forked from HavenFeng/photometric_optimization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrenderer.py
326 lines (285 loc) · 14.5 KB
/
renderer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
"""
Author: Yao Feng
Copyright (c) 2020, Yao Feng
All rights reserved.
"""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from skimage.io import imread
from pytorch3d.structures import Meshes
from pytorch3d.io import load_obj
from pytorch3d.renderer.mesh import rasterize_meshes
import util
class Pytorch3dRasterizer(nn.Module):
"""
This class implements methods for rasterizing a batch of heterogenous
Meshes.
Notice:
x,y,z are in image space
"""
def __init__(self, image_size=224):
"""
Args:
raster_settings: the parameters for rasterization. This should be a
named tuple.
All these initial settings can be overridden by passing keyword
arguments to the forward function.
"""
super().__init__()
raster_settings = {
'image_size': image_size,
'blur_radius': 0.0,
'faces_per_pixel': 1,
'bin_size': None,
'max_faces_per_bin': None,
'perspective_correct': False,
}
raster_settings = util.dict2obj(raster_settings)
self.raster_settings = raster_settings
def forward(self, vertices, faces, attributes=None):
"""
Args:
meshes_world: a Meshes object representing a batch of meshes with
coordinates in world space.
Returns:
Fragments: Rasterization outputs as a named tuple.
"""
fixed_vetices = vertices.clone()
fixed_vetices[..., :2] = -fixed_vetices[..., :2]
meshes_screen = Meshes(verts=fixed_vetices.float(), faces=faces.long())
raster_settings = self.raster_settings
pix_to_face, zbuf, bary_coords, dists = rasterize_meshes(
meshes_screen,
image_size=raster_settings.image_size,
blur_radius=raster_settings.blur_radius,
faces_per_pixel=raster_settings.faces_per_pixel,
bin_size=raster_settings.bin_size,
max_faces_per_bin=raster_settings.max_faces_per_bin,
perspective_correct=raster_settings.perspective_correct,
)
vismask = (pix_to_face > -1).float()
D = attributes.shape[-1]
attributes = attributes.clone()
attributes = attributes.view(attributes.shape[0] * attributes.shape[1], 3, attributes.shape[-1])
N, H, W, K, _ = bary_coords.shape
mask = pix_to_face == -1 # []
pix_to_face = pix_to_face.clone()
pix_to_face[mask] = 0
idx = pix_to_face.view(N * H * W * K, 1, 1).expand(N * H * W * K, 3, D)
pixel_face_vals = attributes.gather(0, idx).view(N, H, W, K, 3, D)
pixel_vals = (bary_coords[..., None] * pixel_face_vals).sum(dim=-2)
pixel_vals[mask] = 0 # Replace masked values in output.
pixel_vals = pixel_vals[:, :, :, 0].permute(0, 3, 1, 2)
pixel_vals = torch.cat([pixel_vals, vismask[:, :, :, 0][:, None, :, :]], dim=1)
# import ipdb; ipdb.set_trace()
return pixel_vals
class Renderer(nn.Module):
def __init__(self, image_size, obj_filename, uv_size=256):
super(Renderer, self).__init__()
self.image_size = image_size
self.uv_size = uv_size
verts, faces, aux = load_obj(obj_filename)
uvcoords = aux.verts_uvs[None, ...] # (N, V, 2)
uvfaces = faces.textures_idx[None, ...] # (N, F, 3)
faces = faces.verts_idx[None, ...]
self.rasterizer = Pytorch3dRasterizer(image_size)
self.uv_rasterizer = Pytorch3dRasterizer(uv_size)
# faces
self.register_buffer('faces', faces)
self.register_buffer('raw_uvcoords', uvcoords)
# uv coordsw
uvcoords = torch.cat([uvcoords, uvcoords[:, :, 0:1] * 0. + 1.], -1) # [bz, ntv, 3]
uvcoords = uvcoords * 2 - 1
uvcoords[..., 1] = -uvcoords[..., 1]
face_uvcoords = util.face_vertices(uvcoords, uvfaces)
self.register_buffer('uvcoords', uvcoords)
self.register_buffer('uvfaces', uvfaces)
self.register_buffer('face_uvcoords', face_uvcoords)
# shape colors
colors = torch.tensor([74, 120, 168])[None, None, :].repeat(1, faces.max() + 1, 1).float() / 255.
