-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathRun_Inference.py
48 lines (41 loc) · 1.79 KB
/
Run_Inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
"""
Run MSG Inference for a single audio example.
E.g: python Run_Inference.py --audio_file=<PATH_TO_INPUT_AUDIO> --generator=<PATH_TO_GENERATOR>
"""
import argparse
import librosa
import numpy as np
import nussl
from models.Demucs import *
import os
import torch
import soundfile as sf
from generate_test_set import overlap_add_process
def parseConfig(config):
exp_dict = yaml.load(open(os.path.join(config), 'r'),
Loader=yaml.FullLoader)
return Struct(**exp_dict).parameters
def run_inference(audio_example, generator_checkpoint, config=None):
device = torch.device(f"cuda:0" if torch.cuda.is_available() else "cpu")
sample_rate = 16_000
data, sr = librosa.load(audio_example, sr=sample_rate)
netG = Demucs([""],audio_channels=1, samplerate=sample_rate ,segment_length=16_000, skip_cxn = True,lstm_layers=0, normalize=True).to(device)
netG.load_state_dict(torch.load(generator_checkpoint))
netG.eval()
with torch.no_grad():
estimation = overlap_add_process(data, sample_rate, netG)
generated_signal = nussl.AudioSignal(audio_data_array=estimation)
# perform inference
if not os.path.exists("msg_output"):
os.mkdir("msg_output")
# write audio
song_name = audio_example.split('/')[-1]
sf.write(f'msg_output/{song_name}', generated_signal.peak_normalize().audio_data.T, sample_rate)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--audio_file", "-a", type=str,
help="absolute path to the audio file", required=True)
parser.add_argument("--generator", "-g", type=str, required=True,
help="absolute path to the generator checkpoint")
exp, exp_args = parser.parse_known_args()
run_inference(exp.audio_file, exp.generator)