-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhaplo.shtml
966 lines (824 loc) · 34.1 KB
/
haplo.shtml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
<html>
<body>
<head>
<link rel="stylesheet" href="plink.css" type="text/css">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=utf-8">
<title>PLINK: Whole genome data analysis toolset</title>
</head>
<!--<html>-->
<!--<title>PLINK</title>-->
<!--<body>-->
<font size="6" color="darkgreen"><b>plink...</b></font>
<div style="position:absolute;right:10px;top:10px;font-size:
75%"><em>Last original <tt>PLINK</tt> release is <b>v1.07</b>
(10-Oct-2009); <b>PLINK 1.9</b> is now <a href="plink2.shtml"> available</a> for beta-testing</em></div>
<h1>Whole genome association analysis toolset</h1>
<font size="1" color="darkgreen">
<em>
<a href="index.shtml">Introduction</a> |
<a href="contact.shtml">Basics</a> |
<a href="download.shtml">Download</a> |
<a href="reference.shtml">Reference</a> |
<a href="data.shtml">Formats</a> |
<a href="dataman.shtml">Data management</a> |
<a href="summary.shtml">Summary stats</a> |
<a href="thresh.shtml">Filters</a> |
<a href="strat.shtml">Stratification</a> |
<a href="ibdibs.shtml">IBS/IBD</a> |
<a href="anal.shtml">Association</a> |
<a href="fanal.shtml">Family-based</a> |
<a href="perm.shtml">Permutation</a> |
<a href="ld.shtml">LD calcualtions</a> |
<a href="haplo.shtml">Haplotypes</a> |
<a href="whap.shtml">Conditional tests</a> |
<a href="proxy.shtml">Proxy association</a> |
<a href="pimputation.shtml">Imputation</a> |
<a href="dosage.shtml">Dosage data</a> |
<a href="metaanal.shtml">Meta-analysis</a> |
<a href="annot.shtml">Result annotation</a> |
<a href="clump.shtml">Clumping</a> |
<a href="grep.shtml">Gene Report</a> |
<a href="epi.shtml">Epistasis</a> |
<a href="cnv.shtml">Rare CNVs</a> |
<a href="gvar.shtml">Common CNPs</a> |
<a href="rfunc.shtml">R-plugins</a> |
<a href="psnp.shtml">SNP annotation</a> |
<a href="simulate.shtml">Simulation</a> |
<a href="profile.shtml">Profiles</a> |
<a href="ids.shtml">ID helper</a> |
<a href="res.shtml">Resources</a> |
<a href="flow.shtml">Flow chart</a> |
<a href="misc.shtml">Misc.</a> |
<a href="faq.shtml">FAQ</a> |
<a href="gplink.shtml">gPLINK</a>
</em></font>
</p>
<table border=0>
<tr>
<td bgcolor="lightblue" valign="top" width=20%>
<font size="1">
<a href="index.shtml">1. Introduction</a> </p>
<a href="contact.shtml">2. Basic information</a> </p>
<ul>
<li> <a href="contact.shtml#cite">Citing PLINK</a>
<li> <a href="contact.shtml#probs">Reporting problems</a>
<li> <a href="news.shtml">What's new?</a>
<li> <a href="pdf.shtml">PDF documentation</a>
</ul>
<a href="download.shtml">3. Download and general notes</a> </p>
<ul>
<li> <a href="download.shtml#download">Stable download</a>
<li> <a href="download.shtml#latest">Development code</a>
<li> <a href="download.shtml#general">General notes</a>
<li> <a href="download.shtml#msdos">MS-DOS notes</a>
<li> <a href="download.shtml#nix">Unix/Linux notes</a>
<li> <a href="download.shtml#compilation">Compilation</a>
<li> <a href="download.shtml#input">Using the command line</a>
<li> <a href="download.shtml#output">Viewing output files</a>
<li> <a href="changelog.shtml">Version history</a>
</ul>
<a href="reference.shtml">4. Command reference table</a> </p>
<ul>
<li> <a href="reference.shtml#options">List of options</a>
<li> <a href="reference.shtml#output">List of output files</a>
<li> <a href="newfeat.shtml">Under development</a>
</ul>
<a href="data.shtml">5. Basic usage/data formats</a>
<ul>
<li> <a href="data.shtml#plink">Running PLINK</a>
<li> <a href="data.shtml#ped">PED files</a>
<li> <a href="data.shtml#map">MAP files</a>
<li> <a href="data.shtml#tr">Transposed filesets</a>
<li> <a href="data.shtml#long">Long-format filesets</a>
<li> <a href="data.shtml#bed">Binary PED files</a>
<li> <a href="data.shtml#pheno">Alternate phenotypes</a>
<li> <a href="data.shtml#covar">Covariate files</a>
<li> <a href="data.shtml#clst">Cluster files</a>
