-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvisualizations.Rmd
407 lines (270 loc) · 18.6 KB
/
visualizations.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
---
title: "Visualizations"
author: "Grant"
date: "December 10, 2017"
output: html_document
---
Jared
```{R}
library(dplyr)
if(!require(mlbench)){install.packages("mlbench"); require(mlbench)} # common datasets to use
if(!require(caret)){install.packages("caret", dependencies = c("Depends", "Suggests")); require(caret)} # ML package and its dependencies. This will take awhile!
if(!require(dplyr)){install.packages("dplyr"); require(dplyr)}
set.seed(370)
if(!require(ModelMetrics)){install.packages("ModelMetrics"); require(ModelMetrics)} # common datasets to use
if(!require(recipes)){install.packages("recipes"); require(recipes)} # common datasets to use
if(!require(DEoptimR)){install.packages("DEoptimR"); require(DEoptimR)} # common datasets to use
```
```{r}
baseline <- read.csv(file="/Users/jaredpraino/Documents/University of Washington/Senior Year/INFO370/final_project/project-fragile-families/data/Baseline_Features.csv",header=TRUE,sep=",")
year1 <- read.csv(file="/Users/jaredpraino/Documents/University of Washington/Senior Year/INFO370/final_project/project-fragile-families/data/Year1_Features.csv", header=TRUE,sep=",")
year3 <- read.csv(file="/Users/jaredpraino/Documents/University of Washington/Senior Year/INFO370/final_project/project-fragile-families/data/Year3_Features.csv",header=TRUE,sep=",")
year5 <- read.csv(file="/Users/jaredpraino/Documents/University of Washington/Senior Year/INFO370/final_project/project-fragile-families/data/Year5_Features.csv",header=TRUE,sep=",")
year9 <- read.csv(file="/Users/jaredpraino/Documents/University of Washington/Senior Year/INFO370/final_project/project-fragile-families/data/Year9_Features.csv",header=TRUE,sep=",")
finalSet <- read.csv(file="/Users/grant/Documents/INFO370/fragile_families/project-fragile-families/data/FeaturesWithYear9Year5MartialStatus.csv")
library(dplyr)
year9grades <- filter(finalSet, t5c13a>-1, t5c13b>-1, t5c13c>-1)
year5grades <- filter(finalSet, kind_a5>-1, kind_a6>-1, kind_a7>-1)
finalSet$t5c13b
```
```{r}
temp_parent_involvement <- year9 %>% select(idnum,t5c13a,t5c13b,t5c13c)
#View(year9)
combine0 <- baseline %>% select(idnum, m1a4, m1a11a, m1a11b) %>%
filter(idnum>-1, m1a4>-1, m1a11a>-1, m1a11b>-1)
combine1 <- year1 %>% select(idnum,m2b18a,m2b18b,m2b18c,m2b18d,m2b18e,m2b18f,m2b18g,m2b18h,m2c3a,m2c3b, m2c3c,m2c3d,m2c3e,m2c3f,m2c3h,m2c3i,m2c3j) %>% filter(m2b18a>-1,m2b18b>-1,m2b18c>-1,m2b18d>-1,m2b18e>-1,m2b18f>-1,m2b18g>-1,m2b18h>-1,m2c3a>-1,m2c3b>-1, m2c3c>-1,m2c3d>-1,m2c3e>-1,m2c3f>-1,m2c3h>-1,m2c3i>-1,m2c3j>-1)
combine3 <- year3 %>% select(idnum,m3b4a,m3b4b,m3b4c,m3b4d,m3b4e,m3b4f,m3b4g,m3b4h,m3b4i,m3b4k,m3b4l,m3b5,m3c3a,m3c3b,m3c3c,m3c3d,m3c3e,m3c3f,m3c3g,m3c3h,m3c3i,m3c3j,m3c3k,m3c3l) %>%
filter(m3b4a>-1,m3b4b>-1,m3b4c>-1,m3b4d>-1,m3b4e>-1,m3b4f>-1,m3b4g>-1,m3b4h>-1,m3b4i>-1,m3b4k>-1,m3b4l>-1,m3b5>-1,m3c3a>-1,m3c3b>-1,m3c3c>-1,m3c3d>-1,m3c3e>-1,m3c3f>-1,m3c3g>-1,m3c3h>-1,m3c3i>-1,m3c3j>-1,m3c3k>-1,m3c3l>-1)
