-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathcomfyui_debug.py
235 lines (197 loc) · 5.94 KB
/
comfyui_debug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import textwrap
from pprint import pformat, pprint
import torch
NODE_CLASS_MAPPINGS = {}
NODE_DISPLAY_NAME_MAPPINGS = {}
def register_node(identifier: str, display_name: str):
def decorator(cls):
NODE_CLASS_MAPPINGS[identifier] = cls
NODE_DISPLAY_NAME_MAPPINGS[identifier] = display_name
return cls
return decorator
@register_node("JWPrintInteger", "Print Integer")
class _:
CATEGORY = "jamesWalker55"
INPUT_TYPES = lambda: {
"required": {
"value": ("INT", {"default": 0, "min": -99999999999, "max": 99999999999}),
"name": (
"STRING",
{"default": "integer", "multiline": True, "dynamicPrompts": False},
),
}
}
RETURN_TYPES = ("INT",)
OUTPUT_NODE = True
FUNCTION = "execute"
def execute(self, value, name: str):
print(f"{name} = {pformat(value)}")
return (value,)
@classmethod
def IS_CHANGED(cls, *args):
# Always recalculate
return float("NaN")
@register_node("JWPrintFloat", "Print Float")
class _:
CATEGORY = "jamesWalker55"
INPUT_TYPES = lambda: {
"required": {
"value": ("FLOAT", {"default": 0, "min": -99999999999, "max": 99999999999}),
"name": (
"STRING",
{"default": "float", "multiline": True, "dynamicPrompts": False},
),
}
}
RETURN_TYPES = ("FLOAT",)
OUTPUT_NODE = True
FUNCTION = "execute"
def execute(self, value, name: str):
print(f"{name} = {pformat(value)}")
return (value,)
@classmethod
def IS_CHANGED(cls, *args):
# Always recalculate
return float("NaN")
@register_node("JWPrintString", "Print String")
class _:
CATEGORY = "jamesWalker55"
INPUT_TYPES = lambda: {
"required": {
"value": ("STRING", {"default": "text", "multiline": False}),
"name": (
"STRING",
{"default": "string", "multiline": True, "dynamicPrompts": False},
),
}
}
RETURN_TYPES = ("STRING",)
OUTPUT_NODE = True
FUNCTION = "execute"
def execute(self, value, name: str):
print(f"{name} = {pformat(value)}")
return (value,)
@classmethod
def IS_CHANGED(cls, *args):
# Always recalculate
return float("NaN")
@register_node("JWPrintImage", "Print Image")
class _:
CATEGORY = "jamesWalker55"
INPUT_TYPES = lambda: {
"required": {
"value": ("IMAGE",),
"name": (
"STRING",
{"default": "image", "multiline": True, "dynamicPrompts": False},
),
}
}
RETURN_TYPES = ("IMAGE",)
OUTPUT_NODE = True
FUNCTION = "execute"
def execute(self, value: torch.Tensor, name: str):
lines = [
f"{name} =",
f" {name}.shape = {value.shape}",
f" {name}.min() = {value.min()}",
f" {name}.max() = {value.max()}",
f" {name}.mean() = {value.mean()}",
f" {name}.std() = {value.std()}",
f" {name}.dtype = {value.dtype}",
]
lines = "\n".join(lines)
print(lines)
return (value,)
@classmethod
def IS_CHANGED(cls, *args):
# Always recalculate
return float("NaN")
@register_node("JWPrintMask", "Print Mask")
class _:
CATEGORY = "jamesWalker55"
INPUT_TYPES = lambda: {
"required": {
"value": ("MASK",),
"name": (
"STRING",
{"default": "mask", "multiline": True, "dynamicPrompts": False},
),
}
}
RETURN_TYPES = ("MASK",)
OUTPUT_NODE = True
FUNCTION = "execute"
def execute(self, value: torch.Tensor, name: str):
lines = [
f"{name} =",
f" {name}.shape = {value.shape}",
f" {name}.min() = {value.min()}",
f" {name}.max() = {value.max()}",
f" {name}.mean() = {value.mean()}",
f" {name}.std() = {value.std()}",
f" {name}.dtype = {value.dtype}",
]
lines = "\n".join(lines)
print(lines)
return (value,)
@classmethod
def IS_CHANGED(cls, *args):
# Always recalculate
return float("NaN")
def serialise_obj(obj):
if isinstance(obj, dict):
text = ["{"]
for k, v in obj.items():
subtext = [
textwrap.indent(f"{k!r}:", " "),
textwrap.indent(serialise_obj(v), " "),
]
text.append("\n".join(subtext))
text.append("}")
text = "\n".join(text)
elif isinstance(obj, list):
text = []
for x in obj:
subtext = serialise_obj(x)
subtext = textwrap.indent(subtext, " ")
subtext = f"-{subtext[1:]}"
text.append(subtext)
text = "\n".join(text)
elif isinstance(obj, torch.Tensor):
text = "\n".join(
[
f"Tensor",
f" .shape = {obj.shape}",
f" .min() = {obj.min()}",
f" .max() = {obj.max()}",
f" .mean() = {obj.mean()}",
f" .std() = {obj.std()}",
f" .dtype = {obj.dtype}",
]
)
else:
text = pformat(obj)
return text
@register_node("JWPrintLatent", "Print Latent")
class _:
CATEGORY = "jamesWalker55"
INPUT_TYPES = lambda: {
"required": {
"value": ("LATENT",),
"name": (
"STRING",
{"default": "latent", "multiline": True, "dynamicPrompts": False},
),
}
}
RETURN_TYPES = ("LATENT",)
OUTPUT_NODE = True
FUNCTION = "execute"
def execute(self, value: dict, name: str):
print(f"{name} = {serialise_obj(value)}")
return (value,)
@classmethod
def IS_CHANGED(cls, *args):
# Always recalculate
return float("NaN")