-
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathWaveGen.py
95 lines (75 loc) · 3.29 KB
/
WaveGen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import numpy as np
from scipy import signal as sig
import torch
import torchaudio
import os
import random
NOTES = ['A', 'A#', 'B', 'C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#']
def pitch2freq(pitch, A4=440):
note = NOTES.index(pitch[:-1])
octave = int(pitch[-1])
distance_from_A4 = note + 12 * (octave - (4 if note < 3 else 5))
return A4 * 2 ** (distance_from_A4/12)
def create_signal(keys, sample_rate, sample_length, amplitude, waveform='sine'):
keys = keys.replace(',', '').split(' ')
awaves = []
for key in keys:
key = key.replace(key[-1], str(int(key[-1]) - 2))
freq = pitch2freq(key.upper()) # Frequency in Hz
x = np.arange(sample_length)
if waveform == 'sine':
awave = 100*np.sin(2 * np.pi * freq * x / sample_rate)
elif waveform == 'square':
awave = 100*sig.square(2 * np.pi * freq * x / sample_rate)
elif waveform == 'saw':
awave = 100*sig.sawtooth(2 * np.pi * freq * x / sample_rate)
awaves.append(awave)
awaves = np.sum(awaves, axis=0)
awaves = awaves / np.max(np.abs(awaves))
awaves = awaves * amplitude
awaves = torch.from_numpy(awaves)
return awaves.unsqueeze(0).repeat(2, 1).unsqueeze(0).float()
class WaveGenerator():
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"keys": ("STRING", {'default': 'C5 C6 C7'}),
"sample_rate": ("INT", {"default": 44100, "min": 1, "max": 10000000000, "step": 1}),
"chunk_size": ("INT", {"default": 65536, "min": 32768, "max": 10000000000, "step": 32768}),
"amplitude": ("FLOAT", {'default': 1.0, 'min': 0.0, 'max': 2.0, 'step': 0.01}),
"waveform": (["sine", "square", "saw"], {'default': 'sine'})
},
"optional": {
},
}
RETURN_TYPES = ("STRING", "AUDIO", "INT")
RETURN_NAMES = ("path", "🎙️audio", "sample_rate")
FUNCTION = "generate_wave"
CATEGORY = "🎙️Jags_Audio/WaveGenerator"
def generate_wave(self, keys, sample_rate, chunk_size, amplitude, waveform='sine'):
tensor = create_signal(keys=keys, sample_rate=sample_rate, sample_length=chunk_size, amplitude=amplitude, waveform=waveform)
rand = random.randint(0, 100000000000)
dirs = __file__.split('\\')
comfy_index = None
for i, dir in enumerate(dirs):
if dir == "ComfyUI":
comfy_index = i
break
if comfy_index is not None:
# Join the list up to the "ComfyUI" folder
comfy_dir = '\\'.join(dirs[:comfy_index+1])
for ix, sample in enumerate(tensor):
if not os.path.exists(os.path.join(comfy_dir, 'temp')):
os.makedirs(os.path.join(comfy_dir, 'temp'))
path = os.path.join(comfy_dir, 'temp\\', f"sample_{rand}.wav")
open(path, "a").close()
output = sample.cpu()
torchaudio.save(path, output, sample_rate)
return (path, tensor, sample_rate)
NODE_CLASS_MAPPINGS = {
"GenerateAudioWave": WaveGenerator
}
NODE_DISPLAY_NAME_MAPPINGS = {
"GenerateAudioWave": "Jags_Wave Generator"
}