forked from lucidrains/imagen-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcli_train.py
210 lines (155 loc) · 5.91 KB
/
cli_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import torch
from torch.utils.data import DataLoader
from torchvision import transforms as T
from imagen_pytorch import (
Unet,
Imagen,
ImagenTrainer,
ElucidatedImagenConfig,
ImagenConfig
)
from imagen_pytorch.data import Dataset
import os
import numpy as np
import json
import einops
from pathlib import Path
import braceexpand
import webdataset as wds
import binascii
import ast
import base64
import io
from PIL import Image
import click
def bytes_to_buffer(x, shape, dtype = np.float32, to_tensor = True):
x = np.frombuffer(x, dtype = dtype).reshape(shape)
if to_tensor:
x = torch.tensor(x)
return x
def decode_text(x):
return x.decode('utf-8')
def drop_metadata(x):
# Remove all key value pairs not in "keep" keys.
#
keep = ["width", "height", "similarity", "punsafe", "pwatermark", "aesthetic", "url", "sha256"]
metadata = json.loads(x)
return {key: val for key, val in metadata.items() if key in keep}
def decode_image(x, to_pil = True):
if isinstance(x, str):
x = ast.literal_eval(x)
try:
image_data = base64.b64decode(x, validate = True)
except binascii.Error:
image_data = x
if to_pil:
image_data = Image.open(io.BytesIO(image_data)).convert("RGB")
return image_data
def load_json(x):
return json.loads(x)
class Collator:
def __init__(
self,
channels,
image_size
):
self.channels = channels
self.image_size = image_size
self.transform = T.Compose([
T.Resize(image_size),
# T.RandomHorizontalFlip(),
T.CenterCrop(image_size),
T.ToTensor(),
])
def __call__(self, batch):
texts = []
images = []
for items in batch:
try:
keys, _urls, urls, images, metas, captions, embedding_dims, text_embeddings = items
text_embeddings = [bytes_to_buffer(emb, dims) for emb, dims in zip(text_embeddings, embedding_dims)]
images = [self.transform(image.convert(self.channels)) for image in images]
images = torch.stack([image for image in images])
images = images.to(memory_format=torch.contiguous_format).float()
except Exception as e:
print("ERROR (Collator): unable to extract batch")
print(e)
if len(text_embeddings) == 0:
return None
newbatch = []
for idx in range(len(text_embeddings)):
newbatch.append((images[idx], text_embeddings[idx]))
return torch.utils.data.dataloader.default_collate(newbatch)
@click.command(help = 'Train the Imagen model')
@click.option('--config', default = './configs/default_config.json', help = 'Path to the Imagen model config')
@click.option('--unet', default = 1, help = 'Unet to train', type = click.IntRange(1, 3, False, True, True))
@click.option('--epoches', default = 1000, help = 'Amount of epoches to train for')
@click.option('--text', required = False, help = 'Text to sample between epoches', type=str)
@click.option('--valid', is_flag = False, flag_value=50, default = 0, help = 'Do validation between epoches', show_default = True)
def train(
config,
unet,
epoches,
text,
valid
):
# check config path
config_path = Path(config)
full_config_path = str(config_path.resolve())
assert config_path.exists(), f'config not found at {full_config_path}'
with open(config_path, 'r') as f:
config_data = json.loads(f.read())
# print(config_data)
assert 'checkpoint_path' in config_data, 'checkpoint path not found in config'
assert ('batch_size' in config_data['dataset']) or ('batch_size' in config_data['webdataset']) , 'A batch_size is required in the config file'
model_path = Path(config_data['checkpoint_path'])
full_model_path = str(model_path.resolve())
# setup imagen config
#
imagen_config_klass = ElucidatedImagenConfig if config_data['type'] == 'elucidated' else ImagenConfig
imagen = imagen_config_klass(**config_data['imagen']).create()
trainer = ImagenTrainer(
imagen = imagen,
**config_data['trainer']
)
if torch.cuda.is_available():
trainer = trainer.cuda()
# Load in webdataset and send to trainer.
#
cache_dir = config_data['webdataset']['cache_dir']
os.makedirs(cache_dir, exist_ok = True)
input_urls = braceexpand.braceexpand(config_data['webdataset']['url'])
batch_size = config_data['webdataset']['batch_size']
dataset_total_length = config_data['webdataset']['total_length']
dataset_nominal_length = dataset_total_length // batch_size
dataset = (
wds.WebDataset(input_urls, cache_dir=cache_dir, nodesplitter=wds.split_by_node)
.shuffle(1000)
.to_tuple("__key__", "__url__", "url", "image.jpg", "metadata.json", "caption.txt", "embedding_dims.json", "text_embedding.bytes")
.map_tuple(None, None, None, decode_image, None, decode_text, load_json, None)
.batched(batch_size)
)
dataset.with_length(dataset_nominal_length)
image_size = config_data['imagen']['image_sizes'][unet-1]
collate_fn = Collator(
image_size = image_size,
channels = "RGB"
)
dataloader = DataLoader(
dataset,
collate_fn = collate_fn,
batch_size = 1, # Already handled in webdataset, as recommended
num_workers = 4,
shuffle = False # Already handled in webdataset
)
trainer.add_train_dataloader(dataloader)
max_batch_size = config_data['gradient_accum_size']
for epoch in range(epoches):
loss = trainer.train_step(
unet_number = unet,
max_batch_size = max_batch_size
)
if epoch % 10 == 0:
print(f'epoch: {epoch}, loss: {loss}')
if __name__ == "__main__":
train()