combine5 <- year5 %>% select(idnum,m4b4a1,m4b4a2,m4b4a3,m4b4a4,m4b4a5,m4b4a6,m4b4a7,m4b4a8) %>%
filter(m4b4a1>-1,m4b4a2>-1,m4b4a3>-1,m4b4a4>-1,m4b4a5>-1,m4b4a6>-1,m4b4a7>-1,m4b4a8>-1)
combine9 <- year9 %>% select(idnum,t5c13a,t5c13b,t5c13c) %>%
filter(t5c13a>-1,t5c13b>-1,t5c13c>-1)
join1 <- inner_join(combine0,combine1, by="idnum")
join2 <- inner_join(join1,combine3, by="idnum")
join3 <- inner_join(join2,combine5, by="idnum")
finalCombined <- inner_join(join3,combine9, by="idnum")
# prepare new columns
# total activities
parent_involvement <- finalCombined %>% mutate(tally = 0)
# total grade
year9grades <- year9grades %>% mutate(score = t5c13a + t5c13b + t5c13c)
year9grades <- year9grades %>% mutate(tally = 0)
# add outcome variables
parent_involvement$t5c13a <- as.factor(parent_involvement$t5c13a)
parent_involvement$t5c13b <- as.factor(parent_involvement$t5c13b)
parent_involvement$t5c13c <- as.factor(parent_involvement$t5c13c)
```
```{r}
#### Version 1: Popularity of activites from Yuxing's feature selection
# ## SET UP
# top DPW - hand picked features in days/per/week format
#need more features
features <- c('m4b4a2','m3c3l','m4b4a8','m3b4l','m3b4a','m2c3j','m2c3f','m3c3g','m2c3e','m3b4d','m2c3a')
#
# top YN - hand picked features in yes no format
#
#
### View(parent_involvement)
# ## FUNCTIONS
# COMPUTED MEAN
computed_mean <- function(column) {
response <- parent_involvement[[column]]
weighted_mean <- (sum(response==0)*0 + sum(response==1)*1 + sum(response==2)*2 + sum(response==3)*3 + sum(response==4)*4 + sum(response==5)*5 + sum(response==6)*6 +sum(response==7)*7)/length(response)
fltr <- response > weighted_mean
parent_involvement[fltr,"tally"] <- parent_involvement[fltr,"tally"] + 1
return(parent_involvement)
}
# ## COMPUTATIONS
# Number of activities
weighted_means <- c(1:length(features))
for(i in 1:length(features)){
column_name = features[i]
parent_involvement <- computed_mean(column_name)
}
# Percentage of activities
length <- length(features)
parent_involvement <- parent_involvement %>% mutate(percentage = tally/11.0)
```
```{r}
library(ggplot2)
# ## GRAPHS
# Simple scatterplots
# Involvement by math
ggplot(data = parent_involvement, aes(x = t5c13c, y = tally)) + geom_point() + geom_jitter(width = 0.2)
# Involvment by reading
ggplot(data = parent_involvement, aes(x = t5c13a, y = tally)) + geom_point() + geom_jitter(width = 0.2)
# Involvement by science
ggplot(data = parent_involvement, aes(x = t5c13b, y = tally)) + geom_point() + geom_jitter(width = 0.2)
#Involvement total score
ggplot(data = parent_involvement, aes(x = score, y = percentage)) + geom_point() + geom_jitter(width = 0.2)
```
```{r}
#Barplot for days per week playing imaginary games with child
test.baselineYear9 <- select(combine4, t5c13c, m3b4e) %>% filter(t5c13c > -1, m3b4e > -1, t5c13c < 7)
day1 <- filter(test.baselineYear9, m3b4e == 1)
dfDay1 <- table(day1)
day2 <- filter(test.baselineYear9, m3b4e == 2)
dfDay2 <- table(day2)
day3 <- filter(test.baselineYear9, m3b4e == 3)
dfDay3 <- table(day3)
day4 <- filter(test.baselineYear9, m3b4e == 4)
dfDay4 <- table(day4)
day5 <- filter(test.baselineYear9, m3b4e == 5)
dfDay5 <- table(day5)