face_colors = util.face_vertices(colors, faces)
self.register_buffer('face_colors', face_colors)
## lighting
pi = np.pi
constant_factor = torch.tensor(
[1 / np.sqrt(4 * pi), ((2 * pi) / 3) * (np.sqrt(3 / (4 * pi))), ((2 * pi) / 3) * (np.sqrt(3 / (4 * pi))), \
((2 * pi) / 3) * (np.sqrt(3 / (4 * pi))), (pi / 4) * (3) * (np.sqrt(5 / (12 * pi))),
(pi / 4) * (3) * (np.sqrt(5 / (12 * pi))), \
(pi / 4) * (3) * (np.sqrt(5 / (12 * pi))), (pi / 4) * (3 / 2) * (np.sqrt(5 / (12 * pi))),
(pi / 4) * (1 / 2) * (np.sqrt(5 / (4 * pi)))])
self.register_buffer('constant_factor', constant_factor)
def forward(self, vertices, transformed_vertices, albedos, lights=None, light_type='point'):
'''
lights:
spherical homarnic: [N, 9(shcoeff), 3(rgb)]
vertices: [N, V, 3], vertices in world space, for calculating normals, then shading
transformed_vertices: [N, V, 3], range(-1, 1), projected vertices, for rendering
'''
batch_size = vertices.shape[0]
## rasterizer near 0 far 100. move mesh so minz larger than 0
transformed_vertices[:, :, 2] = transformed_vertices[:, :, 2] + 10
# Attributes
face_vertices = util.face_vertices(vertices, self.faces.expand(batch_size, -1, -1))
normals = util.vertex_normals(vertices, self.faces.expand(batch_size, -1, -1))
face_normals = util.face_vertices(normals, self.faces.expand(batch_size, -1, -1))
transformed_normals = util.vertex_normals(transformed_vertices, self.faces.expand(batch_size, -1, -1))
transformed_face_normals = util.face_vertices(transformed_normals, self.faces.expand(batch_size, -1, -1))
# render
attributes = torch.cat([self.face_uvcoords.expand(batch_size, -1, -1, -1), transformed_face_normals.detach(),
face_vertices.detach(), face_normals.detach()], -1)
# import ipdb;ipdb.set_trace()
rendering = self.rasterizer(transformed_vertices, self.faces.expand(batch_size, -1, -1), attributes)
alpha_images = rendering[:, -1, :, :][:, None, :, :].detach()
# albedo
uvcoords_images = rendering[:, :3, :, :]
grid = (uvcoords_images).permute(0, 2, 3, 1)[:, :, :, :2]
albedo_images = F.grid_sample(albedos, grid, align_corners=False)
# remove inner mouth region
transformed_normal_map = rendering[:, 3:6, :, :].detach()
pos_mask = (transformed_normal_map[:, 2:, :, :] < -0.05).float()
# shading
if lights is not None:
normal_images = rendering[:, 9:12, :, :].detach()
if lights.shape[1] == 9:
shading_images = self.add_SHlight(normal_images, lights)
else:
if light_type == 'point':
vertice_images = rendering[:, 6:9, :, :].detach()
shading = self.add_pointlight(vertice_images.permute(0, 2, 3, 1).reshape([batch_size, -1, 3]),
normal_images.permute(0, 2, 3, 1).reshape([batch_size, -1, 3]),
lights)
shading_images = shading.reshape([batch_size, lights.shape[1],
albedo_images.shape[2],
albedo_images.shape[3], 3]).permute(0, 1, 4, 2, 3)
shading_images = shading_images.mean(1)
else:
shading = self.add_directionlight(normal_images.permute(0, 2, 3, 1).reshape([batch_size, -1, 3]), lights)
shading_images = shading.reshape([batch_size, lights.shape[1],
albedo_images.shape[2],
albedo_images.shape[3], 3]).permute(0, 1, 4, 2, 3)
shading_images = shading_images.mean(1)
images = albedo_images * shading_images
else:
images = albedo_images
shading_images = images.detach() * 0.
outputs = {
'images': images * alpha_images,
'albedo_images': albedo_images,
'alpha_images': alpha_images,
'pos_mask': pos_mask,
'shading_images': shading_images,
'grid': grid,
'normals': normals
}
return outputs
def add_SHlight(self, normal_images, sh_coeff):
'''
sh_coeff: [bz, 9, 3]
'''
N = normal_images
sh = torch.stack([
N[:, 0] * 0. + 1., N[:, 0], N[:, 1], \
N[:, 2], N[:, 0] * N[:, 1], N[:, 0] * N[:, 2],
N[:, 1] * N[:, 2], N[:, 0] ** 2 - N[:, 1] ** 2, 3 * (N[:, 2] ** 2) - 1
],
1) # [bz, 9, h, w]
sh = sh * self.constant_factor[None, :, None, None]
# import ipdb; ipdb.set_trace()
shading = torch.sum(sh_coeff[:, :, :, None, None] * sh[:, :, None, :, :], 1) # [bz, 9, 3, h, w]
return shading
def add_pointlight(self, vertices, normals, lights):
'''
vertices: [bz, nv, 3]
lights: [bz, nlight, 6]
returns:
shading: [bz, nv, 3]
'''
light_positions = lights[:,:,:3]; light_intensities = lights[:,:,3:]
directions_to_lights = F.normalize(light_positions[:,:,None,:] - vertices[:,None,:,:], dim=3)
