diff --git a/operations/nlp/dffml_operations_nlp/tools/pgvector.py b/operations/nlp/dffml_operations_nlp/tools/pgvector.py new file mode 100644 index 0000000000..2753278480 --- /dev/null +++ b/operations/nlp/dffml_operations_nlp/tools/pgvector.py @@ -0,0 +1,436 @@ +r""" +- References + - https://python.langchain.com/docs/integrations/vectorstores/pgvector/ + - https://langchain-doc.readthedocs.io/en/latest/modules/indexes/chain_examples/vector_db_qa_with_sources.html + - https://github.com/pgvector/pgvector?tab=readme-ov-file#dockerq + +pip install langchain_community tiktoken langchain-openai langchainhub chromadb langchain langgraph +LangGraph Retrieval Agent +Retrieval Agents are useful when we want to make decisions about whether to retrieve from an index. + +To implement a retrieval agent, we simple need to give an LLM access to a retriever tool. + +We can incorperate this into LangGraph. + +Retriever +First, we index 3 blog posts. +""" + +from langchain.text_splitter import RecursiveCharacterTextSplitter +from langchain_community.document_loaders import WebBaseLoader +from langchain_community.vectorstores import Chroma +from langchain_openai import OpenAIEmbeddings + +urls = [ + "https://lilianweng.github.io/posts/2023-06-23-agent/", + "https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/", + "https://lilianweng.github.io/posts/2023-10-25-adv-attack-llm/", +] + +docs = [WebBaseLoader(url).load() for url in urls] +docs_list = [item for sublist in docs for item in sublist] + +text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder( + chunk_size=100, chunk_overlap=50 +) +doc_splits = text_splitter.split_documents(docs_list) + +# Add to vectorDB +vectorstore = Chroma.from_documents( + documents=doc_splits, + collection_name="rag-chroma", + embedding=OpenAIEmbeddings(), +) +retriever = vectorstore.as_retriever() + +""" +Then we create a retriever tool. +""" + +from langchain.tools.retriever import create_retriever_tool + +tool = create_retriever_tool( + retriever, + "retrieve_blog_posts", + "Search and return information about Lilian Weng blog posts on LLM agents, prompt engineering, and adversarial attacks on LLMs.", +) + +tools = [tool] + +from langgraph.prebuilt import ToolExecutor + +tool_executor = ToolExecutor(tools) + +""" +Agent state +We will defined a graph. + +A state object that it passes around to each node. + +Our state will be a list of messages. + +Each node in our graph will append to it. +""" + +import operator +from typing import Annotated, Sequence, TypedDict + +from langchain_core.messages import BaseMessage + + +class AgentState(TypedDict): + messages: Annotated[Sequence[BaseMessage], operator.add] + + +""" +Nodes and Edges +We can lay out an agentic RAG graph like this: + +The state is a set of messages +Each node will update (append to) state +Conditional edges decide which node to visit next +Screenshot 2024-02-14 at 3.43.58 PM.png +""" + +import json +import operator +from typing import Annotated, Sequence, TypedDict + +from langchain import hub +from langchain.output_parsers import PydanticOutputParser +from langchain.prompts import PromptTemplate +from langchain_core.utils.function_calling import convert_to_openai_function +from langchain_core.utils.function_calling import convert_to_openai_tool +from langchain_core.messages import BaseMessage, FunctionMessage +from langchain.output_parsers.openai_tools import PydanticToolsParser +from langchain_core.pydantic_v1 import BaseModel, Field +from langchain_openai import ChatOpenAI +from langgraph.prebuilt import ToolInvocation +from langchain_core.output_parsers import StrOutputParser + +### Edges + + +def should_retrieve(state): + """ + Decides whether the agent should retrieve more information or end the process. + + This function checks the last message in the state for a function call. If a function call is + present, the process continues to retrieve information. Otherwise, it ends the process. + + Args: + state (messages): The current state + + Returns: + str: A decision to either "continue" the retrieval process or "end" it + """ + + print("---DECIDE TO RETRIEVE---") + messages = state["messages"] + last_message = messages[-1] + + # If there is no function call, then we finish + if "function_call" not in last_message.additional_kwargs: + print("---DECISION: DO NOT RETRIEVE / DONE---") + return "end" + # Otherwise there is a function call, so we continue + else: + print("---DECISION: RETRIEVE---") + return "continue" + + +def grade_documents(state): + """ + Determines whether the retrieved documents are relevant to the question. + + Args: + state (messages): The current state + + Returns: + str: A decision for whether the documents are relevant or not + """ + + print("---CHECK RELEVANCE---") + + # Data model + class grade(BaseModel): + """Binary score for relevance check.""" + + binary_score: str = Field(description="Relevance score 'yes' or 'no'") + + # LLM + model = ChatOpenAI( + temperature=0, model="gpt-4-0125-preview", streaming=True + ) + + # Tool + grade_tool_oai = convert_to_openai_tool(grade) + + # LLM with tool and enforce invocation + llm_with_tool = model.bind( + tools=[convert_to_openai_tool(grade_tool_oai)], + tool_choice={"type": "function", "function": {"name": "grade"}}, + ) + + # Parser + parser_tool = PydanticToolsParser(tools=[grade]) + + # Prompt + prompt = PromptTemplate( + template="""You are a grader assessing relevance of a retrieved document to a user question. \n + Here is the retrieved document: \n\n {context} \n\n + Here is the user question: {question} \n + If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant. \n + Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.""", + input_variables=["context", "question"], + ) + + # Chain + chain = prompt | llm_with_tool | parser_tool + + messages = state["messages"] + last_message = messages[-1] + + question = messages[0].content + docs = last_message.content + + score = chain.invoke({"question": question, "context": docs}) + + grade = score[0].binary_score + + if grade == "yes": + print("---DECISION: DOCS RELEVANT---") + return "yes" + + else: + print("---DECISION: DOCS NOT RELEVANT---") + print(grade) + return "no" + + +### Nodes + + +def agent(state): + """ + Invokes the agent model to generate a response based on the current state. Given + the question, it will decide to retrieve using the retriever tool, or simply end. + + Args: + state (messages): The current state + + Returns: + dict: The updated state with the agent response apended to messages + """ + print("---CALL AGENT---") + messages = state["messages"] + model = ChatOpenAI( + temperature=0, streaming=True, model="gpt-4-0125-preview" + ) + functions = [convert_to_openai_function(t) for t in tools] + model = model.bind_functions(functions) + response = model.invoke(messages) + # We return a list, because this will get added to the existing list + return {"messages": [response]} + + +def retrieve(state): + """ + Uses tool to execute retrieval. + + Args: + state (messages): The current state + + Returns: + dict: The updated state with retrieved docs + """ + print("---EXECUTE RETRIEVAL---") + messages = state["messages"] + # Based on the continue condition + # we know the last message involves a function call + last_message = messages[-1] + # We construct an ToolInvocation from the function_call + action = ToolInvocation( + tool=last_message.additional_kwargs["function_call"]["name"], + tool_input=json.loads( + last_message.additional_kwargs["function_call"]["arguments"] + ), + ) + # We call the tool_executor and get back a response + response = tool_executor.invoke(action) + function_message = FunctionMessage(content=str(response), name=action.tool) + + # We return a list, because this will get added to the existing list + return {"messages": [function_message]} + + +def rewrite(state): + """ + Transform the query to produce a better question. + + Args: + state (messages): The current state + + Returns: + dict: The updated state with re-phrased question + """ + + print("---TRANSFORM QUERY---") + messages = state["messages"] + question = messages[0].content + + msg = [ + HumanMessage( + content=f""" \n + Look at the input and try to reason about the underlying semantic intent / meaning. \n + Here is the initial question: + \n ------- \n + {question} + \n ------- \n + Formulate an improved question: """, + ) + ] + + # Grader + model = ChatOpenAI( + temperature=0, model="gpt-4-0125-preview", streaming=True + ) + response = model.invoke(msg) + return {"messages": [response]} + + +def generate(state): + """ + Generate answer + + Args: + state (messages): The current state + + Returns: + dict: The updated state with re-phrased question + """ + print("---GENERATE---") + messages = state["messages"] + question = messages[0].content + last_message = messages[-1] + + question = messages[0].content + docs = last_message.content + + # Prompt + prompt = hub.pull("rlm/rag-prompt") + + # LLM + llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, streaming=True) + + # Post-processing + def format_docs(docs): + return "\n\n".join(doc.page_content for doc in docs) + + # Chain + rag_chain = prompt | llm | StrOutputParser() + + # Run + response = rag_chain.invoke({"context": docs, "question": question}) + return {"messages": [response]} + + +""" +Graph +Start with an agent, call_model +Agent make a decision to call a function +If so, then action to call tool (retriever) +Then call agent with the tool output added to messages (state) +""" + +from langgraph.graph import END, StateGraph + +# Define a new graph +workflow = StateGraph(AgentState) + +# Define the nodes we will cycle between +workflow.add_node("agent", agent) # agent +workflow.add_node("retrieve", retrieve) # retrieval +workflow.add_node("rewrite", rewrite) # retrieval +workflow.add_node("generate", generate) # retrieval +# Call agent node to decide to retrieve or not +workflow.set_entry_point("agent") + +# Decide