day6 <- filter(test.baselineYear9, m3b4e == 6)
dfDay6 <- table(day6)
day7 <- filter(test.baselineYear9, m3b4e == 7)
dfDay7 <- table(day7)
View(newdf)
barplot(height = dfDay2, beside = T, col=c("aquamarine3","coral", "red", "blue", "green"))
legend("topleft", c("far below average", "below average", "average", "above average", "far above average"), pch=15,
col=c("aquamarine3","coral", "red", "blue", "green"),
bty="n")
barplot(height = dfDay3, beside = T, col=c("aquamarine3","coral", "red", "blue", "green"))
legend("topleft", c("far below average", "below average", "average", "above average", "far above average"), pch=15,
col=c("aquamarine3","coral", "red", "blue", "green"),
bty="n")
barplot(height = dfDay4, beside = T, col=c("aquamarine3","coral", "red", "blue", "green"))
legend("topleft", c("far below average", "below average", "average", "above average", "far above average"), pch=15,
col=c("aquamarine3","coral", "red", "blue", "green"),
bty="n")
barplot(height = dfDay5, beside = T, col=c("aquamarine3","coral", "red", "blue", "green"))
legend("topleft", c("far below average", "below average", "average", "above average", "far above average"), pch=15,
col=c("aquamarine3","coral", "red", "blue", "green"),
bty="n")
barplot(height = dfDay6, beside = T, col=c("aquamarine3","coral", "red", "blue", "green"))
legend("topleft", c("far below average", "below average", "average", "above average", "far above average"), pch=15,
col=c("aquamarine3","coral", "red", "blue", "green"),
bty="n")
barplot(height = dfDay7, beside = T, col=c("aquamarine3","coral", "red", "blue", "green"))
legend("topleft", c("far below average", "below average", "average", "above average", "far above average"), pch=15,
col=c("aquamarine3","coral", "red", "blue", "green"),
bty="n")
ggplot(data = as.data.frame(newdf), aes(m3b4e, t5c13c, size = Freq, color = Freq)) + geom_point() +
scale_color_gradient(low="blue", high="red")
#linear model for best feature against math score
linear_model <- lm(t5c13c ~ m3c3h, data=test.baselineYear9)
linear_model
```
```{r}
#### Verison 2: Popularity of all activities in the days/week format
# total grade
# Our predictor variables
features2 <- c('f1g9a', 'f1g9b', 'f1g9c', 'f1g9d', 'f1g9e', 'f1g9f', 'f1g9g', 'f1g9h', 'f1g9i', 'f1g9j', 'f1g9k', 'f1g9l','m2b18a', 'm2b18b', 'm2b18c', 'm2b18d', 'm2b18e', 'm2b18f', 'm2b18g', 'm2b18h','m2c3a','m3b4a', 'm3b4b', 'm3b4c', 'm3b4d', 'm3b4e', 'm3b4f', 'm3b4g', 'm3b4h', 'm3b4i', 'm3b4j', 'm3b4k', 'm3b4l', 'm3b4m','m3c3a','m3c3b', 'm3c3c', 'm3c3d', 'm3c3e', 'm3c3f', 'm3c3g', 'm3c3h', 'm3c3i', 'm3c3j', 'm3c3k', 'm3c3l', 'm3c3m','f3c3a', 'f3c3b', 'f3c3c', 'f3c3d', 'f3c3e', 'f3c3f', 'f3c3g', 'f3c3h', 'f3c3i', 'f3c3j', 'f3c3k', 'f3c3l', 'f3c3m','f3b4a', 'f3b4b', 'f3b4c', 'f3b4d', 'f3b4e', 'f3b4f', 'f3b4g', 'f3b4h', 'f3b4i', 'f3b4j', 'f3b4k', 'f3b4l', 'f3b4m','m4c3a', 'm4c3b', 'm4c3c', 'm4c3d', 'm4c3e', 'm4c3f','m4c3g', 'm4c3h','f4b4a1', 'f4b4a2', 'f4b4a3', 'f4b4a4', 'f4b4a5', 'f4b4a6', 'f4b4a7', 'f4b4a8', 'f4c3a', 'f4c3b', 'f4c3c', 'f4c3d', 'f4c3e', 'f4c3f', 'f4c3g', 'f4c3h','f2b36a', 'f2b36b', 'f2b36c', 'f2b36d', 'f2b36e', 'f2b36f', 'f2b36g', 'f2b36h', 'f2c3a', 'f2c3b', 'f2c3c', 'f2c3d', 'f2c3e', 'f2c3f', 'f2c3g', 'f2c3h', 'f2c3i', 'f2c3j','m2c3b', 'm2c3c', 'm2c3d', 'm2c3e', 'm2c3f', 'm2c3g', 'm2c3h', 'm2c3i', 'm2c3j')
