forked from HavenFeng/photometric_optimization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
313 lines (259 loc) · 11.5 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import numpy as np
import torch
import torch.nn.functional as F
import math
from collections import OrderedDict
import os
from scipy.ndimage import morphology
from skimage.io import imsave
import cv2
def dict2obj(d):
if isinstance(d, list):
d = [dict2obj(x) for x in d]
if not isinstance(d, dict):
return d
class C(object):
pass
o = C()
for k in d:
o.__dict__[k] = dict2obj(d[k])
return o
def check_mkdir(path):
if not os.path.exists(path):
print('making %s' % path)
os.makedirs(path)
def l2_distance(verts1, verts2):
return torch.sqrt(((verts1 - verts2) ** 2).sum(2)).mean(1).mean()
def quat2mat(quat):
"""Convert quaternion coefficients to rotation matrix.
Args:
quat: size = [B, 4] 4 <===>(w, x, y, z)
Returns:
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
"""
norm_quat = quat
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True)
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3]
B = quat.size(0)
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
wx, wy, wz = w * x, w * y, w * z
xy, xz, yz = x * y, x * z, y * z
rotMat = torch.stack([w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz,
2 * wz + 2 * xy, w2 - x2 + y2 - z2, 2 * yz - 2 * wx,
2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 - x2 - y2 + z2], dim=1).view(B, 3, 3)
return rotMat
def batch_rodrigues(theta):
# theta N x 3
batch_size = theta.shape[0]
l1norm = torch.norm(theta + 1e-8, p=2, dim=1)
angle = torch.unsqueeze(l1norm, -1)
normalized = torch.div(theta, angle)
angle = angle * 0.5
v_cos = torch.cos(angle)
v_sin = torch.sin(angle)
quat = torch.cat([v_cos, v_sin * normalized], dim=1)
return quat2mat(quat)
def batch_orth_proj(X, camera):
'''
X is N x num_points x 3
'''
camera = camera.clone().view(-1, 1, 3)
X_trans = X[:, :, :2] + camera[:, :, 1:]
X_trans = torch.cat([X_trans, X[:, :, 2:]], 2)
shape = X_trans.shape
# Xn = (camera[:, :, 0] * X_trans.view(shape[0], -1)).view(shape)
Xn = (camera[:, :, 0:1] * X_trans)
return Xn
def batch_persp_proj(vertices, cam, f, t, orig_size=256, eps=1e-9):
'''
Calculate projective transformation of vertices given a projection matrix
Input parameters:
f: torch tensor of focal length
t: batch_size * 1 * 3 xyz translation in world coordinate
K: batch_size * 3 * 3 intrinsic camera matrix
R, t: batch_size * 3 * 3, batch_size * 1 * 3 extrinsic calibration parameters
dist_coeffs: vector of distortion coefficients
orig_size: original size of image captured by the camera
Returns: For each point [X,Y,Z] in world coordinates [u,v,z] where u,v are the coordinates of the projection in
pixels and z is the depth
'''
device = vertices.device
K = torch.tensor([f, 0., cam['c'][0], 0., f, cam['c'][1], 0., 0., 1.]).view(3, 3)[None, ...].repeat(
vertices.shape[0], 1).to(device)
R = batch_rodrigues(cam['r'][None, ...].repeat(vertices.shape[0], 1)).to(device)
dist_coeffs = cam['k'][None, ...].repeat(vertices.shape[0], 1).to(device)
vertices = torch.matmul(vertices, R.transpose(2, 1)) + t
x, y, z = vertices[:, :, 0], vertices[:, :, 1], vertices[:, :, 2]
x_ = x / (z + eps)
y_ = y / (z + eps)
# Get distortion coefficients from vector
k1 = dist_coeffs[:, None, 0]
k2 = dist_coeffs[:, None, 1]
p1 = dist_coeffs[:, None, 2]
p2 = dist_coeffs[:, None, 3]
k3 = dist_coeffs[:, None, 4]