<li> <a href="data.shtml#sets">Set files</a>
</ul>
<a href="dataman.shtml">6. Data management</a> </p>
<ul>
<li> <a href="dataman.shtml#recode">Recode</a>
<li> <a href="dataman.shtml#recode">Reorder</a>
<li> <a href="dataman.shtml#snplist">Write SNP list</a>
<li> <a href="dataman.shtml#updatemap">Update SNP map</a>
<li> <a href="dataman.shtml#updateallele">Update allele information</a>
<li> <a href="dataman.shtml#refallele">Force reference allele</a>
<li> <a href="dataman.shtml#updatefam">Update individuals</a>
<li> <a href="dataman.shtml#wrtcov">Write covariate files</a>
<li> <a href="dataman.shtml#wrtclst">Write cluster files</a>
<li> <a href="dataman.shtml#flip">Flip strand</a>
<li> <a href="dataman.shtml#flipscan">Scan for strand problem</a>
<li> <a href="dataman.shtml#merge">Merge two files</a>
<li> <a href="dataman.shtml#mergelist">Merge multiple files</a>
<li> <a href="dataman.shtml#extract">Extract SNPs</a>
<li> <a href="dataman.shtml#exclude">Remove SNPs</a>
<li> <a href="dataman.shtml#zero">Zero out sets of genotypes</a>
<li> <a href="dataman.shtml#keep">Extract Individuals</a>
<li> <a href="dataman.shtml#remove">Remove Individuals</a>
<li> <a href="dataman.shtml#filter">Filter Individuals</a>
<li> <a href="dataman.shtml#attrib">Attribute filters</a>
<li> <a href="dataman.shtml#makeset">Create a set file</a>
<li> <a href="dataman.shtml#tabset">Tabulate SNPs by sets</a>
<li> <a href="dataman.shtml#snp-qual">SNP quality scores</a>
<li> <a href="dataman.shtml#geno-qual">Genotypic quality scores</a>
</ul>
<a href="summary.shtml">7. Summary stats</a>
<ul>
<li> <a href="summary.shtml#missing">Missingness</a>
<li> <a href="summary.shtml#oblig_missing">Obligatory missingness</a>
<li> <a href="summary.shtml#clustermissing">IBM clustering</a>
<li> <a href="summary.shtml#testmiss">Missingness by phenotype</a>
<li> <a href="summary.shtml#mishap">Missingness by genotype</a>
<li> <a href="summary.shtml#hardy">Hardy-Weinberg</a>
<li> <a href="summary.shtml#freq">Allele frequencies</a>
<li> <a href="summary.shtml#prune">LD-based SNP pruning</a>
<li> <a href="summary.shtml#mendel">Mendel errors</a>
<li> <a href="summary.shtml#sexcheck">Sex check</a>
<li> <a href="summary.shtml#pederr">Pedigree errors</a>
</ul>
<a href="thresh.shtml">8. Inclusion thresholds</a>
<ul>
<li> <a href="thresh.shtml#miss2">Missing/person</a>
<li> <a href="thresh.shtml#maf">Allele frequency</a>
<li> <a href="thresh.shtml#miss1">Missing/SNP</a>
<li> <a href="thresh.shtml#hwd">Hardy-Weinberg</a>
<li> <a href="thresh.shtml#mendel">Mendel errors</a>
</ul>
<a href="strat.shtml">9. Population stratification</a>
<ul>
<li> <a href="strat.shtml#cluster">IBS clustering</a>
<li> <a href="strat.shtml#permtest">Permutation test</a>
<li> <a href="strat.shtml#options">Clustering options</a>
<li> <a href="strat.shtml#matrix">IBS matrix</a>
<li> <a href="strat.shtml#mds">Multidimensional scaling</a>
<li> <a href="strat.shtml#outlier">Outlier detection</a>
</ul>
<a href="ibdibs.shtml">10. IBS/IBD estimation</a>
<ul>
<li> <a href="ibdibs.shtml#genome">Pairwise IBD</a>
<li> <a href="ibdibs.shtml#inbreeding">Inbreeding</a>
<li> <a href="ibdibs.shtml#homo">Runs of homozygosity</a>
<li> <a href="ibdibs.shtml#segments">Shared segments</a>
</ul>
<a href="anal.shtml">11. Association</a>
<ul>
<li> <a href="anal.shtml#cc">Case/control</a>
<li> <a href="anal.shtml#fisher">Fisher's exact</a>
<li> <a href="anal.shtml#model">Full model</a>
<li> <a href="anal.shtml#strat">Stratified analysis</a>
<li> <a href="anal.shtml#homog">Tests of heterogeneity</a>
<li> <a href="anal.shtml#hotel">Hotelling's T(2) test</a>
<li> <a href="anal.shtml#qt">Quantitative trait</a>
<li> <a href="anal.shtml#qtmeans">Quantitative trait means</a>
<li> <a href="anal.shtml#qtgxe">Quantitative trait GxE</a>
<li> <a href="anal.shtml#glm">Linear and logistic models</a>
<li> <a href="anal.shtml#set">Set-based tests</a>
<li> <a href="anal.shtml#adjust">Multiple-test correction</a>
</ul>
<a href="fanal.shtml">12. Family-based association</a>
<ul>