features2 <- c("m3c3e","m4b4a1","m3b4h", "m4b4a5")
parent_involvement2 <- read.csv("/Users/jaredpraino/Documents/University of Washington/Senior Year/INFO370/final_project/project-fragile-families/data/FeaturesSelected.csv")
## convert 200's values
# 201 => 7
# 202 => 3
# 203 => 2
# 204 => 1
# 205 => 0
parent_involvement2[parent_involvement2==205] <- 0
parent_involvement2[parent_involvement2==204] <- 1
parent_involvement2[parent_involvement2==203] <- 2
parent_involvement2[parent_involvement2==202] <- 3
parent_involvement2[parent_involvement2==201] <- 7
# remove negative values
year9grades[year9grades<0] <- NA
bargraph <- ggplot(year9grades, aes(t5c13c, m3b4a)) + geom_bar()
bargraph
# grades and total grade
combine9_2 <- year9 %>% select(idnum,t5c13a,t5c13b,t5c13c) %>%
filter(t5c13a>-1,t5c13b>-1,t5c13c>-1)
year9grades <- year9grades %>% mutate(score=t5c13a + t5c13b + t5c13c)
combine9_2$t5c13a <- as.factor(combine9_2$t5c13a)
combine9_2$t5c13b <- as.factor(combine9_2$t5c13b)
combine9_2$t5c13c <- as.factor(combine9_2$t5c13c)
combine9_2$score <- as.factor(combine9_2$score)
# merge
parent_involvement2 <- inner_join(combine9_2, parent_involvement2, by="idnum")
parent_involvement2 <- parent_involvement2 %>% mutate(tally = 0)
View(finalSet)
View(year5grades)
# ## FUNCTIONS
# convert
# -6 to 0
# apply to c()
##c('m2b28','f2b24','m3b11','f3b11')
computed_mean2 <- function(column) {
response <- na.omit(year5grades[[column_name]])
weighted_mean <- (sum(response==0)*0 + sum(response==1)*1 + sum(response==2)*2 + sum(response==3)*3 + sum(response==4)*4 + sum(response==5)*5 + sum(response==6)*6 +sum(response==7)*7)/length(response)
fltr <- response > 3.5
year5grades[fltr,"tally2"] <- year5grades[fltr,"tally2"] + 1
print(weighted_mean)
return(year5grades)
}
for(i in 1:length(features2)){
column_name = features2[i]
year5grades <- computed_mean2(column_name)
}
computed_mean2 <- function(column) {
response <- na.omit(year9grades[[column_name]])
weighted_mean <- (sum(response==0)*0 + sum(response==1)*1 + sum(response==2)*2 + sum(response==3)*3 + sum(response==4)*4 + sum(response==5)*5 + sum(response==6)*6 +sum(response==7)*7)/length(response)
fltr <- response > weighted_mean
year9grades[fltr,"tally"] <- year9grades[fltr,"tally"] + 1
print(weighted_mean)
return(year9grades)
}
for(i in 1:length(features2)){
column_name = features2[i]
year9grades <- computed_mean2(column_name)
}
parent_involvement2$score
length <- length(features2)
parent_involvement2 <- parent_involvement2 %>% mutate(percentage = tally/124.0)
```
```{r}
#load required libraries
library(reshape2)
library(ggplot2)
```
```{r}
#Year 9 visualizations
#Boxplots
ggplot(data = parent_involvement2, aes(x = t5c13c, y = tally)) + geom_point() + geom_jitter(width = 0.2) + geom_boxplot() +labs(title="Math Performance v Parent Activity Count", x="Performance in Math at Year 9", y="# of Parent Activities") + scale_x_discrete(labels=c("Far Below Average","Below Average","Average","Above Average","Far Above Average")) +
