forked from huggingface/candle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.rs
192 lines (176 loc) · 6.17 KB
/
main.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use candle_transformers::object_detection::{non_maximum_suppression, Bbox};
mod darknet;
use anyhow::Result;
use candle::{DType, Device, Tensor};
use candle_nn::{Module, VarBuilder};
use clap::Parser;
use image::{DynamicImage, ImageBuffer};
// Assumes x1 <= x2 and y1 <= y2
pub fn draw_rect(
img: &mut ImageBuffer<image::Rgb<u8>, Vec<u8>>,
x1: u32,
x2: u32,
y1: u32,
y2: u32,
) {
for x in x1..=x2 {
let pixel = img.get_pixel_mut(x, y1);
*pixel = image::Rgb([255, 0, 0]);
let pixel = img.get_pixel_mut(x, y2);
*pixel = image::Rgb([255, 0, 0]);
}
for y in y1..=y2 {
let pixel = img.get_pixel_mut(x1, y);
*pixel = image::Rgb([255, 0, 0]);
let pixel = img.get_pixel_mut(x2, y);
*pixel = image::Rgb([255, 0, 0]);
}
}
pub fn report(
pred: &Tensor,
img: DynamicImage,
w: usize,
h: usize,
confidence_threshold: f32,
nms_threshold: f32,
) -> Result<DynamicImage> {
let pred = pred.to_device(&Device::Cpu)?;
let (npreds, pred_size) = pred.dims2()?;
let nclasses = pred_size - 5;
// The bounding boxes grouped by (maximum) class index.
let mut bboxes: Vec<Vec<Bbox<()>>> = (0..nclasses).map(|_| vec![]).collect();
// Extract the bounding boxes for which confidence is above the threshold.
for index in 0..npreds {
let pred = Vec::<f32>::try_from(pred.get(index)?)?;
let confidence = pred[4];
if confidence > confidence_threshold {
let mut class_index = 0;
for i in 0..nclasses {
if pred[5 + i] > pred[5 + class_index] {
class_index = i
}
}
if pred[class_index + 5] > 0. {
let bbox = Bbox {
xmin: pred[0] - pred[2] / 2.,
ymin: pred[1] - pred[3] / 2.,
xmax: pred[0] + pred[2] / 2.,
ymax: pred[1] + pred[3] / 2.,
confidence,
data: (),
};
bboxes[class_index].push(bbox)
}
}
}
non_maximum_suppression(&mut bboxes, nms_threshold);
// Annotate the original image and print boxes information.
let (initial_h, initial_w) = (img.height(), img.width());
let w_ratio = initial_w as f32 / w as f32;
let h_ratio = initial_h as f32 / h as f32;
let mut img = img.to_rgb8();
for (class_index, bboxes_for_class) in bboxes.iter().enumerate() {
for b in bboxes_for_class.iter() {
println!(
"{}: {:?}",
candle_examples::coco_classes::NAMES[class_index],
b
);
let xmin = ((b.xmin * w_ratio) as u32).clamp(0, initial_w - 1);
let ymin = ((b.ymin * h_ratio) as u32).clamp(0, initial_h - 1);
let xmax = ((b.xmax * w_ratio) as u32).clamp(0, initial_w - 1);
let ymax = ((b.ymax * h_ratio) as u32).clamp(0, initial_h - 1);
draw_rect(&mut img, xmin, xmax, ymin, ymax);
}
}
Ok(DynamicImage::ImageRgb8(img))
}
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Model weights, in safetensors format.
#[arg(long)]
model: Option<String>,
#[arg(long)]
config: Option<String>,
images: Vec<String>,
/// Threshold for the model confidence level.
#[arg(long, default_value_t = 0.5)]
confidence_threshold: f32,
/// Threshold for non-maximum suppression.
#[arg(long, default_value_t = 0.4)]
nms_threshold: f32,
}
impl Args {
fn config(&self) -> anyhow::Result<std::path::PathBuf> {
let path = match &self.config {
Some(config) => std::path::PathBuf::from(config),
None => {
let api = hf_hub::api::sync::Api::new()?;
let api = api.model("lmz/candle-yolo-v3".to_string());
api.get("yolo-v3.cfg")?
}
};
Ok(path)
}
fn model(&self) -> anyhow::Result<std::path::PathBuf> {
let path = match &self.model {
Some(model) => std::path::PathBuf::from(model),
None => {
let api = hf_hub::api::sync::Api::new()?;
let api = api.model("lmz/candle-yolo-v3".to_string());
api.get("yolo-v3.safetensors")?
}
};
Ok(path)
}
}
pub fn main() -> Result<()> {
let args = Args::parse();
// Create the model and load the weights from the file.
let model = args.model()?;
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model], DType::F32, &Device::Cpu)? };
let config = args.config()?;
let darknet = darknet::parse_config(config)?;
let model = darknet.build_model(vb)?;
for image_name in args.images.iter() {
println!("processing {image_name}");
let mut image_name = std::path::PathBuf::from(image_name);
// Load the image file and resize it.
let net_width = darknet.width()?;
let net_height = darknet.height()?;
let original_image = image::ImageReader::open(&image_name)?
.decode()
.map_err(candle::Error::wrap)?;
let image = {
let data = original_image
.resize_exact(
net_width as u32,
net_height as u32,
image::imageops::FilterType::Triangle,
)
.to_rgb8()
.into_raw();
Tensor::from_vec(data, (net_width, net_height, 3), &Device::Cpu)?.permute((2, 0, 1))?
};
let image = (image.unsqueeze(0)?.to_dtype(DType::F32)? * (1. / 255.))?;
let predictions = model.forward(&image)?.squeeze(0)?;
println!("generated predictions {predictions:?}");
let image = report(
&predictions,
original_image,
net_width,
net_height,
args.confidence_threshold,
args.nms_threshold,
)?;
image_name.set_extension("pp.jpg");
println!("writing {image_name:?}");
image.save(image_name)?
}
Ok(())
}