<li> <a href="fanal.shtml#tdt">TDT</a>
<li> <a href="fanal.shtml#ptdt">ParenTDT</a>
<li> <a href="fanal.shtml#poo">Parent-of-origin</a>
<li> <a href="fanal.shtml#dfam">DFAM test</a>
<li> <a href="fanal.shtml#qfam">QFAM test</a>
</ul>
<a href="perm.shtml">13. Permutation procedures</a>
<ul>
<li> <a href="perm.shtml#perm">Basic permutation</a>
<li> <a href="perm.shtml#aperm">Adaptive permutation</a>
<li> <a href="perm.shtml#mperm">max(T) permutation</a>
<li> <a href="perm.shtml#rank">Ranked permutation</a>
<li> <a href="perm.shtml#genedropmodel">Gene-dropping</a>
<li> <a href="perm.shtml#cluster">Within-cluster</a>
<li> <a href="perm.shtml#mkphe">Permuted phenotypes files</a>
</ul>
<a href="ld.shtml">14. LD calculations</a>
<ul>
<li> <a href="ld.shtml#ld1">2 SNP pairwise LD</a>
<li> <a href="ld.shtml#ld2">N SNP pairwise LD</a>
<li> <a href="ld.shtml#tags">Tagging options</a>
<li> <a href="ld.shtml#blox">Haplotype blocks</a>
</ul>
<a href="haplo.shtml">15. Multimarker tests</a>
<ul>
<li> <a href="haplo.shtml#hap1">Imputing haplotypes</a>
<li> <a href="haplo.shtml#precomputed">Precomputed lists</a>
<li> <a href="haplo.shtml#hap2">Haplotype frequencies</a>
<li> <a href="haplo.shtml#hap3">Haplotype-based association</a>
<li> <a href="haplo.shtml#hap3c">Haplotype-based GLM tests</a>
<li> <a href="haplo.shtml#hap3b">Haplotype-based TDT</a>
<li> <a href="haplo.shtml#hap4">Haplotype imputation</a>
<li> <a href="haplo.shtml#hap5">Individual phases</a>
</ul>
<a href="whap.shtml">16. Conditional haplotype tests</a>
<ul>
<li> <a href="whap.shtml#whap1">Basic usage</a>
<li> <a href="whap.shtml#whap2">Specifying type of test</a>
<li> <a href="whap.shtml#whap3">General haplogrouping</a>
<li> <a href="whap.shtml#whap4">Covariates and other SNPs</a>
</ul>
<a href="proxy.shtml">17. Proxy association</a>
<ul>
<li> <a href="proxy.shtml#proxy1">Basic usage</a>
<li> <a href="proxy.shtml#proxy2">Refining a signal</a>
<li> <a href="proxy.shtml#proxy2b">Multiple reference SNPs</a>
<li> <a href="proxy.shtml#proxy3">Haplotype-based SNP tests</a>
</ul>
<a href="pimputation.shtml">18. Imputation (beta)</a>
<ul>
<li> <a href="pimputation.shtml#impute1">Making reference set</a>
<li> <a href="pimputation.shtml#impute2">Basic association test</a>
<li> <a href="pimputation.shtml#impute3">Modifying parameters</a>
<li> <a href="pimputation.shtml#impute4">Imputing discrete calls</a>
<li> <a href="pimputation.shtml#impute5">Verbose output options</a>
</ul>
<a href="dosage.shtml">19. Dosage data</a>
<ul>
<li> <a href="dosage.shtml#format">Input file formats</a>
<li> <a href="dosage.shtml#assoc">Association analysis</a>
<li> <a href="dosage.shtml#output">Outputting dosage data</a>
</ul>
<a href="metaanal.shtml">20. Meta-analysis</a>
<ul>
<li> <a href="metaanal.shtml#basic">Basic usage</a>
<li> <a href="metaanal.shtml#opt">Misc. options</a>
</ul>
<a href="annot.shtml">21. Annotation</a>
<ul>
<li> <a href="annot.shtml#basic">Basic usage</a>
<li> <a href="annot.shtml#opt">Misc. options</a>
</ul>
<a href="clump.shtml">22. LD-based results clumping</a>
<ul>
<li> <a href="clump.shtml#clump1">Basic usage</a>
<li> <a href="clump.shtml#clump2">Verbose reporting</a>
<li> <a href="clump.shtml#clump3">Combining multiple studies</a>
<li> <a href="clump.shtml#clump4">Best single proxy</a>
</ul>
<a href="grep.shtml">23. Gene-based report</a>
<ul>
<li> <a href="grep.shtml#grep1">Basic usage</a>
<li> <a href="grep.shtml#grep2">Other options</a>
</ul>
<a href="epi.shtml">24. Epistasis</a>
<ul>
<li> <a href="epi.shtml#snp">SNP x SNP</a>
<li> <a href="epi.shtml#case">Case-only</a>
<li> <a href="epi.shtml#gene">Gene-based</a>
</ul>
<a href="cnv.shtml">25. Rare CNVs</a>
<ul>
<li> <a href="cnv.shtml#format">File format</a>
<li> <a href="cnv.shtml#maps">MAP file construction</a>
<li> <a href="cnv.shtml#loading">Loading CNVs</a>
<li> <a href="cnv.shtml#olap_check">Check for overlap</a>
<li> <a href="cnv.shtml#type_filter">Filter on type </a>
<li> <a href="cnv.shtml#gene_filter">Filter on genes </a>