geom_smooth(method = "lm", se=FALSE, color="black", aes(group=1))
# Involvment by reading
ggplot(data = parent_involvement2, aes(x = t5c13a, y = tally)) + geom_point() + geom_jitter(width = 0.2) + geom_boxplot() +labs(title="Reading Performance v Parent Activity Count", x="Performance in Reading at Year 9", y="# of Parent Activities")+ scale_x_discrete(labels=c("Far Below Average","Below Average","Average","Above Average","Far Above Average"))+
geom_smooth(method = "lm", se=FALSE, color="black", aes(group=1))
# Involvement by science
ggplot(data = parent_involvement2, aes(x = t5c13b, y = tally)) + geom_point() + geom_jitter(width = 0.2) + geom_boxplot() +labs(title="Science Performance v Parent Activity Count", x="Performance in Science at Year 9", y="# of Parent Activities")+ scale_x_discrete(labels=c("Far Below Average","Below Average","Average","Above Average","Far Above Average"))+
geom_smooth(method = "lm", se=FALSE, color="black", aes(group=1))
#Scatterplots with linear regression
#Involvement total score
ggplot(data = parent_involvement2, aes(x = score, y = tally)) + geom_point() + geom_jitter(width = 0.2) + geom_boxplot() +labs(title="Total Performance v Parent Activity Count", x="School Performance at Year 9", y="# of Parent Activities") + scale_x_discrete(labels=c("Far Below Average","","","Below Average","","","Average","","","Above Average","","","Far Above Average"))+ geom_smooth(method = "lm", se=FALSE, color="black", aes(group=1))
#involvement by math
ggplot(data = year9grades, aes(x = t5c13c, y = tally)) + geom_point() + geom_jitter(width = 0.2) + labs(title="Math Performance v Parent Activity Count", x="Performance in Math", y="# of Parent Activities") + scale_x_continuous(labels=c("Far Below Average","Below Average","Average","Above Average","Far Above Average"), breaks = c(1, 2, 3, 4, 5))
# Involvment by reading
ggplot(data = year9grades, aes(x = t5c13a, y = tally, color=marrystat)) + geom_point() + geom_jitter(width = 0.2) + geom_smooth(method=lm, se=FALSE, group=1) +labs(title="Reading Performance v Parent Activity Count", x="Performance in Reading", y="# of Parent Activities", color = "Marriage Status") + scale_x_continuous(labels=c("Far Below Average","Below Average","Average","Above Average","Far Above Average"), breaks = c(1, 2, 3, 4, 5))
# Involvement by science
ggplot(data = year9grades, aes(x = t5c13b, y = tally, color=marrystat)) + geom_point() + geom_jitter(width = 0.2) + geom_smooth(method=lm, se=FALSE, group=1) +labs(title="Science Performance v Parent Activity Count", x="Science Performance", y="# of Parent Activities", color = "Marriage Status") + scale_x_continuous(labels=c("Far Below Average","Below Average","Average","Above Average","Far Above Average"), breaks = c(1, 2, 3, 4, 5))
#Involvement total score
ggplot(data = year9grades, aes(x = score, y = tally, color=marrystat)) + geom_point() + geom_jitter(width = 0.2) + geom_smooth(method=lm, se=FALSE, group=1) + labs(title="Total Performance v Parent Activity Count", x="Total Performance", y="# of Parent Activities", color = "Marriage Status") + scale_x_continuous(labels=c("Far Below Average","Below Average","Average","Above Average","Far Above Average"), breaks = c(3, 6, 9, 12, 15))
