-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchunks_overlap_and_not.py
226 lines (170 loc) · 7.4 KB
/
chunks_overlap_and_not.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from bubble_tools import split_image, x_profile, y_profile, xy_autocorr, acf_variables
from skimage import io
import os
import pandas as pd
import matplotlib.pyplot as pl
import sklearn
import numpy as np
from sklearn.linear_model import LinearRegression
from scipy import stats
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score, cross_validate
from sklearn.tree import DecisionTreeRegressor, plot_tree
from sklearn.neighbors import KNeighborsClassifier
dat_file = '/Users/s1101153/OneDrive - University of Edinburgh/Files/bubbles/confocal_data/tunnels/dat_list_73.csv'
im_folder = '/Users/s1101153/OneDrive - University of Edinburgh/Files/bubbles/confocal_data/tunnels/'
seg_folder = '/Users/s1101153/OneDrive - University of Edinburgh/Files/bubbles/confocal_data/tunnels/model_73'
# %% reading files and opening images
dat_separate = pd.DataFrame({'chunk_im': [],
'chunk_loc': [],
'distance': []})
dat_overlap = pd.DataFrame({'chunk_im': [],
'chunk_loc': [],
'distance': []})
f = open(dat_file, 'r')
for line in f.readlines():
if not line.endswith('x') and line.startswith('Image'):
vals = line.split(',')
im_file = os.path.join(im_folder, vals[0])
im = io.imread(im_file)[0]
seg_file = os.path.join(seg_folder, vals[1])
seg_im = io.imread(seg_file, as_gray=True)[0]
overlap = split_image(im, seg_im, 128, 128, 64)
dat_overlap = dat_overlap.append(overlap)
separate = split_image(im, seg_im, 128, 128, 128)
dat_separate = dat_separate.append(separate)
f.close()
dat_overlap = dat_overlap.reset_index(drop=True)
dat_overlap = dat_overlap.astype({'chunk_im': 'object',
'chunk_loc': 'object',
'distance': 'float64'})
print(dat_overlap.describe())
dat_separate = dat_separate.reset_index(drop=True)
dat_separate = dat_separate.astype({'chunk_im': 'object',
'chunk_loc': 'object',
'distance': 'float64'})
print(dat_separate.describe())
# %% getting variables for separate-chunk data
acf_sep_list = []
for im in dat_separate['chunk_im']:
acf = xy_autocorr(im)
acf_x = x_profile(acf)[65:]
acf_y = y_profile(acf)
acf_sep_list.append(acf_variables(acf_x, acf_y))
acf_separate = pd.concat(acf_sep_list, axis=1).transpose()
dat_separate_all = pd.concat([dat_separate, acf_separate],
sort=False,
axis=1)
# print(dat_separate_all.describe())
# %% getting variables for overlapping-chunk data
acf_over_list = []
for im in dat_overlap['chunk_im']:
acf = xy_autocorr(im)
acf_x = x_profile(acf)[65:]
acf_y = y_profile(acf)
acf_over_list.append(acf_variables(acf_x, acf_y))
acf_overlap = pd.concat(acf_over_list, axis=1).transpose()
dat_overlap_all = pd.concat([dat_overlap, acf_overlap], sort=False, axis=1)
# %% look at data
print(dat_overlap_all.describe())
print(dat_separate_all.describe())
dat_overlap_vars = dat_overlap_all.drop(['chunk_im', 'chunk_loc'], axis=1)
dat_overlap_vars.hist()
dat_separate_vars = dat_separate_all.drop(['chunk_im', 'chunk_loc'], axis=1)
dat_separate_vars.hist()
# %% remove entries with outliers in any column
std_dev = 3.