<li> <a href="cnv.shtml#freq_filter">Filter on frequency </a>
<li> <a href="cnv.shtml#burden">Burden analysis</a>
<li> <a href="cnv.shtml#burden2">Geneset enrichment</a>
<li> <a href="cnv.shtml#assoc">Mapping loci</a>
<li> <a href="cnv.shtml#reg-assoc">Regional tests</a>
<li> <a href="cnv.shtml#qt-assoc">Quantitative traits</a>
<li> <a href="cnv.shtml#write_cnvlist">Write CNV lists</a>
<li> <a href="cnv.shtml#report">Write gene lists</a>
<li> <a href="cnv.shtml#groups">Grouping CNVs </a>
</ul>
<a href="gvar.shtml">26. Common CNPs</a>
<ul>
<li> <a href="gvar.shtml#cnv2"> CNPs/generic variants</a>
<li> <a href="gvar.shtml#cnv2b"> CNP/SNP association</a>
</ul>
<a href="rfunc.shtml">27. R-plugins</a>
<ul>
<li> <a href="rfunc.shtml#rfunc1">Basic usage</a>
<li> <a href="rfunc.shtml#rfunc2">Defining the R function</a>
<li> <a href="rfunc.shtml#rfunc2b">Example of debugging</a>
<li> <a href="rfunc.shtml#rfunc3">Installing Rserve</a>
</ul>
<a href="psnp.shtml">28. Annotation web-lookup</a>
<ul>
<li> <a href="psnp.shtml#psnp1">Basic SNP annotation</a>
<li> <a href="psnp.shtml#psnp2">Gene-based SNP lookup</a>
<li> <a href="psnp.shtml#psnp3">Annotation sources</a>
</ul>
<a href="simulate.shtml">29. Simulation tools</a>
<ul>
<li> <a href="simulate.shtml#sim1">Basic usage</a>
<li> <a href="simulate.shtml#sim2">Resampling a population</a>
<li> <a href="simulate.shtml#sim3">Quantitative traits</a>
</ul>
<a href="profile.shtml">30. Profile scoring</a>
<ul>
<li> <a href="profile.shtml#prof1">Basic usage</a>
<li> <a href="profile.shtml#prof2">SNP subsets</a>
<li> <a href="profile.shtml#dose">Dosage data</a>
<li> <a href="profile.shtml#prof3">Misc options</a>
</ul>
<a href="ids.shtml">31. ID helper</a>
<ul>
<li> <a href="ids.shtml#ex">Overview/example</a>
<li> <a href="ids.shtml#intro">Basic usage</a>
<li> <a href="ids.shtml#check">Consistency checks</a>
<li> <a href="ids.shtml#alias">Aliases</a>
<li> <a href="ids.shtml#joint">Joint IDs</a>
<li> <a href="ids.shtml#lookup">Lookups</a>
<li> <a href="ids.shtml#replace">Replace values</a>
<li> <a href="ids.shtml#match">Match files</a>
<li> <a href="ids.shtml#qmatch">Quick match files</a>
<li> <a href="ids.shtml#misc">Misc.</a>
</ul>
<a href="res.shtml">32. Resources</a>
<ul>
<li> <a href="res.shtml#hapmap">HapMap (PLINK format)</a>
<li> <a href="res.shtml#teach">Teaching materials</a>
<li> <a href="res.shtml#mmtests">Multimarker tests</a>
<li> <a href="res.shtml#sets">Gene-set lists</a>
<li> <a href="res.shtml#glist">Gene range lists</a>
<li> <a href="res.shtml#attrib">SNP attributes</a>
</ul>
<a href="flow.shtml">33. Flow-chart</a>
<ul>
<li> <a href="flow.shtml">Order of commands</a>
</ul>
<a href="misc.shtml">34. Miscellaneous</a>
<ul>
<li> <a href="misc.shtml#opt">Command options/modifiers</a>
<li> <a href="misc.shtml#output">Association output modifiers</a>
<li> <a href="misc.shtml#species">Different species</a>
<li> <a href="misc.shtml#bugs">Known issues</a>
</ul>
<a href="faq.shtml">35. FAQ & Hints</a>
</p>
<a href="gplink.shtml">36. gPLINK</a>
<ul>
<li> <a href="gplink.shtml">gPLINK mainpage</a>
<li> <a href="gplink_tutorial/index.html">Tour of gPLINK</a>
<li> <a href="gplink.shtml#overview">Overview: using gPLINK</a>
<li> <a href="gplink.shtml#locrem">Local versus remote modes</a>
<li> <a href="gplink.shtml#start">Starting a new project</a>
<li> <a href="gplink.shtml#config">Configuring gPLINK</a>
<li> <a href="gplink.shtml#plink">Initiating PLINK jobs</a>
<li> <a href="gplink.shtml#view">Viewing PLINK output</a>
<li> <a href="gplink.shtml#hv">Integration with Haploview</a>
<li> <a href="gplink.shtml#down">Downloading gPLINK</a></p>
</ul>
</font>
</td><td width=5%>
<td valign="top">
</p>
<h1>Multimarker haplotype tests</h1>
All tests described above are based on single SNP tests. It is also
possible to impute haplotypes based on multimarker predictors using
the standard E-M algorithm and to perform simple tests based on the
distribution of probabilistically-inferred set of haplotypes for each
individual.
