m);
let w = vec![0.0; n];
let index: Vec<_> = (0..n).collect();
Nnls { a: a.to_owned(), b: b.to_owned(), zz, w, index }
}
pub fn run(&mut self) -> (Array1<f64>, f64) {
let (m, n) = self.a.dim();
let mut x = Array1::<f64>::zeros(n);
let max_iter = 3 * n;
let mut iz1 = 0;
let mut nsetp = 0;
let mut npp1 = 0;
let mut up = 0.0;
// This goto var is a hack to create a "GOTO self.arg_max_w" like they do in the official
// version. I simply skip the first part of the loop to fake a GOTO.
let mut goto_iz_max = false;
loop {
if !goto_iz_max {
// Compute components of the dual (negative gradient) vector w
for iz in iz1..n {
let j = self.index[iz];
self.w[j] = self.a.slice(s![npp1.., j]).dot(&self.b.slice(s![npp1..]));
}
}
// Find largest positive w
goto_iz_max = false;
let (iz, w_max) = self.arg_max_w(iz1);
if w_max <= 0.0 {
break;
}
let j = self.index[iz];
// The sign of w[j] is ok for j to be moved to set P. Begin the transformation and check
// new diagonal element to avoid near linear dependance
let a_save = self.a[(npp1, j)];
h12(1, npp1, npp1 + 1, m, self.a.column_mut(j), &mut up, self.zz.view_mut(), 1, 0, 0);
// In the original implementation `nsetp` is used here instead of `npp1`, but `npp1` is
// a better choise in 0-indexed langages.
let u_norm = if npp1 == 0 {
0.0
} else {
self.a.slice(s![..nsetp, j]).fold(0.0, |acc, &a| acc + a.powi(2)).sqrt()
};
if u_norm + self.a[(npp1, j)].abs() * FACTOR - u_norm <= 0.0 {
// Reject j as a candidate to be moved from set z to set p.
self.a[(npp1, j)] = a_save;
self.w[j] = 0.0;
goto_iz_max = true;
continue;
}
// Column j is sufficiently independant. Copy b into zz, update zz and solve for
// ztest ( = proposed new value for x[j]) )
self.zz.assign(&self.b);
h12(2, npp1, npp1 + 1, m, self.a.column_mut(j), &mut up, self.zz.view_mut(), 1, 0, 1);
let ztest = self.zz[npp1] / self.a[(npp1, j)];
if ztest <= 0.0 {
// Reject j as a candidate to be moved from set z to set p.
self.a[(npp1, j)] = a_save;
self.w[j] = 0.0;
goto_iz_max = true;
continue;
}
self.b.assign(&self.zz);
self.index[iz] = self.index[iz1];
self.index[iz1] = j;
iz1 += 1;
nsetp = npp1;
npp1 += 1;
if iz1 < n {
for &jj in &self.index[iz1..] {
let (u, c) = self.a.multi_slice_mut((s![.., j], s![.., jj]));
h12(2, nsetp, npp1, m, u, &mut up, c, 1, m, 1);
}
}
// This line is not present in the original implementation. We need it here because of
// the difference in indexing (0 or 1) between Fortran and Rust.
nsetp += 1;
if nsetp != m {
self.a.slice_mut(s![npp1.., j]).fill(0.0);
}
self.w[j] = 0.0;
// Solve the triangular system. Store the solution temporarily in zz.
self.solve_triangular(nsetp, j);
// Secondary loop begins here
for _ in 0..max_iter {
// If the new constained coefficients are all feasible, then alpha will still be
// equal to 2.0. If so, exit secondary loop.
let (mut jj, alpha) = self.find_alpha(&x, nsetp);
if alpha == 2.0 {
Zip::from(&self.index[0..nsetp])
.and(self.zz.slice(s![0..nsetp]))
.for_each(|&i, &zz| x[i] = zz);
break; // to main loop
}
// Otherwise, use alpha [0.0, 1.0] to interpolate between the old x and the new zz
Zip::from(&self.index[0..nsetp])
.and(self.zz.slice(s![0..nsetp]))
.for_each(|&i, &zz| x[i] += alpha * (zz - x[i]));
// Modify a, b and the index arrays to move coefficient I from set P to set Z
let i = self.index[jj];
x[i] = 0.0;
if jj != nsetp {
jj += 1;
for j in jj..nsetp {
let ii = self.index[j];
self.index[j - 1] = ii;
let (cc, ss, sig) = g1(self.a[(j - 1, ii)], self.a[(j, ii)]);
self.a[(j - 1, ii)] = sig;
self.a[(j, ii)] = 0.0;
for l in 0..n {
if l != ii {
// Apply procedure G2 (CC, SS, A(J-1,L), A(J,L))
let v = self.a[(j - 1, l)];
self.a[(j - 1, l)] = cc * v + ss * self.a[(j, l)];
self.a[(j, l)] = -ss * v + cc * self.a[(j, l)];
}
}
// Apply procedure G2 (CC, SS, B(J-1), B(J))
let v = self.b[j - 1];
self.b[j - 1] = cc * v + ss * self.b[j];
self.b[j] = -ss * v + cc * self.b[j];
}
}
npp1 = nsetp - 1;
nsetp -= 1;
iz1 -= 1;
self.index[iz1] = i;
// See of the remaining coefficients are feasible. They should be because of the way
// `alpha` was determined. If any are infeasible, it's due to round-off error. Any
// that are non-positive will be set to 0.0 and moved from set P to set Z.