# we use x_ for x' and x__ for x'' etc.
r = torch.sqrt(x_ ** 2 + y_ ** 2)
x__ = x_ * (1 + k1 * (r ** 2) + k2 * (r ** 4) + k3 * (r ** 6)) + 2 * p1 * x_ * y_ + p2 * (r ** 2 + 2 * x_ ** 2)
y__ = y_ * (1 + k1 * (r ** 2) + k2 * (r ** 4) + k3 * (r ** 6)) + p1 * (r ** 2 + 2 * y_ ** 2) + 2 * p2 * x_ * y_
vertices = torch.stack([x__, y__, torch.ones_like(z)], dim=-1)
vertices = torch.matmul(vertices, K.transpose(1, 2))
u, v = vertices[:, :, 0], vertices[:, :, 1]
v = orig_size - v
# map u,v from [0, img_size] to [-1, 1] to be compatible with the renderer
u = 2 * (u - orig_size / 2.) / orig_size
v = 2 * (v - orig_size / 2.) / orig_size
vertices = torch.stack([u, v, z], dim=-1)
return vertices
def face_vertices(vertices, faces):
"""
:param vertices: [batch size, number of vertices, 3]
:param faces: [batch size, number of faces, 3]
:return: [batch size, number of faces, 3, 3]
"""
assert (vertices.ndimension() == 3)
assert (faces.ndimension() == 3)
assert (vertices.shape[0] == faces.shape[0])
assert (vertices.shape[2] == 3)
assert (faces.shape[2] == 3)
bs, nv = vertices.shape[:2]
bs, nf = faces.shape[:2]
device = vertices.device
faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None]
vertices = vertices.reshape((bs * nv, 3))
# pytorch only supports long and byte tensors for indexing
return vertices[faces.long()]
def vertex_normals(vertices, faces):
"""
:param vertices: [batch size, number of vertices, 3]
:param faces: [batch size, number of faces, 3]
:return: [batch size, number of vertices, 3]
"""
assert (vertices.ndimension() == 3)
assert (faces.ndimension() == 3)
assert (vertices.shape[0] == faces.shape[0])
assert (vertices.shape[2] == 3)
assert (faces.shape[2] == 3)
bs, nv = vertices.shape[:2]
bs, nf = faces.shape[:2]
device = vertices.device
normals = torch.zeros(bs * nv, 3).to(device)
faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None] # expanded faces
vertices_faces = vertices.reshape((bs * nv, 3))[faces.long()]
faces = faces.view(-1, 3)
vertices_faces = vertices_faces.view(-1, 3, 3)
normals.index_add_(0, faces[:, 1].long(),
torch.cross(vertices_faces[:, 2] - vertices_faces[:, 1], vertices_faces[:, 0] - vertices_faces[:, 1]))
normals.index_add_(0, faces[:, 2].long(),
torch.cross(vertices_faces[:, 0] - vertices_faces[:, 2], vertices_faces[:, 1] - vertices_faces[:, 2]))
normals.index_add_(0, faces[:, 0].long(),
torch.cross(vertices_faces[:, 1] - vertices_faces[:, 0], vertices_faces[:, 2] - vertices_faces[:, 0]))
normals = F.normalize(normals, eps=1e-6, dim=1)
normals = normals.reshape((bs, nv, 3))
# pytorch only supports long and byte tensors for indexing
return normals
def tensor_vis_landmarks(images, landmarks, gt_landmarks=None, color='g', isScale=True):
# visualize landmarks
vis_landmarks = []
images = images.cpu().numpy()
predicted_landmarks = landmarks.detach().cpu().numpy()
if gt_landmarks is not None:
gt_landmarks_np = gt_landmarks.detach().cpu().numpy()
for i in range(images.shape[0]):
image = images[i]
image = image.transpose(1, 2, 0)[:, :, [2, 1, 0]].copy();
image = (image * 255)
if isScale:
predicted_landmark = predicted_landmarks[i] * image.shape[0] / 2 + image.shape[0] / 2
else:
predicted_landmark = predicted_landmarks[i]
if predicted_landmark.shape[0] == 68:
image_landmarks = plot_kpts(image, predicted_landmark, color)
if gt_landmarks is not None:
image_landmarks = plot_verts(image_landmarks,
gt_landmarks_np[i] * image.shape[0] / 2 + image.shape[0] / 2, 'r')
else:
image_landmarks = plot_verts(image, predicted_landmark, color)
if gt_landmarks is not None:
image_landmarks = plot_verts(image_landmarks,
gt_landmarks_np[i] * image.shape[0] / 2 + image.shape[0] / 2, 'r')
vis_landmarks.append(image_landmarks)
vis_landmarks = np.stack(vis_landmarks)
vis_landmarks = torch.from_numpy(
vis_landmarks[:, :, :, [2, 1, 0]].transpose(0, 3, 1, 2)) / 255. # , dtype=torch.float32)
return vis_landmarks
end_list = np.array([17, 22, 27, 42, 48, 31, 36, 68], dtype = np.int32) - 1
def plot_kpts(image, kpts, color = 'r'):
''' Draw 68 key points
Args:
image: the input image
kpt: (68, 3).