</p>
As well as the autosomes, X and haploid chromosomes should be
appropriately handled. Phasing can either be based on a sample of
unrelated individuals, or certain kinds of family data. First, all
founders are phased using the E-M algorithm; then all descendents of
these founders are phased given the set of possible parental phases
and assuming random-mating. Currently it is not possible to phase
sibships without parents. The current implementation of the phasing
and haplotype testing algorithm is designed focus on relatively small
regions of the genome, rather than to phase whole chromosomes at once.
</p>
<strong>HINT!</strong> Another approach to haplotype-testing can be
found under the page describing <a href="proxy.shtml">proxy
association</a>. This set of methods essentially just provide a
different interface to the exact same E-M phasing and
haplotype-testing algorithms, one that is centered around a specific
reference SNP.
</p>
<a name="hap1">
<h2>Specification of haplotypes to be estimated</h2>
</a></p>
Haplotype testing in PLINK requires that the user supplies a file
listing the haplotypes to be tested (Some precomputed lists are
given <a href="#precomputed">below</a> which might be useful in some
circumstances.) The formats of these files are described below. An
alternative is to specify a simple, sliding window of fixed haplotype
size (also described below).
</p>
The command
<h5>
plink --file mydata --hap myfile.hlist
</h5></p>
will read the file <tt>myfile.hlist</tt>, each row of which
is expected to have one of the three following formats:
</p>
<b><em>1) Particular allele specified</em></b></p>
The first format specifies a particular haplotype at a given locus. Two
example rows of this format are:
<pre>
rs1001 5 0 201 1 2 TC snp1 snp2
rs1002 5 0 202 A C TTA snp1 snp3 snp4
...
</pre>
The columns represent:
<pre>
Col 1 : Imputed SNP name
Col 2 : Imputed SNP chromosome
Col 3 : Imputed SNP genetic distance (default: Morgan coding)
Col 4 : Imputed SNP physical position (bp units)
Col 5 : Imputed SNP allele 1 name
Col 6 : Imputed SNP allele 2 name
Col 7 : Tag SNP allele/haplotype that equals imputed SNP allele 1
Col 8+ : Tag SNP(s) [in same order as haplotype in Col 7]
</pre>
Here we have explicitly specified the <tt>TC</tt> and <tt>TTA</tt>
haplotypes. For example, in the first case, SNPs <tt>snp1</tt> and
<tt>snp2</tt> may have all four common haplotypes seen in the sample,
<tt>TT</tt>, <tt>CT</tt> and <tt>CC</tt> as well as <tt>TC</tt>; this
command would select only the <tt>TC</tt> haplotype to be imputed, or as
the focus of haplotype analysis. The imputed SNP, <tt>rs1001</tt>
therefore has the following alleles:
<pre>
TC/TC 1/1
TC/* 1/2
*/* 2/2
</pre>
and will be positioned on chromosome 5, and base-positon 201. Haplotypes
other than <tt>TC</tt> will be coded <tt>2</tt>.
</p>
The imputed SNP details (alleles, etc) will only be used if the
<tt>--hap-impute</tt> option has been requested. For <tt>--hap-assoc</tt>
and <tt>--hap-tdt</tt> options (which consider all possible phases rather
than just imputing the most likely) these are not considered (but they are
still required in this input file).
</p>
<b><em>2) 'Wildcard' specification</em></b></p>
Alternatively, all haplotypes at a given locus above the <tt>--maf</tt>
threshold can be automatically estimated by entering a line in
<tt>myfile.hlist</tt> as
follows:
<pre>
* snp1 snp2 snp3
* snp1 snp2
</pre>
i.e. where the first character is an asterisk <tt>*</tt>, which would,
taking just the first line for example, create all 3-SNP haplotypes for
the SNPs labelled in the MAP file as <tt>snp1</tt>, <tt>snp2</tt> and
<tt>snp3</tt>, above
the minor allele frequency threshold. If the haplotypes were, for example,
<tt>AAC</tt>, <tt>AGG</tt> and <tt>TGG</tt>, then the following names
would be automatically assigned:
<pre>
H1_AAC_
H1_AGG_
H1_TGG_
</pre>
Haplotypes based on subsequent lines in the file would be labelled
<tt>H2_*_</tt>, <tt>H3_*_</tt>, etc. In this case, all two-SNP haplotypes
for <tt>snp1</tt> and <tt>snp2</tt> would start <tt>H2_</tt>. The
chromosome and position flags for the new haplotypes are set to equal the
first SNP of the set.