if self.index[0..nsetp].iter().any(|&i| x[i] <= 0.0) {
panic!(
"GOTO x[i] = 0.0; Please create an issue on https://github.com/imeka/nnls"
);
}
// Copy b into zz. Then solve again and loop back
self.zz.assign(&self.b);
self.solve_triangular(nsetp, j);
}
if iz1 >= n || nsetp >= m {
break;
}
}
let mut sm = 0.0;
if npp1 <= m {
sm = self.b.slice(s![npp1..]).fold(0.0, |acc, &a| acc + a.powi(2));
}
(x, sm.sqrt())
}
fn arg_max_w(&self, start: usize) -> (usize, f64) {
let mut max_idx = 0;
let mut max_val = f64::MIN;
for (i, &index) in self.index[start..].iter().enumerate() {
let w = self.w[index];
if w > max_val {
max_val = w;
max_idx = i + start;
}
}
(max_idx, max_val)
}
fn solve_triangular(&mut self, nsetp: usize, mut j: usize) {
for l in 0..nsetp {
let ip = nsetp - 1 - l;
if l != 0 {
let zz_ip = self.zz[ip + 1];
Zip::from(self.zz.slice_mut(s![..=ip]))
.and(self.a.slice(s![..=ip, j]))
.for_each(|zz, &a| *zz -= a * zz_ip);
}
j = self.index[ip];
self.zz[ip] /= self.a[(ip, j)];
}
}
fn find_alpha(&self, x: &Array1<f64>, nsetp: usize) -> (usize, f64) {
let mut jj = 0;
let mut alpha = 2.0;
Zip::indexed(&self.index[0..nsetp]).and(self.zz.slice(s![0..nsetp])).for_each(
|ip, &l, &zz| {
if zz <= 0.0 {
let t = -x[l] / (zz - x[l]);
if alpha > t {
alpha = t;
jj = ip;
}
}
},
);
(jj, alpha)
}
}
/// Construction and/or application of a single householder transformtion.
fn h12(
mode: usize,
pivot: usize,
l1: usize,
m: usize,
mut u: ArrayViewMut1<f64>,
up: &mut f64,
mut c: ArrayViewMut1<f64>,
ice: usize,
icv: usize,
ncv: usize,
) {
if pivot >= l1 || l1 > m {
return;
}
let mut cl = u[pivot].abs();
if mode == 1 {
let u_ = u.slice(s![l1..]);
cl = f64::max(cl, *u_.max_skipnan());
if cl <= 0.0 {
return;
}
let clinv = 1.0 / cl;
let sm = (u[pivot] * clinv).powi(2) + u_.fold(0.0, |acc, &u| acc + (u * clinv).powi(2));
cl *= sm.sqrt();
if u[pivot] > 0.0 {
cl = -cl;
}
*up = u[pivot] - cl;
u[pivot] = cl;
} else if cl <= 0.0 {
return;
}
if ncv == 0 {
return;
}
let b = *up * u[pivot];
if b < 0.0 {
let b = 1.0 / b;
let mut i2 = ice * pivot;
let incr = ice * (l1 - pivot);
for _ in 0..ncv {
let mut i3 = i2 + incr;
let mut i4 = i3;
let mut sm = c[i2] * *up;
for i in l1..m {
sm += c[i3] * u[i];
i3 += ice;
}
if sm != 0.0 {
sm *= b;
c[i2] += sm * *up;
for i in l1..m {
c[i4] += sm * u[i];
i4 += ice;
}
}
i2 += icv;
}
}
}
fn g1(a: f64, b: f64) -> (f64, f64, f64) {
if a.abs() > b.abs() {
let xr = b / a;
let yr = (1.0 + xr.powi(2)).sqrt();
let cterm = (1.0 / yr) * a.signum();
(cterm, cterm * xr, a.abs() * yr)
} else if b != 0.0 {
let xr = a / b;
let yr = (1.0 + xr.powi(2)).sqrt();
let sterm = (1.0 / yr) * b.signum();
let cterm = sterm * xr;
(cterm, sterm, b.abs() * yr)
} else {
(0.0, 1.0, a)
}
}