'''
if color == 'r':
c = (255, 0, 0)
elif color == 'g':
c = (0, 255, 0)
elif color == 'b':
c = (255, 0, 0)
image = image.copy()
kpts = kpts.copy()
for i in range(kpts.shape[0]):
st = kpts[i, :2]
if kpts.shape[1]==4:
if kpts[i, 3] > 0.5:
c = (0, 255, 0)
else:
c = (0, 0, 255)
image = cv2.circle(image,(st[0], st[1]), 1, c, 2)
if i in end_list:
continue
ed = kpts[i + 1, :2]
image = cv2.line(image, (st[0], st[1]), (ed[0], ed[1]), (255, 255, 255), 1)
return image
def save_obj(filename, vertices, faces, textures=None, uvcoords=None, uvfaces=None, texture_type='surface'):
assert vertices.ndimension() == 2
assert faces.ndimension() == 2
assert texture_type in ['surface', 'vertex']
# assert texture_res >= 2
if textures is not None and texture_type == 'surface':
textures =textures.detach().cpu().numpy().transpose(1,2,0)
filename_mtl = filename[:-4] + '.mtl'
filename_texture = filename[:-4] + '.png'
material_name = 'material_1'
# texture_image, vertices_textures = create_texture_image(textures, texture_res)
texture_image = textures
texture_image = texture_image.clip(0, 1)
texture_image = (texture_image * 255).astype('uint8')
imsave(filename_texture, texture_image)
faces = faces.detach().cpu().numpy()
with open(filename, 'w') as f:
f.write('# %s\n' % os.path.basename(filename))
f.write('#\n')
f.write('\n')
if textures is not None:
f.write('mtllib %s\n\n' % os.path.basename(filename_mtl))
if textures is not None and texture_type == 'vertex':
for vertex, color in zip(vertices, textures):
f.write('v %.8f %.8f %.8f %.8f %.8f %.8f\n' % (vertex[0], vertex[1], vertex[2],
color[0], color[1], color[2]))
f.write('\n')
else:
for vertex in vertices:
f.write('v %.8f %.8f %.8f\n' % (vertex[0], vertex[1], vertex[2]))
f.write('\n')
if textures is not None and texture_type == 'surface':
for vertex in uvcoords.reshape((-1, 2)):
f.write('vt %.8f %.8f\n' % (vertex[0], vertex[1]))
f.write('\n')
f.write('usemtl %s\n' % material_name)
for i, face in enumerate(faces):
f.write('f %d/%d %d/%d %d/%d\n' % (
face[0] + 1, uvfaces[i,0]+1, face[1] + 1, uvfaces[i,1]+1, face[2] + 1, uvfaces[i,2]+1))
f.write('\n')
else:
for face in faces:
f.write('f %d %d %d\n' % (face[0] + 1, face[1] + 1, face[2] + 1))
if textures is not None and texture_type == 'surface':
with open(filename_mtl, 'w') as f:
f.write('newmtl %s\n' % material_name)
f.write('map_Kd %s\n' % os.path.basename(filename_texture))