</p>
<b><em>3) 'Named wildcard' specification</em></b></p>
Finally, this format is identical to the previous wildcard specification,
except a name can be given to the haplotype. This uses <tt>**</tt> instead of
<tt>*</tt> to start a row; the second entry is then interpreted as the name
of the haplotype locus rather than the first SNP. For example:
<pre>
** BLOCK1 snp1 snp2 snp3
** BLOCK2 snp6 snp7
</pre>
The only difference is that <tt>BLOCK1</tt> and <tt>BLOCK2</tt> names will be used
in the output instead of <tt>H1</tt> and <tt>H2</tt> being assigned automatically.
</p>
<b><em>4) Sliding window specification</em></b></p>
Finally, instead of specifying a haplotype file with the <tt>--hap</tt> option,
you can use the <tt>--hap-window</tt> option to specifty all haplotypes in
sliding windows of a fixed number of SNPs (shifting 1 SNP at a time).
<h5>
plink --bfile mydata --hap-window 3 --hap-assoc
</h5></p>
to form all 3-SNP haplotypes across the entire dataset
(respecting chromosome boundaries, however). In this case
the windows will be automatically named <tt>WIN1</tt>, <tt>WIN2</tt>, etc. This command can take a
comma-delimited list of values, e.g.
<pre>
--hap-window 1,2,3
</pre>
to perform all single SNP tests (1-SNP haplotypes) as well as sliding
windows of all 2-SNP and 3-SNP haplotypes.
</p>
<a name="precomputed">
<h2>Precomputed lists of multimarker tests</h2></a>
</p>
Below are links to some PLINK-formatted lists of multimarker tests
selected for Affymetrix 500K and Illumina whole genome products, based
on consideration of the CEU Phase 2 HapMap (at r-squared=0.8
threshold). One should download the appropriate file and run with
the <tt>--hap</tt> option (after ensuring that any strand issues have
been resolved). These files were generated by Itsik Pe'er and others,
as described in this manuscript:
<pre>
Pe'er I, de Bakker PI, Maller J, Yelensky R, Altshuler D
& Daly MJ (2006) Evaluating and improving power in whole-genome
association studies using fixed marker sets. Nat Genet, 38(6): 605-6.
</pre>
<ul>
<li>
<a href="../dist/mmtests/Affymetrix.GeneChip.500k.both.CEU.0.8.tests.zip">
Affymetrix.GeneChip.500k.both.CEU.0.8.tests.zip
</a>
<li>
<a href="../dist/mmtests/Illumina.HumanHap.300k.CEU.0.8.tests.zip">
Illumina.HumanHap.300k.CEU.0.8.tests.zip
</a>
<li>
<a href="../dist/mmtests/Illumina.HumanHap.550k.CEU.0.8.tests.zip">
Illumina.HumanHap.550k.CEU.0.8.tests.zip
</a>
<li>
<a href="../dist/mmtests/Illumina.HumanHap.650k.CEU.0.8.tests.zip">
Illumina.HumanHap.650k.CEU.0.8.tests.zip
</a>
</ul>
These tables list all tags for every common HapMap SNP, at the given
r-squared threshold. The same haplotype may therefore appear multiple
times (i.e. if it tags more than 1 SNP). The haplotypes are specified
in terms of the + (positive) strand relative to the HapMap. You might
need to reformat your data prior to using these files (using the
<tt>--flip</tt> command, for instance) before you can use them.
</p>
<strong>Note</strong> These tables obviously assume that all tags on
present in the final, post-quality-control dataset: i.e. if certain
SNPs have been removed, it will be better to reselect the
predictors -- that is, these lists should really only be used as a
first pass, for convenience.
</p>
<a name="hap2">
<h2>Estimating haplotype frequencies</h2></a>
</p>
To obtain the haplotype frequencies for all haplotypes in each window,
use the option:
<h5>
plink --file mydata --hap myfile.hlist --hap-freq
</h5></p>
which will generate the file
<pre>
plink.freq.hap
</pre>
which contains the fields (no header)
<pre>
LOCUS Haplotype locus / window name
HAPLOTYPE Haplotype identifer
F Frequency in sample (founders)
</pre>
<a name="hap3">
<h2>Testing for haplotype-based case/control and quantitative trait association</h2></a>
</p>
In a population-based sample of unrelated individuals, case/control and quantitative
traits can be analysed for haplotype associations, using the option, for example,
<h5>
plink --file mydata --hap myfile.hlist --hap-assoc
</h5></p>
which will generate haplotype-specific tests (1df) for both disease and
quantitative traits; for disease traits only, an omnibus association statistic
will also be computed. This option generates the file
<pre>
plink.assoc.hap
</pre>
which contains the following fields:
<pre>
LOCUS Haplotype locus / window name
HAPLOTYPE Haplotype identifer / "OMNIBUS"
F_A Frequency in cases
F_U Frequency in controls
CHISQ Test for association
DF Degrees of freedom
P Asymptotic p-value
SNPS SNPs forming the haplotype
</pre>
or
<pre>
plink.qassoc.hap
</pre>
which contains the following fields:
<pre>
LOCUS Haplotype locus / window name
HAPLOTYPE Haplotype identifer
NANAL Number of individuals in analysis
BETA Regression coefficient
RSQ Proportion variance explained
STAT Test statistic (T)
P Asymptotic p-value
SNPS SNPs forming the haplotype
</pre>
In all cases, the tests are based on the expected number of haplotypes
each individual has (which might be fractional). The case/control
omnibus test is a H-1 degree of freedom test, if there are H
haplotypes.
