-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
58 lines (48 loc) · 1.78 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import argparse, torch, os, json, random
import matplotlib.pyplot as plt
import numpy as np
from environments.enviroment_generator import generate_env
from models.solver import Solver
from models.agent_generator import AgentGenerator
from models.configure_seed import configure_seed
def plot_reward(epoch_num, rewards, save_plot_path):
if save_plot_path:
plt.plot(range(epoch_num), rewards)
plt.xlabel('episodes')
plt.ylabel('rewards')
ax = plt.gca()
ax.set_facecolor('#eaeaf2')
plt.grid(color='white')
plt.savefig(save_plot_path)
plt.show()
return None
if __name__ == "__main__":
#get config
parser = argparse.ArgumentParser()
parser.add_argument('--config', required=True)
args = parser.parse_args()
with open(args.config) as json_config_file:
config = json.load(json_config_file)
#get learning config
learning_config = config['learning']
#set seed
seed = learning_config.get('random_seed')
print(f'Start training with random seed: {seed}')
configure_seed(seed)
#get environment
env = generate_env(config['environment'])
#get agent
agent_generator = AgentGenerator(env, learning_config)
agent = agent_generator.generate(config['model'])
#train agent
solver = Solver(env)
mean_total_rewards = solver.train(agent, learning_config)
plot_reward(learning_config['epoch_num'], mean_total_rewards, learning_config.get('save_plot_path'))
#save model
save_model_path = learning_config.get('save_model_path')
if save_model_path:
agent.save(save_model_path)
#save rewards
save_rewards_path = learning_config.get('save_rewards_path')
if save_rewards_path:
np.save(save_rewards_path, mean_total_rewards)