forked from zgojcic/3DSmoothNet
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.cpp
135 lines (102 loc) · 5.33 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
/**
3DSmoothNet
main.cpp
Purpose: executes the computation of the SDV voxel grid for the selected interes points
@Author : Zan Gojcic, Caifa Zhou
@Version : 1.0
*/
#include <chrono>
#include <pcl/io/pcd_io.h>
#include <pcl/filters/random_sample.h>
#include <pcl/filters/filter.h>
#include <pcl/filters/extract_indices.h>
#include "core/core.h"
int main(int argc, char *argv[])
{
// Turn off the warnings of pcl
pcl::console::setVerbosityLevel(pcl::console::L_ALWAYS);
// Initialize the variables
std::string data_file;
float radius;
int num_voxels;
float smoothing_kernel_width;
float perc_points = 0.01;
std::string output_folder;
// Get command line arguments
bool result = processCommandLine(argc, argv, data_file, radius, num_voxels, smoothing_kernel_width, perc_points, output_folder);
if (!result)
return 1;
// Check if the output folder exists, otherwise create it
boost::filesystem::path dir(output_folder);
if (boost::filesystem::create_directory(dir))
{
std::cerr << "Directory Created: " << output_folder << std::endl;
}
// Read in the point cloud using the ply reader
// std::cout << "Config parameters successfully read in!! \n" << std::endl;
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
if (fileExist(data_file))
pcl::io::loadPCDFile(data_file, *cloud);
else
{
std::cout << "Point cloud file does not exsist or cannot be opened!!" << std::endl;
return 1;
}
std::vector<int> nans;
pcl::removeNaNFromPointCloud(*cloud, *cloud, nans);
// std::cout << "File: " << data_file << std::endl;
// std::cout << "Number of Points: " << cloud->size() << std::endl;
// std::cout << "Size of the voxel grid: " << 2 * radius << std::endl; // Multiplied with two as half size is used (corresponding to the radius)
// std::cout << "Number of Voxels: " << num_voxels << std::endl;
// std::cout << "Smoothing Kernel: " << smoothing_kernel_width << std::endl;
// Specify the parameters of the algorithm
const int grid_size = num_voxels * num_voxels * num_voxels;
float voxel_step_size = (2 * radius) / num_voxels;
float lrf_radius = sqrt(3)*radius; // Such that the circumscribed sphere is obtained
// Initialize the voxel grid
flann::Matrix<float> voxel_coordinates = initializeGridMatrix(num_voxels, voxel_step_size, voxel_step_size, voxel_step_size);
// Compute the local reference frame for all the points
float smoothing_factor = smoothing_kernel_width * (radius / num_voxels); // Equals half a voxel size so that 3X is 1.5 voxel
// Check if all the points should be evaluated or only selected ones
std::string flag_all_points = "0";
std::vector<int> evaluation_points;
pcl::RandomSample <pcl::PointXYZ> random_sampling;
random_sampling.setInputCloud(cloud);
random_sampling.setSeed (std::rand ());
random_sampling.setSample(perc_points);
random_sampling.filter(evaluation_points);
std::size_t found = data_file.find_last_of("/");
std::string temp_token = data_file.substr(found + 1);
std::size_t found2 = temp_token.find_last_of(".");
std::string save_file_name = temp_token.substr(0, found2);
save_file_name = output_folder + save_file_name;
//Saving keypoints
pcl::io::savePCDFile(save_file_name+"_keypoints.pcd", *cloud, evaluation_points, false);
//std::cout << "Number of keypoints:" << evaluation_points.size() << "\n" << std::endl;
// Initialize the variables for the NN search and LRF computation
std::vector<int> indices(cloud->width);
std::vector<LRF> cloud_lrf(cloud->width);
std::iota(indices.begin(), indices.end(), 0);
std::vector <std::vector <int>> nearest_neighbors(cloud->width);
std::vector <std::vector <int>> nearest_neighbors_smoothing(cloud->width);
std::vector <std::vector <float>> nearest_neighbors_smoothing_dist(cloud->width);
// Compute the local reference frame for the interes points (code adopted from https://www.researchgate.net/publication/310815969_TOLDI_An_effective_and_robust_approach_for_3D_local_shape_description
// and not optimized)
auto t1_lrf = std::chrono::high_resolution_clock::now();
toldiComputeLRF(cloud, evaluation_points, lrf_radius, 3 * smoothing_factor, cloud_lrf, nearest_neighbors, nearest_neighbors_smoothing, nearest_neighbors_smoothing_dist);
auto t2_lrf = std::chrono::high_resolution_clock::now();
// Compute the SDV representation for all the points
// Start the actuall computation
auto t1 = std::chrono::high_resolution_clock::now();
computeLocalDepthFeature(cloud, evaluation_points, nearest_neighbors, cloud_lrf, radius, voxel_coordinates, num_voxels, smoothing_factor, save_file_name);
auto t2 = std::chrono::high_resolution_clock::now();
// std::cout << "\n---------------------------------------------------------" << std::endl;
// std::cout << "LRF computation took "
// << std::chrono::duration_cast<std::chrono::milliseconds>(t2_lrf - t1_lrf).count()
// << " miliseconds\n";
// std::cout << "SDV computation took "
// << std::chrono::duration_cast<std::chrono::milliseconds>(t2 - t1).count()
// << " miliseconds\n";
// std::cout << "---------------------------------------------------------" << std::endl;
return 0;
}