whether to retrieve +workflow.add_conditional_edges( + "agent", + # Assess agent decision + should_retrieve, + { + # Call tool node + "continue": "retrieve", + "end": END, + }, +) + +# Edges taken after the `action` node is called. +workflow.add_conditional_edges( + "retrieve", + # Assess agent decision + grade_documents, + { + "yes": "generate", + "no": "rewrite", + }, +) +workflow.add_edge("generate", END) +workflow.add_edge("rewrite", "agent") + +# Compile +app = workflow.compile() +import pprint +from langchain_core.messages import HumanMessage + +inputs = { + "messages": [ + HumanMessage( + content="What does Lilian Weng say about the types of agent memory?" + ) + ] +} +for output in app.stream(inputs): + for key, value in output.items(): + pprint.pprint(f"Output from node '{key}':") + pprint.pprint("---") + pprint.pprint(value, indent=2, width=80, depth=None) + pprint.pprint("\n---\n") +r""" +---CALL AGENT--- +"Output from node 'agent':" +'---' +{ 'messages': [ AIMessage(content='', additional_kwargs={'function_call': {'arguments': '{"query":"types of agent memory"}', 'name': 'retrieve_blog_posts'}})]} +'\n---\n' +---DECIDE TO RETRIEVE--- +---DECISION: RETRIEVE--- +---EXECUTE RETRIEVAL--- +"Output from node 'retrieve':" +'---' +{ 'messages': [ FunctionMessage(content='Table of Contents\n\n\n\nAgent System Overview\n\nComponent One: Planning\n\nTask Decomposition\n\nSelf-Reflection\n\n\nComponent Two: Memory\n\nTypes of Memory\n\nMaximum Inner Product Search (MIPS)\n\n\nComponent Three: Tool Use\n\nCase Studies\n\nScientific Discovery Agent\n\nGenerative Agents Simulation\n\nProof-of-Concept Examples\n\n\nChallenges\n\nCitation\n\nReferences\n\nPlanning\n\nSubgoal and decomposition: The agent breaks down large tasks into smaller, manageable subgoals, enabling efficient handling of complex tasks.\nReflection and refinement: The agent can do self-criticism and self-reflection over past actions, learn from mistakes and refine them for future steps, thereby improving the quality of final results.\n\n\nMemory\n\nMemory\n\nShort-term memory: I would consider all the in-context learning (See Prompt Engineering) as utilizing short-term memory of the model to learn.\nLong-term memory: This provides the agent with the capability to retain and recall (infinite) information over extended periods, often by leveraging an external vector store and fast retrieval.\n\n\nTool use\n\nThe design of generative agents combines LLM with memory, planning and reflection mechanisms to enable agents to behave conditioned on past experience, as well as to interact with other agents.', name='retrieve_blog_posts')]} +'\n---\n' +---CHECK RELEVANCE--- +---DECISION: DOCS RELEVANT--- +---GENERATE--- +"Output from node 'generate':" +'---' +{ 'messages': [ 'Lilian Weng mentions two types of agent memory: short-term ' + 'memory and long-term memory. Short-term memory is used for ' + 'in-context learning, while long-term memory allows the agent ' + 'to retain and recall information over extended periods.']} +'\n---\n' +"Output from node '__end__':" +'---' +{ 'messages': [ HumanMessage(content='What does Lilian Weng say about the types of agent memory?'), + AIMessage(content='', additional_kwargs={'function_call': {'arguments': '{"query":"types of agent memory"}', 'name': 'retrieve_blog_posts'}}), + FunctionMessage(content='Table of Contents\n\n\n\nAgent System Overview\n\nComponent One: Planning\n\nTask Decomposition\n\nSelf-Reflection\n\n\nComponent Two: Memory\n\nTypes of Memory\n\nMaximum Inner Product Search (MIPS)\n\n\nComponent Three: Tool Use\n\nCase Studies\n\nScientific Discovery Agent\n\nGenerative Agents Simulation\n\nProof-of-Concept Examples\n\n\nChallenges\n\nCitation\n\nReferences\n\nPlanning\n\nSubgoal and decomposition: The agent breaks down large tasks into smaller, manageable subgoals, enabling efficient handling of complex tasks.\nReflection and refinement: The agent can do self-criticism and self-reflection over past actions, learn from mistakes and refine them for future steps, thereby improving the quality of final results.\n\n\nMemory\n\nMemory\n\nShort-term memory: I would consider all the in-context learning (See Prompt Engineering) as utilizing short-term memory of the model to learn.\nLong-term memory: This provides the agent with the capability to retain and recall (infinite) information over extended periods, often by leveraging an external vector store and fast retrieval.\n\n\nTool use\n\nThe design of generative agents combines LLM with memory, planning and reflection mechanisms to enable agents to behave conditioned on past experience, as well as to interact with other agents.', name='retrieve_blog_posts'), + 'Lilian Weng mentions two types of agent memory: short-term ' + 'memory and long-term memory. Short-term memory is used for ' + 'in-context learning, while long-term memory allows the agent ' + 'to retain and recall information over extended periods.']} +'\n---\n' + +"""