#Involvement total score with marital status
ggplot(data = year9grades, (aes(x= score, color = marrystat, fill = marrystat))) + geom_bar(position = "dodge", width = 0.5)
#Violin Plot
install.packages("devtools")
library(devtools)
install_github("easyGgplot2", "kassambara")
library(easyGgplot2)
#violin plot for total score
ggplot2.violinplot(data=parent_involvement2, xName='score',yName='tally', addDot=FALSE, addMean=TRUE) + labs(title="Total Performance v Parent Activity Count", x="Total Performance", y="# of Parent Activities") + scale_x_discrete(labels=c("Far Below Average","","","Below Average","","","Average","","","Above Average","","","Far Above Average"))
```
```{r}
#Year 5 visualizations
#involvement by math
ggplot(data = year5grades, aes(x = kind_a7, y = tally2)) + geom_point() + geom_jitter(width = 0.2) + geom_boxplot() +labs(title="Math Performance v Parent Activity Count", x="Math Performance", y="# of Parent Activities", color = "Marriage Status") + scale_x_continuous(labels=c("Far Below Average","Below Average","Average","Above Average","Far Above Average"), breaks = c(1, 2, 3, 4, 5))
cor(year5grades$kind_a7, year5grades$tally2)
# Involvment by reading
ggplot(data = year5grades, aes(x = kind_a5, y = tally2, color = marrystat)) + geom_point() + geom_jitter(width = 0.2) + geom_smooth(method=lm, group=1, se=FALSE) +labs(title="Reading Performance v Parent Activity Count", x="Reading Performance", y="# of Parent Activities", color = "Marriage Status") + scale_x_continuous(labels=c("Far Below Average","Below Average","Average","Above Average","Far Above Average"), breaks = c(1, 2, 3, 4, 5))
cor(year5grades$kind_a5, year5grades$tally2)
# Involvement by science
ggplot(data = year5grades, aes(x = kind_a6, y = tally2, color = marrystat)) + geom_point() + geom_jitter(width = 0.2) + geom_smooth(method=lm, group=1, se=FALSE) +labs(title="Science Performance v Parent Activity Count", x="Science Performance", y="# of Parent Activities", color = "Marriage Status") + scale_x_continuous(labels=c("Far Below Average","Below Average","Average","Above Average","Far Above Average"), breaks = c(1, 2, 3, 4, 5))
cor(year5grades$kind_a6, year5grades$tally2)
#Involvement total score
ggplot(data = year9grades, aes(x = score, y = tally)) + geom_violin() + geom_smooth(method=lm, group=1, se=FALSE) +labs(title="Total Performance v Parent Activity Count", x="Total Performance", y="# of Parent Activities", color = "Marriage Status") + scale_x_continuous(labels=c("Far Below Average","Below Average","Average","Above Average","Far Above Average"), breaks = c(3, 6, 9, 12, 15))
cor(year5grades$scoreKind, year5grades$tally2)
#Math scores according to binary values
ggplot(data = year9gradesHighLow, aes(x = as.factor(abovebelowMath), y = tally)) + geom_violin() + geom_smooth(method=lm, se=FALSE, group=1) +labs(title="Math Performance v Parent Activity Count", x="Performance in Math", y="# of Parent Activities") + scale_x_discrete(labels=c("Far Below Average","Below Average","Average","Above Average","Far Above Average"))
```