<a name="hap3c">
<h2>Haplotype-based association tests with GLMs</h2></a>
</p>
The following options use linear and logistic regression to perform
haplotye-based association analysis. The two main
commands, <tt>--hap-linear</tt> and <tt>--hap-logistic</tt> are
analogous to <tt>--linear</tt> and <tt>--logistic</tt>,
described <a href="anal.shtml#glm">here</a>.
</p>
The main advantages of these commands over
the <a href="#hap3">above</a> approaches, are that they can include
one or more covariates and allow for permutation. The disadvantage is
that they will run a little more slowly.
</p>
The basic command is
<h5>
plink --file mydata --hap myfile.hlist --hap-logistic
</h5></p>
(alternatively, for a quantitative outcome, use <tt>--hap-linear</tt>;
aside from minor differences in the output, the discussion below
applies equally to both forms of these commands).
</p>
<strong>NOTE</strong> Here the haplotypes to be tested are specified in a file with
the <tt>--hap</tt> command, but one could alternatively use a sliding
window analysis, e.g. to cover all 2, 3 and 4-SNP windows, e.g. <tt>--hap-window 2,3,4</tt>
</p>
The output is in the file
<pre>
plink.assoc.hap.logistic
</pre>
(or <tt>plink.assoc.hap.linear</tt>) which has the fields:
<pre>
NSNP Number of SNPs in this haplotype
NHAP Number of common haplotypes (threshold determined by <tt>--mhf</tt>, 0.01 default)
CHR Chromosome code
BP1 Physical position of left-most (5') SNP (base-pair)
BP2 Physical position of right-most (3') SNP (base-pair)
SNP1 SNP ID of left-most (5') SNP
SNP2 SNP ID of left-most (3') SNP
HAPLOTYPE Haplotype
F Frequency in sample
OR Estimated odds ratio
STAT Test statistic (T from Wald test)
P Asymptotic p-value
</pre>
for example: (<em>spaces between rows added for clarity</em>)
<pre>
NSNP NHAP CHR BP1 BP2 SNP1 SNP2 HAPLOTYPE F OR STAT P
2 2 22 15462210 15462259 rs11089263 rs11089264 AA 0.345 1.31 0.693 0.405
2 2 22 15462210 15462259 rs11089263 rs11089264 CG 0.655 0.762 0.693 0.405
3 3 22 15688352 15690057 rs165650 rs165757 GTG 0.117 0.544 1.46 0.227
3 3 22 15688352 15690057 rs165650 rs165757 CTG 0.0167 0.406 0.525 0.469
3 3 22 15688352 15690057 rs165650 rs165757 CGA 0.867 1.7 1.56 0.212
5 5 22 15691787 15699058 rs175152 rs165914 ACACT 0.129 0.515 2.13 0.144
5 5 22 15691787 15699058 rs175152 rs165914 CCACT 0.236 0.917 0.0566 0.812
5 5 22 15691787 15699058 rs175152 rs165914 CCACG 0.0169 1.74 0.198 0.656
5 5 22 15691787 15699058 rs175152 rs165914 CTGTG 0.085 0.565 1.11 0.292
5 5 22 15691787 15699058 rs175152 rs165914 CTATG 0.533 1.88 3.36 0.0666
5 4 22 15902049 15939567 rs2845389 rs4819958 GTAAA 0.0857 0.719 0.388 0.533
5 4 22 15902049 15939567 rs2845389 rs4819958 GTGAA 0.32 1.04 0.0185 0.892
5 4 22 15902049 15939567 rs2845389 rs4819958 CCGGG 0.303 0.548 2.97 0.0847
5 4 22 15902049 15939567 rs2845389 rs4819958 GCGGG 0.292 1.82 3.28 0.0701
</pre>
which illustrates results for the first four haplotype window positions (e.g. the second window position
contains 3 SNPs, and there are 3 common haplotypes, <tt>GTG</tt>, <tt>CTG</tt> and <tt>CGA</tt>).