# normals_dot_lights = torch.clamp((normals[:,None,:,:]*directions_to_lights).sum(dim=3), 0., 1.)
normals_dot_lights = (normals[:,None,:,:]*directions_to_lights).sum(dim=3)
shading = normals_dot_lights[:,:,:,None]*light_intensities[:,:,None,:]
return shading.mean(1)
def add_directionlight(self, normals, lights):
'''
normals: [bz, nv, 3]
lights: [bz, nlight, 6]
returns:
shading: [bz, nlgiht, nv, 3]
'''
light_direction = lights[:, :, :3];
light_intensities = lights[:, :, 3:]
directions_to_lights = F.normalize(light_direction[:, :, None, :].expand(-1, -1, normals.shape[1], -1), dim=3)
normals_dot_lights = (normals[:,None,:,:]*directions_to_lights).sum(dim=3)
shading = normals_dot_lights[:, :, :, None] * light_intensities[:, :, None, :]
return shading
def render_shape(self, vertices, transformed_vertices, images=None, lights=None, debug=False):
batch_size = vertices.shape[0]
if lights is None:
light_positions = torch.tensor([[-0.1, -0.1, 0.2],
[0, 0, 1]]
)[None, :, :].expand(batch_size, -1, -1).float()
light_intensities = torch.ones_like(light_positions).float()
lights = torch.cat((light_positions, light_intensities), 2).to(vertices.device)
## rasterizer near 0 far 100. move mesh so minz larger than 0
transformed_vertices[:, :, 2] = transformed_vertices[:, :, 2] + 10
# Attributes
face_vertices = util.face_vertices(vertices, self.faces.expand(batch_size, -1, -1))
normals = util.vertex_normals(vertices, self.faces.expand(batch_size, -1, -1));
face_normals = util.face_vertices(normals, self.faces.expand(batch_size, -1, -1))
transformed_normals = util.vertex_normals(transformed_vertices, self.faces.expand(batch_size, -1, -1));
transformed_face_normals = util.face_vertices(transformed_normals, self.faces.expand(batch_size, -1, -1))
# render
attributes = torch.cat(
[self.face_colors.expand(batch_size, -1, -1, -1), transformed_face_normals.detach(), face_vertices.detach(),
face_normals.detach()], -1)
rendering = self.rasterizer(transformed_vertices, self.faces.expand(batch_size, -1, -1), attributes)
# albedo
albedo_images = rendering[:, :3, :, :]
# shading
normal_images = rendering[:, 9:12, :, :].detach()
if lights.shape[1] == 9:
shading_images = self.add_SHlight(normal_images, lights)
else:
if debug: print('directional')
shading = self.add_directionlight(normal_images.permute(0, 2, 3, 1).reshape([batch_size, -1, 3]), lights)
shading_images = shading.reshape([batch_size,
lights.shape[1],
albedo_images.shape[2],
albedo_images.shape[3],
3]).permute(0, 1, 4, 2, 3)
shading_images = shading_images.mean(1)
images = albedo_images * shading_images
return images
def render_normal(self, transformed_vertices, normals):
'''
-- rendering normal
'''
batch_size = normals.shape[0]
# Attributes
attributes = util.face_vertices(normals, self.faces.expand(batch_size, -1, -1))
# rasterize
rendering = self.rasterizer(transformed_vertices, self.faces.expand(batch_size, -1, -1), attributes)
####
alpha_images = rendering[:, -1, :, :][:, None, :, :].detach()
normal_images = rendering[:, :3, :, :]
return normal_images
def world2uv(self, vertices):
'''
sample vertices from world space to uv space
uv_vertices: [bz, 3, h, w]
'''
batch_size = vertices.shape[0]
face_vertices = util.face_vertices(vertices, self.faces.expand(batch_size, -1, -1)).clone().detach()
uv_vertices = self.uv_rasterizer(self.uvcoords.expand(batch_size, -1, -1),
self.uvfaces.expand(batch_size, -1, -1), face_vertices)[:, :3]
return uv_vertices
def save_obj(self, filename, vertices, textures):
'''
vertices: [nv, 3], tensor
texture: [3, h, w], tensor
'''
util.save_obj(filename, vertices, self.faces[0], textures=textures, uvcoords=self.raw_uvcoords[0],
uvfaces=self.uvfaces[0])