dat_overlap_vars = dat_overlap_vars.dropna()
dat_overlap_vars = dat_overlap_vars[(np.abs(stats.zscore(dat_overlap_vars)) < float(std_dev)).all(axis=1)]
dat_overlap_vars.hist()
dat_separate_vars = dat_separate_vars.dropna()
dat_separate_vars = dat_separate_vars[(np.abs(stats.zscore(dat_separate_vars)) < float(std_dev)).all(axis=1)]
dat_separate_vars.hist()
# %% try some linear regression
X_sep = dat_separate_vars.drop('distance', axis=1)
y_sep = dat_separate_vars['distance']
model = LinearRegression()
scores_sep = []
kfold = KFold(n_splits=10, shuffle=True, random_state=123)
for i, (train, test) in enumerate(kfold.split(X_sep, y_sep)):
model.fit(X_sep.iloc[train, :], y_sep.iloc[train])
scores_sep.append(model.score(X_sep.iloc[test, :], y_sep.iloc[test]))
print(np.mean(scores_sep))
X_over = dat_overlap_vars.drop('distance', axis=1)
y_over = dat_overlap_vars['distance']
scores_over = []
for i, (train, test) in enumerate(kfold.split(X_over, y_over)):
model.fit(X_over.iloc[train, :], y_over.iloc[train])
scores_over.append(model.score(X_over.iloc[test, :], y_over.iloc[test]))
print(np.mean(scores_over))
# %% different methods of cross validation:
model_norm = LinearRegression(normalize=True)
lin_scores_sep = cross_val_score(model_norm, X_sep, y_sep, cv=10)
print(np.mean(lin_scores_sep))
lin_scores_over = cross_validate(model_norm,
X_over,
y_over,
cv=10,
return_estimator=True)
print(np.mean(lin_scores_over['test_score']))
[i.coef_ for i in lin_scores_over['estimator']]
# %% try some decision trees
regressor = DecisionTreeRegressor(random_state=123)
tree_scores_sep = cross_val_score(regressor, X_sep, y_sep, cv=10)
print(np.mean(tree_scores_sep))
tree_scores_over = cross_validate(regressor,
X_over,
y_over,
cv=10,
return_estimator=True)
print(np.mean(tree_scores_over['test_score']))
for tr in tree_scores_over['estimator']:
plot_tree(tr)
pl.show()
# %% try some classification. First I need to define the classes
dat_separate_all['distance'].hist()
dat_separate_all['distance'].describe()
dat_overlap_all['distance'].describe()
quant75 = min(dat_separate_all['distance'].quantile(0.75),
dat_overlap_all['distance'].quantile(0.75))
quant25 = max(dat_separate_all['distance'].quantile(0.25),
dat_overlap_all['distance'].quantile(0.25))
d_separate = dat_separate_all['distance']
d_overlap = dat_overlap_all['distance']
far_separate = d_separate>quant75
near_separate = d_separate<quant25
far_overlap = d_overlap>quant75
near_overlap = d_overlap<quant25
dat_separate_all['count'] = None
dat_separate_all['count'][far_separate] = 'far'
dat_separate_all['count'][near_separate] = 'near'
dat_separate_all['count']
dat_overlap_all['class'] = None
dat_overlap_all['class'][far_overlap] = 'far'
dat_overlap_all['class'][near_overlap] = 'near'
dat_overlap_all['class']
train_test_overlap = dat_overlap_all.dropna()
train_test_separate = dat_separate_all.dropna()
train_test_separate
# %% now try some classification
X = train_test_overlap.iloc[:, 4:9]
y = train_test_overlap['class']
from sklearn.model_selection import train_test_split
#split dataset into train and test data
X_train, X_test, y_train, y_test = train_test_split(X,
y,
test_size=0.2,
random_state=1,
stratify=y)
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train, y_train)
knn.predict(X_test)
knn.score(X_test, y_test)
# %% try with cross-validation to choose k
from sklearn.model_selection import GridSearchCV
knn_cv = KNeighborsClassifier()
k_grid = {'n_neighbors': np.arange(1, 25)}
knn_gscv = GridSearchCV(knn_cv, k_grid, cv=5)
knn_gscv.fit(X, y)
print(knn_gscv.best_params_)
print(knn_gscv.best_score_)