</p>
The additional command
<pre>
--hap-omnibus
</pre>
instructs PLINK to perform instead of H-1 haplotype-specific tests for
H haplotypes (of each versus all others), a single H-1 df omnibus test
(jointly estimating a testing all haplotype effects at that
position). This will result in a single row per window, with the
following slightly different format. Now the first four window
positions have only a single line of output, and a single p-value (the
degree of freedom will be <tt>NHAP</tt>-1). Also, there is no haplotype-specific
output (e.g. haplotype names, frequencies or odds ratios):
<pre>
NSNP NHAP CHR BP1 BP2 SNP1 SNP2 STAT P
2 2 22 15462210 15462259 rs11089263 rs11089264 0.693 0.405
3 3 22 15688352 15690057 rs165650 rs165757 1.57 0.457
5 5 22 15691787 15699058 rs175152 rs165914 5.08 0.279
5 4 22 15902049 15939567 rs2845389 rs4819958 4.4 0.222
</pre>
As mentioned above, covariates can be incorporated with the
<pre>
--covar myfile.txt
</pre>
command. Note that the coefficients and p-values for the covariates
are not listed in these output files (unlike the default for
the <tt>--logistic</tt> command).
</p>
Permutation procedures can be used, with the command
<pre>
--mperm 10000
</pre>
to specify, for example, ten thousand permutations. The empirical p-values from
this analysis are listed in the file
<pre>
plink.assoc.hap.logistic.mperm
</pre>
Note that there will be no SNP name listed in the permutation output file: rather, it
will be in the form:
<pre>
TEST EMP1 EMP2
T0 0.4158 1
T1 0.1782 1
T2 0.2475 1
T3 0.1683 1
...
</pre>
The number of rows, and the order of the output, will be the same as for the
asymptotic results file, so they can be easily aligned. e.g. here <tt>T0</tt>
would correspond to either the first omnibus test, or the first haplotype-specific
test, <tt>T1</tt> the second, etc.
</p>
<a name="hap3b">
<h2>Haplotype-based TDT association test</h2></a>
</p>
If the case/control data are being analysed, use the option
<h5>
plink --file mydata --hap myfile.hlist --hap-tdt
</h5></p>
to test for TDT haplotype-specific association. This
option generates the file
<pre>
plink.tdt.hap
</pre>
which contains the following fields:
<pre>
LOCUS Haplotype locus / window name
HAPLOTYPE Haplotype identifer / "OMNIBUS"
T Number of transmitted haplotypes
U Number of untransmitted haplotypes
CHISQ Test for association
P Asymptotic p-value
</pre>
<a name="hap4">
<h2>Imputing multimarker haplotypes</h2></a>
</p>
If the <tt>--hap-impute</tt> option is also given, this will create two
new files:
<h5>
plink --file mydata --hap myfile.hlist --hap-impute
</h5></p>
will generate the file:
<pre>
plink.impute.ped
plink.impute.map
</pre>
based on the most likely E-M phase reconstructed haplotypes. One could then
simply treat the most likely haplotype assignments as SNPs and use all the
standard analytic options of <tt>PLINK</tt>, e.g. <tt>--assoc</tt>.</p>
<strong>Warning</strong> <b><em>This represents a quick and dirty
approach to haplotype testing</em></b>. Depending on how accurately
the haplotypes have been imputed (i.e. the range of maximum posterior
probabilities per individual) some bias will be introduced into
subsequent tests based on these 'SNPs'. Typically, as long as cases
and controls are phased together, as they are here, this bias is
likely to be quite small and so should not substantively impact
results (unpublished simulation results, SMP). Furthermore, exact
methods can be used to refine the association for the putative hits
discovered by this approach.
</p>
<strong>NOTE</strong> Future versions will allow for a binary PED
file to be created from the <tt>--hap-impute</tt> command. You do
<b>not</b> need to specify <tt>--recode</tt> when using
<tt>--hap-impute</tt>.
<a name="hap5">
<h2>Tabulating individuals' haplotype phases</h2></a>
</p>
To obtain a summary of all possible haplotype phases and the corresponding
posterior probabilities (i.e. given genotype data), use the command:
<h5>
plink --file mydata --hap myfile.hlist --hap-phase
</h5></p>
which will generate the file
<pre>
plink.phase-*
</pre>
where <tt>*</tt> is the name of the 'window' (i.e. the row of the
haplotype list file). That is, if the haplotype list contains
multiple rows, then multiple phase files will be generated.
These files contain the fields, where each row is one possible
haplotype phase for one individual:
<pre>
FID Family ID
IID Individual ID
PH Phase number for that individual (0-based)
HAP1 First haplotype, H1
HAP2 Second haplotype, H2
POSTPROB P(H1,H2 | G )
BEST 1 if most likely phase for that individual
</pre>
</td>
<td width=5%> </td>
</tr>
</table>
<hr>
<em>
This document last modified Wednesday, 25-Jan-2017 11:39:27 EST
</em>
</body>
<HEAD>
<META HTTP-EQUIV="PRAGMA" CONTENT="NO-CACHE">
</HEAD>
</html>